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Part 2: Modeling of sequences with a term algebra (user interface)

The ground field (throughout this talk): G = K(x)
» For any element f = § € G with p,q € K[z] where g # 0 and p, q
being coprime we define

0 if (k) =0
7k" = .
ev(/,k) {fl% if q(k) 0.

> We define L(f) to be the minimal value 6 € N such that ¢(k) # 0
holds for all £ > §; further,

Z(f) = max(L(}),L(L)  if £ £0.

q

Example: For

we get
(ev(f, ))n>0 = (_§a9a2a9507 %7 . ) € QN

For n > L(f) = 4 no poles arise;

forn > Z(f) = max(L(%), L(%)) = max(4,5) = 5 no zeroes arise.



Part 2: Modeling of sequences with a term algebra (user interface)

The ground field (throughout this talk): G = K(x)
» For any element f = § € G with p,q € K[z] where g # 0 and p, q
being coprime we define
0 if (k) =0
k) =
evif, k) {M if g(k) # 0.

q(k)
> We define L(f) to be the minimal value 6 € N such that ¢(k) # 0
holds for all £ > §; further,

Z(f) = max(L(}),L(L)  if £ £0.

> We define
R ={re K\ {1} |ris a root of unity}

with the function ord : R — Z>1 where

ord(r) = min{n € Z>1 | " = 1}.



Part 2: Modeling of sequences with a term algebra (user interface)

G

Let®, ®, ®, Sum, Prod and RPow be operations with the signatures

Prod*(G)= the smallest set that contains 1 with the following properties:

=

e

— SumProd(G) (nested sums over hypergeometric products)

B : SumProd(G) x Z
@: SumProd(G) x SumProd(G)
©: SumProd(G) x SumProd(G)

Sum: N x SumProd(G)
Prod: N x SumProd(G)
RPow: R

If » € R then RPow(r) € Prod*(G).

If f € G*andl € Nwith [ > Z(f) then Prod(l, f) € Prod*(G).
If p,q € Prod*(G) then p ® q € Prod*(G).

A A AN
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SumProd(G
SumProd(
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SumProd(
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If p € Prod*(G) and z € Z\ {0} then 22 € Prod*(G).
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G — SumProd(G) (nested sums over hypergeometric products)

Let®, &, ®, Sum, Prod and RPow be operations with the signatures

D : SumProd(G) x Z —  SumProd(G)
®: SumProd(G) x SumProd(G) — SumProd(G)
©: SumProd(G) x SumProd(G) — SumProd(G)
Sum: N x SumProd(G) —  SumProd(G)
Prod: N x SumProd(G) —  SumProd(G)
RPow: R —  SumProd(G)

Prod*(G)= the smallest set that contains 1 with the following properties:

1. If r € R then RPow(r) € Prod*(G).

If f€G*and ! € Nwith > Z(f) then Prod(l, f) € Prod*(G).
If p,q € Prod*(G) then p ® q € Prod*(G).

If p € Prod*(G) and z € Z\ {0} then 22 € Prod*(G).

Furthermore, we define

I(G) ={RPow(r) | r € R} U {Prod(l, f) | f € G, € N}.

e



Part 2: Modeling of sequences with a term algebra (user interface)

G — SumProd(G) (nested sums over hypergeometric products)

Let®, &, ®, Sum, Prod and RPow be operations with the signatures

D : SumProd(G) x Z —  SumProd(G)
®: SumProd(G) x SumProd(G) — SumProd(G)
©: SumProd(G) x SumProd(G) — SumProd(G)
Sum: N x SumProd(G) —  SumProd(G)
Prod: N x SumProd(G) —  SumProd(G)
RPow: R —  SumProd(G).

Prod*(G)= the smallest set that contains 1 with the following properties:

. If € R then RPow(r) € Prod*(G).

If f€G* and [ € N with [ > Z(f) then Prod(l, f) € Prod*(G).
. If p,q € Prod*(G) then p ® ¢ € Prod*(G).

If p € Prod*(G) and z € Z\ {0} then Pz € Prod*(G).

Example: In G = Q(z) we get
P = (Prod(1,2)%(—2)) ® RPow(—1) € Prod*(G).
N—— S———
€I(G) 11(G)

A w N =



Part 2: Modeling of sequences with a term algebra (user interface) )

G — SumProd(G) (nested sums over hypergeometric products)
SumProd(G) = the smallest set containing G U Prod*(G) with:

1. For all f,g € SumProd(G) we have f @ g € SumProd(G).

2. For all f,g € SumProd(G) we have f ® g € SumProd(G).

3. For all f € SumProd(G) and k € Z>; we have &k € SumProd(G).

4. For all f € SumProd(G) and I € N we have Sum(l, f) € SumProd(G).
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G — SumProd(G) (nested sums over hypergeometric products)

SumProd(G) = the smallest set containing G U Prod*(G) with:

—_

. For all f,g € SumProd(G) we have f @ g € SumProd(G).

2. For all f,g € SumProd(G) we have f ® g € SumProd(G).

3. For all f € SumProd(G) and k € Zs; we have f&k € SumProd(G).

4. For all f € SumProd(G) and I € N we have Sum(l, f) € SumProd(G).

Furthermore, the set of nested sums over hypergeometric products is
given by

Y(G) ={Sum(l, f) |l € N and f € SumProd(G)}
and the set of nested sums and hypergeometric products is given by
YII(G) = ¥(G) UII(G).



Part 2: Modeling of sequences with a term algebra (user interface)

G — SumProd(G) (nested sums over hypergeometric products)
SumProd(G) = the smallest set containing G U Prod*(G) with:

1. For all f,g € SumProd(G) we have f @ g € SumProd(G).

2. For all f,g € SumProd(G) we have f ® g € SumProd(G).

3. For all f € SumProd(G) and k € Zs; we have f&k € SumProd(G).

4. For all f € SumProd(G) and I € N we have Sum(l, f) € SumProd(G).

Example
With G = K(z) we get, e.g., the following expressions:

E; = Sum(1,Prod(1,z)) € ¥(G) C SumProd(G),
Ey = Sum(1, xl? ® Sum(1, ;1;) ® Sum(1, 1)) € B(G) C SumProd(G),
Es = (El D E2) O F € SumProd(G).
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Part 2: Modeling of sequences with a term algebra (user interface)

ev: GxN—-K — ev : SumProd(G) x N — K
1. For f,g € SumProd(G), k € Z\ {0} (k > 0 if f ¢ Prod*(G)) we set
ev(f®k,n) = ev(f,n)",

ev(f @ g,n) :=ev(f,n)+ev(g,n),
ev(f ®g,n) :=ev(f,n) ev(g,n);



Part 2: Modeling of sequences with a term algebra (user interface)

ev: G xN—-K — ev : SumProd(G) x N — K
1. For f,g € SumProd(G), k € Z\ {0} (k > 0 if f ¢ Prod*(G)) we set

ev(f@k, n) == ev(f,n)k,
ev(f®g,n) :=ev(f,n)+ev(g,n),
ev(f ©g,n) = ev(f,n) ev(g,n);
2. for r € R and Sum(l, f),Prod(}\, g) € SumProd(G) we define

ev(RPow(r) Hr =r"

ev(Sum(l, f),n Zev (f,7)

ev(Prod(}, g9), Hev g,1) H (7).



Part 2: Modeling of sequences with a term algebra (user interface) 6

ev: G xN—-K — ev : SumProd(G) x N — K
1. For f,g € SumProd(G), k € Z \ {O} (k> 0if f ¢ Prod*(G)) we set

ev(fPk,n) = ev(f,n)*,
ev(f @y, ) ev (f, n) +ev(g,n),
ev(f ©g,n) = ev(f,n) ev(g,n);
2. for r € R and Sum(l, f),Prod(}\, g) € SumProd(G) we define

ev(RPow(r) Hr =r"

ev(Sum(l, f),n Zev (f,7)

ev(Prod(}, g9), Hev g,1) H (7).

Note: II(G) defines all hypergeometric products (which
evaluate to sequences with non-zero entries).



Part 2: Modeling of sequences with a term algebra (user interface)

ev applied to f € SumProd(G) represents a sequence.

f can be considered as a simple program and ev(f,n) with n € N executes
it (like an interpreter/compiler) yielding the nth entry of the represented
sequence.

Definition
For F' € SumProd(G) and n € N we write F'(n) := ev(F,n).



Part 2: Modeling of sequences with a term algebra (user interface)

ev applied to f € SumProd(G) represents a sequence.
f can be considered as a simple program and ev(f,n) with n € N executes

it (like an interpreter/compiler) yielding the nth entry of the represented
sequence.

Definition

For F' € SumProd(G) and n € N we write F'(n) := ev(F,n).
Example

For E; € SumProd(K(x)) with i = 1,2,3 we get

3

n k
Ei(n) =ev(Eq,n) = ev(Sum(1, Prod(1,z)),n) = Z Hz =Y kIl
k=1li=1 k=1



Part 2: Modeling of sequences with a term algebra (user interface)

ev applied to f € SumProd(G) represents a sequence.

f can be considered as a simple program and ev(f,n) with n € N executes
it (like an interpreter/compiler) yielding the nth entry of the represented
sequence.

Definition

For F' € SumProd(G) and n € N we write F'(n) := ev(F,n).
Example

For E; € SumProd(K(x)) with i = 1,2,3 we get

3

1 i=1

k=1i=1 k=1
Es(n) = ev(Sum(1, ﬁ ® Sum(1, m%) ® Sum(1,1)),n)
n k k
=Y ()t
P -

1 =
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ev applied to f € SumProd(G) represents a sequence.

f can be considered as a simple program and ev(f,n) with n € N executes
it (like an interpreter/compiler) yielding the nth entry of the represented
sequence.

Definition

For F' € SumProd(G) and n € N we write F'(n) := ev(F,n).
Example

For E; € SumProd(K(x)) with i = 1,2,3 we get

3
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Part 2: Modeling of sequences with a term algebra (user interface)

Definition
An expression A € SumProd(G) is in reduced representation if

A=([ioP)®(0P)& & (fr ©P) (1)
with f; € G* and

P = (a;1%%1) © (a5 2%22) © -+ © (ain 2in,)



Part 2: Modeling of sequences with a term algebra (user interface)

Definition
An expression A € SumProd(G) is in reduced representation if

A=(hoP)o(LoR)® & (fiOF) (1)
with f; € G* and

P = (ai1%%1) © (a;9%%i2) @ -+ © (ain.2in:)
for 1 <7 <7 where
> a;; =Sum(ly;, fij) with [; ; € N, f; i € SumProd(G) and z; ; € Z>1,
» a;; = Prod(l; j, fi ;) with l; ; € N, f; ; € Prod"(G) and z; ; € Z\ {0},
> a; j = RPow(f; ;) with f; ; € R and 1 < z;; < ord(r; ;)
such that the following properties hold:
1. foreach 1 <i<rand1<j<j <n;wehave a;; # a;;;
2. for each 1 <i < i’ <r with n; = n; there does not exist a 0 € Sy,
with Py = (a;,5(1°2i,0(1)) @ (@i,02) 2102) © @ (@40 Zio(ni))-



Part 2: Modeling of sequences with a term algebra (user interface)

Definition
An expression A € SumProd(G) is in reduced representation if

A:(fl@Pl)@(f2®P2)@"'@(fr®Pr) (1)

with f; € G*
H € SumProd(G) is in sum-product reduced representation if
P it is in reduced representation;

> for each Sum(l, A) and Prod(l, A) that occur recursively in H the
following holds:

> A s in reduced representation as given in (1);

» [ >max(L(f1),...,L(fr)) (i.e., no poles occur);

> the lower bound [ is greater than or equal to the lower bounds of the
sums and products inside of A.
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Definition
An expression A € SumProd(G) is in reduced representation if

A=(fioP)d(LoR)a - a(f0P) (1)

with f; € G*
H € SumProd(G) is in sum-product reduced representation if
P it is in reduced representation;

> for each Sum(l, A) and Prod(l, A) that occur recursively in H the
following holds:

> A s in reduced representation as given in (1);

» [ >max(L(f1),...,L(fr)) (i.e., no poles occur);

> the lower bound [ is greater than or equal to the lower bounds of the
sums and products inside of A.

Example
Es = (Ey @ E2) ® Ej is not in reduced representation
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Definition
An expression A € SumProd(G) is in reduced representation if

A=(fioP)d(LoR)a - a(f0P) (1)

with f; € G*
H € SumProd(G) is in sum-product reduced representation if
P it is in reduced representation;

> for each Sum(l, A) and Prod(l, A) that occur recursively in H the
following holds:

> A s in reduced representation as given in (1);

» [ >max(L(f1),...,L(fr)) (i.e., no poles occur);

> the lower bound [ is greater than or equal to the lower bounds of the
sums and products inside of A.

Example
Es = (Ey @ E2) ® Ej is not in reduced representation
Sum(0, %) is not in sum-product reduced represenation



Part 2: Modeling of sequences with a term algebra (user interface)

Definition
An expression A € SumProd(G) is in reduced representation if

A=(fioP)d(LoR)a - a(f0P) (1)

with f; € G*
H € SumProd(G) is in sum-product reduced representation if
P it is in reduced representation;

> for each Sum(l, A) and Prod(l, A) that occur recursively in H the
following holds:

> A s in reduced representation as given in (1);
» [ >max(L(f1),...,L(fr)) (i.e., no poles occur);
> the lower bound [ is greater than or equal to the lower bounds of the
sums and products inside of A.
Example
Es = (Ey @ E2) ® Ej is not in reduced representation
Sum(0, %) is not in sum-product reduced represenation

Sum(1,Sum(2, 1)) is not in sum-product reduced represenation



Part 2: Modeling of sequences with a term algebra (user interface)

Definition
An expression A € SumProd(G) is in reduced representation if

A=(fioP)d(LoR)a - a(f0P) (1)

with f; € G*
H € SumProd(G) is in sum-product reduced representation if
P it is in reduced representation;

> for each Sum(l, A) and Prod(l, A) that occur recursively in H the
following holds:

> A s in reduced representation as given in (1);
» [ >max(L(f1),...,L(fr)) (i.e., no poles occur);
> the lower bound [ is greater than or equal to the lower bounds of the
sums and products inside of A.
Lemma

For any A € SumProd(G), there is a B € SumProd(G) in sum-product
reduced representation and \ € N such that

A(n) = B(n) VYn >\



Part 2: Modeling of sequences with a term algebra (user interface)
Key-Definitions: Let W C XII(G).

SumProd(W,G) =the set of elements from SumProd(G) which
are in reduced representation and the arising
sums/products are taken from W.
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Key-Definitions: Let W C XII(G).

SumProd(W,G) =the set of elements from SumProd(G) which
are in reduced representation and the arising
sums/products are taken from W.

» W is called shift-closed over G if for any A € SumProd(W,G), s € Z
there are B € SumProd(WW,G) and 6 € N such that

A(n+s)=B(n) Vn>o.
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Key-Definitions: Let W C XII(G).

SumProd(W,G) =the set of elements from SumProd(G) which
are in reduced representation and the arising
sums/products are taken from W.

» W is called shift-closed over G if for any A € SumProd(W,G), s € Z
there are B € SumProd(WW,G) and 6 € N such that

A(n+s)=B(n) Vn>o.

> W is called shift-stable over G if for any product or sum in W the
multiplicand or summand is built by sums and products from W.
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Key-Definitions: Let W C XII(G).

SumProd(W,G) =the set of elements from SumProd(G) which
are in reduced representation and the arising
sums/products are taken from W.

» W is called shift-closed over G if for any A € SumProd(W,G), s € Z
there are B € SumProd(WW,G) and 6 € N such that

A(n+s)=B(n) Vn>o.
> W is called shift-stable over G if for any product or sum in W the

multiplicand or summand is built by sums and products from W.

Example
W = {Sum(1,Sum(1, 1), 1)} is neither shift-closed nor shift-stable;

z



Part 2: Modeling of sequences with a term algebra (user interface)

Key-Definitions: Let W C XII(G).

SumProd(W,G) =the set of elements from SumProd(G) which
are in reduced representation and the arising
sums/products are taken from W.

» W is called shift-closed over G if for any A € SumProd(W,G), s € Z
there are B € SumProd(WW,G) and 6 € N such that

A(n+s)=B(n) Vn>o.

> W is called shift-stable over G if for any product or sum in W the
multiplicand or summand is built by sums and products from W.

Example
W = {Sum(1,Sum(1, 1), 1)} is neither shift-closed nor shift-stable;

W = {Sum(1, 1), Sum(1,Sum(1, 1), 1)} is shift-closed and shift-stable;



Part 2: Modeling of sequences with a term algebra (user interface)

Key-Definitions: Let W C XII(G).

SumProd(W,G) =the set of elements from SumProd(G) which
are in reduced representation and the arising
sums/products are taken from W.

» W is called shift-closed over G if for any A € SumProd(W,G), s € Z
there are B € SumProd(WW,G) and 6 € N such that

A(n+s)=B(n) Vn>o.
> W is called shift-stable over G if for any product or sum in W the

multiplicand or summand is built by sums and products from W.

Example
W = {Sum(1,Sum(1, 1), 1)} is neither shift-closed nor shift-stable;

W = {Sum(1, 1), Sum(1,Sum(1, 1), 1)} is shift-closed and shift-stable;

W is shift-stable W is shift-closed

=
<+



Part 2: Modeling of sequences with a term algebra (user interface)

Key-Definitions: Let W C XII(G).

SumProd(W,G) =the set of elements from SumProd(G) which
are in reduced representation and the arising
sums/products are taken from W.

» W is called shift-closed over G if for any A € SumProd(W,G), s € Z
there are B € SumProd(WW,G) and 6 € N such that

A(n+s)=B(n) Vn>o.

> W is called shift-stable over G if for any product or sum in W the
multiplicand or summand is built by sums and products from W.

> W is called canonical reduced over G if for any
A, B € SumProd(W, G) with

A(n)=B(n) Vn>94

for some & € N the following holds: A and B are the same up to
permutations of the operands in @ and ©.



Part 2: Modeling of sequences with a term algebra (user interface)

Definition

W C XII(G) is called o-reduced over G if
1. the elements in W are in sum-product reduced form,
2. W is shift-stable (and thus shift-closed) and
3. W is canonical reduced.

In particular, A € SumProd(W,G) is called o-reduced (w.r.t. W) if W is
o-reduced over G.



Part 2: Modeling of sequences with a term algebra (user interface)

Definition

W C ¥II(G) is called o-reduced over G if
1. the elements in W are in sum-product reduced form,
2. W is shift-stable (and thus shift-closed) and
3. W is canonical reduced.

In particular, A € SumProd(W,G) is called o-reduced (w.r.t. W) if W is
o-reduced over G.

Problem SigmaReduce: Compute a o-reduced representation

Given: Ajp,..., A, € SumProd(G) with G = K(z).

Find: a o-reduced set W = {T1,...,T.} C XII(G),
B;...,By € SumProd(W,G) and d1,...,0, € N
such that for all 1 < i <7 we get



Part 2: Modeling of sequences with a term algebra (user interface)

e Canonical representation in term algebras

Ay
in SumProd(G)
B

o-reduced

Vn > 6 ev(Ai,n) =ev(Bi,n)



Part 2: Modeling of sequences with a term algebra (user interface)

e Canonical representation in term algebras

Al A2
in SumProd(G)

By By

o-reduced

Vn > 6 ev(Ai,n) =ev(Bi,n) ev(Ag,n) = ev(Ba,n)



Part 2: Modeling of sequences with a term algebra (user interface)
e Canonical representation in term algebras
Ay As
in SumProd(G)

By By

o-reduced

Vn > 6 ev(Ai,n) =ev(Bi,n) = ev(Ag,n) = ev(Ba,n)

canonical simplifier

B = Bo



Part 3: Modeling of sequences in difference rings (computer algebra)

General picture:

user-level

term algebra

SumProd(G)

...................................... ev:(rlng of sequences)

: /

Y
(formal difference rings)

user interface

computer algebra-level



Part 3: Modeling of sequences in difference rings (computer algebra)

General picture:

Part 1: Symbolic summation (a short introduction)

Part 2: Modeling of sequences with a term algebra (user interface)

Part 3: Modeling of sequences in difference rings (computer algebra)

Part 4: Construction of appropriate difference rings (advanced CA)

Part 5: Applications



Part 3: Modeling of sequences in difference rings (computer algebra)

Represent H = Sum(1, 1) € SumProd(G) with

"1
H(n)=Hn,=)_ =
k=1



Part 3: Modeling of sequences in difference rings (computer algebra)

Represent H = Sum(1, 1) € SumProd(G) with
n
1
H(n)=H, =) .
(n) 25,
1. aformal ring A= Q(x) [s]
——

rat. fu. field

polynomial ring



Part 3: Modeling of sequences in difference rings (computer algebra)

Represent H = Sum(1, 1) € SumProd(G) with
n

1

RN

1. a formal ring A = Q(z)[s]
2. an evaluation function

ev': Q(z)xN — Q
a(=)’ otherW|se



Part 3: Modeling of sequences in difference rings (computer algebra)

Represent H = Sum(1, 1) € SumProd(G) with
n

1

R

1. a formal ring A = Q(z)[s]
2. an evaluation function

USNS

@
if g(n) #0
otherwise
ev: Q(z)[s]xN — Q

ev(s,n) = H,



Part 3: Modeling of sequences in difference rings (computer algebra)

Represent H = Sum(1, 1) € SumProd(G) with

n
1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q

ev': Q(z)xN - Q
(n)
(M n) = % if g(n) # 0
a(z)’ 0 otherwise
Q

ev’(fi, n)H,ZZ ev(s,n) = H,

N
M a
)
m@.
E
N————
1
M=~

s
Il
=)

Definition: (A, ev) is called an eval-ring



Part 3: Modeling of sequences in difference rings (computer algebra)

Represent H = Sum(1, 1) € SumProd(G) with

n
1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q

Consider the map
7 A - QV
f = <ev(f, n)>n20

It is almost a ring homomorphism :

m(2)7(2) = (0,1,2,3,...)(0,1,4,%,...)

x



Part 3: Modeling of sequences in difference rings (computer algebra)

Represent H = Sum(1, 1) € SumProd(G) with

n
1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q

Consider the map
7 A - QV
f = <ev(f, n)>n20

It is almost a ring homomorphism :
r@)r(l) = (0,1,2,3,...)(0,1,3,1,...)

x

0,1,1,1,...)



Part 3: Modeling of sequences in difference rings (computer algebra)

Represent H = Sum(1, 1) € SumProd(G) with

n
1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q

Consider the map
7 A - QV
f = <ev(f, n)>n20

It is almost a ring homomorphism :

r@)r(l) = (0,1,2,3,...)(0,1, 1, ..0)
I
0,1,1,1,...)
Y

rzdl)y=7(1) = (1,1,1,1,...)



Part 3: Modeling of sequences in difference rings (computer algebra)

Represent H = Sum(1, 1) € SumProd(G) with
n
1
Hn)=H,=Y -
(n) ; -

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q

Consider the map

T A - QY/~ (an) ~ (by) iff a, = by,
f o= (ev(f,n))n>o0 from a certain point on

It is a ring homomorphism :
T(@)r(3) = (0.1,23,...)(0,1,5.5,...)
I
0,1,1,1,...)
|

rzdl)y=7(1) = (1,1,1,1,...)



Part 3: Modeling of sequences in difference rings (computer algebra)

Represent H = Sum(1, 1) € SumProd(G) with

n
1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q

Consider the map

T A - QY/~ (an) ~ (by) iff a, = by,
f o= (ev(f,n))n>o0 from a certain point on

It is an injective ring homomorphism (ring embedding):
r@)r(l) = (0,1,2,3,...)(0,1,3,1,...)
I
0,1,1,1,...)
|

rzd)=1(1) = (1,1,1,1,...)



Part 3: Modeling of sequences in difference rings (computer algebra)

Represent H = Sum(1, 1) € SumProd(G) with

"1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q
3. a ring automorphism

o: Q)  — Q)
r(z = r(z+1)



Part 3: Modeling of sequences in difference rings (computer algebra)

Represent H = Sum(1, 1) € SumProd(G) with

"1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q
3. a ring automorphism

o Q(x) - Q(x)
r(z = r(z+1)
o: Q@)s] — Q)[s] S s+

Hn+1 :Hn‘i‘%ﬂ



Part 3: Modeling of sequences in difference rings (computer algebra)

Represent H = Sum(1, 1) € SumProd(G) with

1
H(n)=Hn,=)_ =
k=
1. a formal ring A = Q(z)[s] 1

2. an evaluation functionev: A x N — Q
3. a ring automorphism

o Q(x) - Q)
r(z) = or(z+1)

7 QW] ~ Q@ srr s+
Zfi s' = U/(fi)<3+ x—_1H>Z Hygr = Hy + 37
i= i=0

Definition: (A, o) with a ring A and automorphism o is called a
difference ring; the set of constants is

consteA = {c € A|o(c) =c}



Part 3: Modeling of sequences in difference rings (computer algebra)

Represent H = Sum(1, 1) € SumProd(G) with

n
1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q
3. a ring automorphism o : A — A

ev and o interact:

ev(o(s),n) = ev(s + =, n) = H, +

1 =ev(s,n+1)

1
n+1



Part 3: Modeling of sequences in difference rings (computer algebra)

Represent H = Sum(1, 1) € SumProd(G) with

n
1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q
3. a ring automorphism o : A — A

ev and o interact:

ev(o(s),n) =ev(s+ %H,n) =H, + n+r1 =ev(s,n+1)

0

T(O‘(S)):(1,1+%,1+%+%,...>:S(<0,1,1+%,...>):S(T(S))

shiftdoperator



Part 3: Modeling of sequences in difference rings (computer algebra)

Represent H = Sum(1, 1) € SumProd(G) with

n
1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q
3. a ring automorphism o : A — A

ev and o interact:

ev(o(s),n) =ev(s+ %H,n) =H, + n+r1 =ev(s,n+1)

0

T(o(s)) = (1,1—1—%,1%—%4—%,...) = S((O,l,l—{—%,...)) = S(7(s))
7 is an injective difference ring homomorphism:

K(z)[s] - K(z)[s]

T = T

KN/N KN/N




Part 3: Modeling of sequences in difference rings (computer algebra)

Represent H = Sum(1, 1) € SumProd(G) with

n
1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q
3. a ring automorphism o : A — A

ev and o interact:

ev(o(s),n) =ev(s+ %H,n) =H, +
)

T(O‘(S)):(1,1+%,1+%+%,...>:S(<0,1,1+%,...>):S(T(S))

n+r1 =ev(s,n+1)

7 is an injective difference ring homomorphism:

12

(7(Q@)) [(Hn)nz0l, S) | < (KY/ ~, )
N——
rat. seq.

(K(z)[s], 0)




Part 3: Modeling of sequences in difference rings (computer algebra)

Summary: we rephrase H € SumProd(G) as element & in a formal
difference ring. More precisely, we will design

> aring A with A D G D K in which H can be represented by h € A;

> an evaluation function ev : A x N — K such that H(n) = ev(h,n)
holds for sufficiently large n € N;

> a ring automorphism o : A — A which models H(n + 1) with o(h).



Part 3: Modeling of sequences in difference rings (computer algebra)
A hypergeometric AP S-extension of (K(x),0) is
> aring

A :=K(z)

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olz)=z+1



Part 3: Modeling of sequences in difference rings (computer algebra)

A hypergeometric AP S-extension of (K(x),0) is
> aring

A :=K(z)

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olx)=z+1
Skl=(k+1)k!



Part 3: Modeling of sequences in difference rings (computer algebra)

A hypergeometric AP S-extension of (K(x),0) is
> aring

A =K(@)[p1,p7 ]

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olz)=z+1
Skl=(k+1)k! <+ o(p1)=(z+1)p1



Part 3: Modeling of sequences in difference rings (computer algebra)

A hypergeometric AP S-extension of (K(x),0) is
> aring

A =K(@)[p1,p7 ]

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olx)=z+1

hypergeometric < o(p1) =a1p1 a1 € K(z)*
products



Part 3: Modeling of sequences in difference rings (computer algebra)

A hypergeometric AP S-extension of (K(x),0) is
> aring

A = K(z)[p1, p1 P2, Py Y]

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olx)=z+1

hypergeometric < o(p1) =a1p1 a1 € K(z)*
products o(p2) = asps as € K(z)*



Part 3: Modeling of sequences in difference rings (computer algebra)

A hypergeometric AP S-extension of (K(x),0) is
> aring

A= K(@)[p1,p1 1p2, 03] - - - [pespe ']

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olx)=z+1
hypergeometric < o(p1) =a1p1 a1 € K(z)*

products o(p2) = azps az € K(z)”

U(pe) = QePe Qe € K(l’>*



Part 3: Modeling of sequences in difference rings (computer algebra)

A hypergeometric AP S-extension of (K(x),0) is
P> aring

A = K(@)[p1,py 2031 - - - Pes 021 [2]

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olx)y=xz+1

hypergeometric + o(p1) = a1 py ay € K(z)*
products o(p2) = azps as € K(z)*

0(Pe) = GePe a. € K(x)*

(D% & o(z)=-z z2=1



Part 3: Modeling of sequences in difference rings (computer algebra)

A hypergeometric AP S-extension of (K(x),0) is
> aring

A = K(@)[p1,p7 2, p7 1 - - - [pes 02 (2]

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olzy=xz+1
hypergeometric +  o(p1) = a1 py ay € K(z)*
products o(p2) = agpe az € K(z)*

U(pe) = GePe Qe € K(x>*

~ is a primitive Ath ’}’k o O'(Z) =z ZA -1

root of unity



Part 3: Modeling of sequences in difference rings (computer algebra)

A hypergeometric AP S-extension of (K(x),0) is

P> aring

A =K()[p1,py P2, 05 '] - - - [pes v ] [2][51]

> with an automorphism where o(c) = ¢ for all ¢ € K and where

hypergeometric
products

~ is a primitive Ath k
root of unity v

Hi1 = Hy + 157

olx)=z+1
o(p1) =a1p a; € K(z)*
o(p2) = azp2 az € K(z)*
U(pe) = QePe Qe € K(CE)*
o(z) =~z 2 =1
0'(81) =81+ %-H



Part 3: Modeling of sequences in difference rings (computer algebra)

A hypergeometric AP S-extension of (K(x),0) is
P> aring

A =K()[p1,py P2, 05 '] - - - [pes v ] [2][51]

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olx)=z+1
hypergeometric < o(p1) =a1p1 a1 € K(z)*
products o(p2) = asps as € K(z)*

U(pe) = QePe Qe € K(ZE)*

~ is a primitive Ath k PN

_ A
root of unity vy U(Z) =7z zh =1

(nested) sum < o(s1)=s1+fi fi € K@)[p1,p7'] ... [pe,p2 '][2]



Part 3: Modeling of sequences in difference rings (computer algebra)

A hypergeometric AP S-extension of (K(x),0) is
P> aring

A :=K(x) [pl,pfl][pmp;l] e [peape_l][z] [s1][s2]

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olx)=z+1
hypergeometric < o(p1) =a1p1 a1 € K(z)*
products o(p2) = asps as € K(z)*
J(pe) = GePe e € K({E)*
Z);st?)fpl:irr]ri\ti;ive Ath ,.)/k o O'(Z) =~z z)\ -1
(nested) sum < o(s1)=s1+ fi f1 € K(@)[p1,p7']- - [pesp: t[2]
a(s2) = s2+ f2 fo € K(@)[pr,p1 '] [pe, vz '[2][s1]



Part 3: Modeling of sequences in difference rings (computer algebra)

A hypergeometric AP S-extension of (K(x),0) is
P> aring

A = K(@)lp1, p1 Nlp2,p3 ' - - [pe, vz 'N[2][s1][s2] s3] - -

> with an automorphism where o(c) = ¢ for all ¢ € K and where

hypergeometric < o(p1) =a1p1 a1 € K(z)*
products o(p2) = asps as € K(z)*

0(Pe) = GePe a. € K(x)*

~ is a primitive Ath k
root of unity v A

)
o(z) =7z 2 =1
(nested) sum < o(s1)=s1+fi fi € K@)[p1,p7'] ... [pe,p2 '][2]
)
)

=s2+fr f2 € K(@)lp1,p1']- . [pepe ' [e][s1]
o(ss) =sa+fs fo € K@)lpr,pr']- - [pe,pe ' ][2][su]ls2]



Part 3: Modeling of sequences in difference rings (computer algebra)

Definition (Evaluation function)
Take (A, o) with a subfield K of A with o|g = id

1. ev: A x N — K is called evaluation function for (A, ¢) if for all
frg€ A ceKand !l € Z there exists a A € N with

Yn > A:ev(e,n) = (2)
Vn > A:ev(f+g,n ) =ev(f,n) +ev(g,n), (3)
Vn = A:ev(fg,n)=ev(f,n)ev(gn), (4)
V> A:ev(a(f),n) =ev(f,n+1). (5)



Part 3: Modeling of sequences in difference rings (computer algebra)

Definition (Evaluation function)
Take (A, o) with a subfield K of A with o|g = id

1. ev: A x N — K is called evaluation function for (A, o) if for all
frg€ A ceKand !l € Z there exists a A € N with

Yn > A:ev(e,n) = (2)
Vn > A:ev(f+g,n ) =ev(f,n) +ev(g,n), (3)
Vn = A:ev(fg,n)=ev(f,n)ev(gn), (4)
V> A:ev(a(f),n) =ev(f,n+1). (5)

2. L: A — N is called o-function if for any f, g € A with
A =max(L(f),L(g)) the properties (3) and (4) hold and for any
fe€Aandl €Zwith A\ = L(f) + max(0, —I) property (5) holds.



Part 3: Modeling of sequences in difference rings (computer algebra)

Connection between SumProd(G) and hypergeometric AP S-extension

e Observation 1: Given {T1,...,T.} C XII(G), one can construct a
hypergeometric APS-extension (E, o) of (G, o) with ev and L such that
there are a1, ...,a. € E and dy,...,de with ev(a;,n) = T;(n).



Part 3: Modeling of sequences in difference rings (computer algebra)
Connection between SumProd(G) and hypergeometric AP S-extension

e Observation 1: Given {T1,...,T.} C XII(G), one can construct a
hypergeometric APS-extension (E, o) of (G, o) with ev and L such that
there are a1, ...,a. € E and dy,...,de with ev(a;,n) = T;(n).

e Observation 2:

(E,0) with E = G(t1) ... (t.) a hypergeometric AP S-extension of (G, o)
ev: EXN—-K, L:E—N

Vn Z L(tl) .
l ev(t;,n) =T;(n) € XII(G)

W ={T,...,T.} C XII(G) is sum-product reduced and
shift stable: sums/products in T; are from {1y,...,T;_1}.

In particular, if f € E\ {0}, then we can take the "unique”
0 # F € SumProd({T1,...,T.},G) with F(n) = ev(f,n) for all n > L(f).



Part 3: Modeling of sequences in difference rings (computer algebra)

Connection between SumProd(G) and hypergeometric AP S-extension

e Observation 1: Given {T1,...,T.} C XII(G), one can construct a
hypergeometric APS-extension (E, o) of (G, o) with ev and L such that
there are a1, ...,a. € E and dy,...,de with ev(a;,n) = T;(n).

e Observation 2:

(E,o0) with E = G(t1) ... (t.) a hypergeometric AP S-extension of (G, o)
ev: EXN—-K, L:E—N
Vn Z L(tl) .
ev(ti,n) = T;(n) € XII(G)
W ={T,...,T.} C XII(G) is sum-product reduced and
shift stable: sums/products in T; are from {1y,...,T;_1}.

In particular, if f € E\ {0}, then we can take the "unique”

0 # F € SumProd({T1,...,T.},G) with F(n) = ev(f,n) for all n > L(f).
Definition

For f € E we also write expr(f) = F for this particular F'.



Part 3: Modeling of sequences in difference rings (computer algebra)

Connection between SumProd(G) and hypergeometric AP S-extension

e Observation 1: Given {T1,...,T.} C XII(G), one can construct a
hypergeometric APS-extension (E, o) of (G, o) with ev and L such that
there are a1, ...,a. € E and dy,...,de with ev(a;,n) = T;(n).

e Observation 2:

(E,0) with E = G(t1) ... (t.) a hypergeometric AP S-extension of (G, o)
ev: EXN—-K, L:E—N
Vn Z L(tl) :
ev(ti,n) = T;(n) € XII(G)
W ={T,...,T.} C XII(G) is sum-product reduced and
shift stable: sums/products in T; are from {1y,...,T;_1}.

Example
For f =+ ZHs' € Q(x)[s] we obtain

expr(f) = F = 2 ® (21 © (Sum(1, 1%4) € Sum(Q(x)))
with F'(n) = ev(f,n) for all n > 1.



Part 3: Modeling of sequences in difference rings (computer algebra)

Connection between SumProd(G) and hypergeometric AP S-extension

e Observation 1: Given {T1,...,T.} C XII(G), one can construct a
hypergeometric APS-extension (E, o) of (G, o) with ev and L such that
there are a1, ...,a. € E and dy,...,de with ev(a;,n) = T;(n).

e Observation 2:

(E,0) with E = G(t1) ... (t.) a hypergeometric AP S-extension of (G, o)
ev: EXN—-K, L:E—N

l Vn Z L(ti) . I
ev(ti,n) = T;(n) € XII(G)

W ={T,...,T.} C XII(G) is sum-product reduced and
shift stable: sums/products in T; are from {T1,...,T;_1}.




Part 3: Modeling of sequences in difference rings (computer algebra)

Difference ring theory in action

Let (E, o) be a hypergeometric AP S-extension of (G, o) with
ev:ExN—Kandlet 7:E — KN/ ~ be the K-homomorphism given by

7(f) = (ev(f,n))n>0-
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Difference ring theory in action

Let (E, o) be a hypergeometric AP S-extension of (G, o) with
ev:ExN—Kandlet 7:E — KN/ ~ be the K-homomorphism given by

7(f) = (ev(f,n))n>0-

Lemma
Let W ={T1,...,T.} € XII(G) with T; = expr(t;). Then:

W is canonical reduced < T is injective.



Part 3: Modeling of sequences in difference rings (computer algebra)

Difference ring theory in action

Let (E, o) be a hypergeometric AP S-extension of (G, o) with
ev:ExN—Kandlet 7:E — KN/ ~ be the K-homomorphism given by

7(f) = (ev(f,n))n>0-

Lemma
Let W ={T1,...,T.} € XII(G) with T; = expr(t;). Then:

W is canonical reduced < T is injective.

Using difference ring theory we get the following crucial property:

Theorem

T is injective < const,E =K.



Part 3: Modeling of sequences in difference rings (computer algebra)

Example

For our difference field G = K(x) with o(z) = x + 1 and const,K = K we
have const,K(z) = K.



Part 3: Modeling of sequences in difference rings (computer algebra)

Example

For our difference field G = K(z) with o(z) = 2 + 1 and const,K = K we
have const,K(z) = K.

Definition

A hypergeometric APS-extension (E, o) of (G, o) is called
hypergeometric RI[Y-extension if

const,E = K.



Part 3: Modeling of sequences in difference rings (computer algebra)

Example

For our difference field G = K(z) with o(z) = 2 + 1 and const,K = K we
have const,K(z) = K.

Definition

A hypergeometric APS-extension (E, o) of (G, o) is called
hypergeometric RI[Y-extension if

const,E = K.

Theorem
Let W ={T1,...,T.} C ¥II(G) be in sum-product reduced representation
and shift-stable, i.e., for each 1 < i < e the arising sums and products in T;
are contained in {T1,...,T;_1}. Then the following is equivalent:
1. There is a hypergeometric RI1Y-extension (E, o) of (G, o) with
E =G(t1) ... (t.) equipped with an evaluation function ev with
T, = expr(t;) € XII(G) for 1 <i<e.
2. W is o-reduced over G.



Part 3: Modeling of sequences in difference rings (computer algebra)

This yields a strategy (actually the only strategy for shift-stable sets).

A Strategy to solve Problem SigmaReduce

Given: Aj,..., A, € SumProd(G) with G = K(z).
Find: a o-reduced set W = {T1,...,T.} C XII(G) with By ..., B, €
SumProd(W,G) and 61,...,d, € N such that A;(n) = B;(n)
holds for all n > 6§; and 1 < i < r.
1. Construct RIIY-extension (E, o) of (G,0) with E = G(t1) ... (t.)
equipped with ev : E x N — K such that we get a1,...,a, € E and
01,...,04 € N with

Ai(n) =ev(a;,n) VYn > 9. (9)

2. Set W ={Th,..., T} with T; := expr(t;) € XII(G) for 1 <i <e.
3. Set B; := expr(a;) € SumProd(W,G) for 1 <i < w.
4. Return W, (By,...,By) and (01, ...,0y).



Part 4: Construction of appropriate difference rings (advanced CA)

General picture:

user-level

term algebra

SumProd(G)

...................................... ev:(rlng of sequences)

: /

Y
(formal difference rings)

user interface

computer algebra-level



Part 4: Construction of appropriate difference rings (advanced CA)

General picture:

Part 1: Symbolic summation (a short introduction)

Part 2: Modeling of sequences with a term algebra (user interface)

Part 3: Modeling of sequences in difference rings (computer algebra)

Part 4: Construction of appropriate difference rings (advanced CA)

Part 5: Applications



Part 4: Construction of appropriate difference rings (advanced CA)

A hypergeometric AP S-extension of (K(x),0) is
P> aring

A = K(@)lp1, p1 Nlp2,p3 ' - - [pe, vz 'N[2][s1][s2] s3] - -

> with an automorphism where o(c) = ¢ for all ¢ € K and where

hypergeometric < o(p1) =a1p1 a1 € K(z)*
products o(p2) = asps as € K(z)*

0(Pe) = GePe a. € K(x)*

~ is a primitive Ath k
root of unity v A

)
o(z) =7z 2 =1
(nested) sum < o(s1)=s1+fi fi € K@)[p1,p7'] ... [pe,p2 '][2]
)
)

=s2+fr f2 € K(@)lp1,p1']- . [pepe ' [e][s1]
o(ss) =sa+fs fo € K@)lpr,pr']- - [pe,pe ' ][2][su]ls2]



Part 4: Construction of appropriate difference rings (advanced CA)

A hypergeometric RITY-extension of (K(z), o) is
P> aring

A = K(@)lp1, p1 Nlp2,p3 ' - - [pe, vz 'N[2][s1][s2] s3] - -

> with an automorphism where o(c) = ¢ for all ¢ € K and where

hypergeometric < o(p1) =a1p1 a1 € K(z)*
products o(p2) = asps as € K(z)*

= QePe a. € K(x)*

~ is a primitive Ath k
root of unity v A

o(z) =7z 2 =1

=s2+fr f2 € K(@)lp1,p1']- . [pepe ' [e][s1]

)
)
(nested) sum < o(s1)=s1+fi fi € K@)[p1,p7'] ... [pe,p2 '][2]
)
0(53). =s3+f3 fs € K(@)[pr,pr '] [pes v '][2][51][52]

such that const,E = K



Part 4: Construction of appropriate difference rings (advanced CA)

Represent sums (extension of Karr's result, 1981)

> Let (A, o) be a difference ring with constant set
const,A = {k € Alo(k) = k}.

Note 1: const A is a ring that contains Q

Note 2: We always take care that const,A is a field



Part 4: Construction of appropriate difference rings (advanced CA)

Represent sums (extension of Karr's result, 1981)
> Let (A, o) be a difference ring with constant field

const,A = {k € Alo(k) = k}.

> Adjoin a new variable ¢ to A (i.e., A[t] is a polynomial ring).



Part 4: Construction of appropriate difference rings (advanced CA)
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Part 4: Construction of appropriate difference rings (advanced CA)

Represent sums (extension of Karr's result, 1981)
> Let (A, o) be a difference ring with constant field

const,A = {k € Alo(k) = k}.

> Adjoin a new variable ¢ to A (i.e., A[t] is a polynomial ring).
> Extend the shift operator s.t.

ot)=t+f for some f € A.

Then const,A[t] = const,A iff
BgeA: |o(g=g+/f

There are 2 cases:
1. |PgeA: o(g) =g+ f} (Alt],o) is a T*-extension of (A, o)

2. |3g€A:0(g9) =g+ f| Noneed for a X*-extension!




Part 4: Construction of appropriate difference rings (advanced CA)

A hypergeometric RITY-extension of (K(z), o) is
P> aring

A = K(@)lp1, p1 Nlp2,p3 ' - - [pe, vz 'N[2][s1][s2] s3] - -

> with an automorphism where o(c) = ¢ for all ¢ € K and where

hypergeometric < o(p1) =a1p1 a1 € K(z)*
products o(p2) = asps as € K(z)*

= QePe a. € K(x)*

~ is a primitive Ath k
root of unity v A

o(z) =7z 2 =1

=s2+fr f2 € K(@)lp1,p1']- . [pepe ' [e][s1]

)
)
(nested) sum < o(s1)=s1+fi fi € K@)[p1,p7'] ... [pe,p2 '][2]
)
0(53). =s3+f3 fs € K(@)[pr,pr '] [pes v '][2][51][52]

such that const,E = K
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Represent pI’OdUCtS (extension of Karr's result, 1981)

> Let (A, o) be a difference ring with constant field
const,A := {k € Alo(k) = k}.
> Take the ring of Laurent polynomials A[¢, %]

> Extend the shift operator s.t.

o(t)=at for some a € A™.

Then const,A[t,t~!] = const, A iff

g € A\ {0} #n € Z\ {0} :

alg)=a

n

9
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Represent products (extension of Karr's result, 1981)
> Let (A, o) be a difference ring with constant field
const,A := {k € Alo(k) = k}.
> Take the ring of Laurent polynomials A[¢, %]
> Extend the shift operator s.t.

o(t)=at for some a € A™.

Then const,A[t,t~!] = const, A iff

Bg € A\{0}In € Z\{0}: |o(g)=a"g

Such a difference ring extension (A[t, 1],0) of (A, o) is called Il-extension
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Represent products (extension of Karr's result, 1981)
> Let (A, o) be a difference ring with constant field
const,A := {k € Alo(k) = k}.
> Take the ring of Laurent polynomials A[¢, %]
> Extend the shift operator s.t.

o(t)=at for some a € A™.

Then const,A[t,t~!] = const, A iff
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There are 3 cases:
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Represent products (extension of Karr's result, 1981)
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Represent products (extension of Karr's result, 1981)

> Let (A, o) be a difference

const,

ring with constant field
A= {k € Alo(k) = k}.

> Take the ring of Laurent polynomials A[¢, %]
> Extend the shift operator s.t.

o(t)=at for some a € A™.

Then const,A[t,t~!] = const, A iff

Bg € A\{0}In € Z\{0}: |o(g)=a"g

There are 3 cases:

1. ‘ Bg € A\{0}n € Z\{0} : o(g9) = a" g ‘: (A[t, 1]),0) is a [-ext. of (A, o)

t

2. |39 € A\{0}: 0(9) =ayg

- No need for a II-extension!

3. |39 € A\{0} : 0(g) =a" g only for n € Z\ {0,1} |
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The hypergeometric case

> Take the difference field (K(z), o) with o|x =id and o(z) = = + 1.
> Let ay,...,a, € K(z)*
> Then there is a difference ring

E=K(z)[tr,t7].. [t t'] - [2]

~ AN
tower of TT-ext. (=1)k or v

with
> %WGK(QJ)* fori1<i<e
» 0(z) =~z and z* = 1 for some primitive Ath root of unity v € K*
> const,E =K

such that for 1 < i < r there are g; € E* with

U(gi) =05 9;




Part 4: Construction of appropriate difference rings (advanced CA)

The hypergeometric case

> Take the difference field (K(z), o) with o|x =id and o(z) = = + 1.
> Let ay,...,a, € K(z)*
> Then there is a difference ring

E=K(z)[tr,t7].. [t t'] - [2]

~ AN
tower of TT-ext. (=1)k or v

with
> @GK(QJ‘)* fori1<i<e
» 0(z) =~z and z* = 1 for some primitive Ath root of unity v € K*
> const,E =K

such that for 1 < i < r there are g; € E* with

U(Qi) =05 9;

Note: There are similar results for the g-rational, multi-basic and mixed case
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A hypergeometric RITY-extension of (K(z), o) is
P> aring

A = K(@)lp1, p1 Nlp2,p3 ' - - [pe, vz 'N[2][s1][s2] s3] - -

> with an automorphism where o(c) = ¢ for all ¢ € K and where

hypergeometric < o(p1) =a1p1 a1 € K(z)*
products o(p2) = asps as € K(z)*

= QePe a. € K(x)*

~ is a primitive Ath k
root of unity v A

o(z) =7z 2 =1

=s2+fr f2 € K(@)lp1,p1']- . [pepe ' [e][s1]

)
)
(nested) sum < o(s1)=s1+fi fi € K@)[p1,p7'] ... [pe,p2 '][2]
)
0(53). =s3+f3 fs € K(@)[pr,pr '] [pes v '][2][51][52]

such that const,E = K



Part 4: Construction of appropriate difference rings (advanced CA)

This yields a strategy (actually the only strategy for shift-stable sets).

A Strategy to solve Problem SigmaReduce

Given: Aj,..., A, € SumProd(G) with G = K(z).
Find: a o-reduced set W = {T1,...,T.} C XII(G) with By ..., B, €
SumProd(W,G) and 61,...,d, € N such that A;(n) = B;(n)
holds for all n > 6§; and 1 < i < r.
1. Construct RIIY-extension (E, o) of (G,0) with E = G(t1) ... (t.)
equipped with ev : E x N — K such that we get a1,...,a, € E and
01,...,04 € N with

Ai(n) =ev(a;,n) VYn > 9. (9)

2. Set W ={Th,..., T} with T; := expr(t;) € XII(G) for 1 <i <e.
3. Set B; := expr(a;) € SumProd(W,G) for 1 <i < w.
4. Return W, (By,...,By) and (01, ...,0y).
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This yields a strategy (actually the only strategy for shift-stable sets).

An Algorithm to solve Problem SigmaReduce

Given: Aj,..., A, € SumProd(G) with G = K(z).
Find: a o-reduced set W = {T1,...,T.} C XII(G) with By ..., B, €
SumProd(W,G) and 61,...,d, € N such that A;(n) = B;(n)
holds for all n > 6§; and 1 < i < r.
1. Construct RIIY-extension (E, o) of (G,0) with E = G(t1) ... (t.)
equipped with ev : E x N — K such that we get a1,...,a, € E and
01,...,04 € N with

Ai(n) =ev(a;,n) VYn > 9. (9)

2. Set W ={Th,..., T} with T; := expr(t;) € XII(G) for 1 <i <e.
3. Set B; := expr(a;) € SumProd(W,G) for 1 <i < w.
4. Return W, (By,...,By) and (01, ...,0y).
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foralll1 <k <mnandn>0.
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Part 4: Construction of appropriate difference rings (advanced CA)

Telescoping

GIVEN f(k) = Sy (k).
FIND g(k):

f(k)=g(k+1)—g(k)
foralll1 <k <mnandn>0.

Summing this equation over k from 1 to n gives

Y Sik)|={gn+1) —g(1)
k=1

=(S1(n+1)—-1)(n+1).
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Consider a ring
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with the automorphism o : A — A defined by

o(c)=c YeeQ,
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Telescoping in the given difference ring

FIND a closed form for

A difference ring for the summand
Consider a ring
A= Q(x)
with the automorphism o : A — A defined by
o(c)=c YeeQ,
olx)=x+1, Sk=k+1,
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Telescoping in the given difference ring

FIND a closed form for

A difference ring for the summand

Consider a ring

A= Q(x)[n]
with the automorphism o : A — A defined by
o(c)=c YeeQ,
o(z)=x+1, Sk=Fk+1,
1 1
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Telescoping in the given difference ring

FIND g € A:
a(g) —g=h.
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Part 4: Construction of appropriate difference rings (advanced CA)

Telescoping in the given difference ring

FIND g € A:

We compute

This gives
lg(k+1) — g(k) = Si(k) |
with
g(k) = (S1(k) — 1)k
Hence,

3

(Si(n+1) = 1)(n+1) =Y Si(k).

k=1
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FIND g € Q(z)[h]:
olg) —g=h

Degree bound: COMPUTE b > 0: b=2

Vg€ Qz)[h] o(g)—g=h = deg(g) <b.




Part 4: Construction of appropriate difference rings (advanced CA)

FIND g € Q(z)[h]:

o(g) —g=h.
Degree bound: COMPUTE b > 0: bh=2
Vg € Q(@)[h] o(g)—g=h = deg(g) <b.
Polynomial Solution: FIND [

g=g2h*+g1h+go € Q(z)[h].
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ANSATZ g = go h? + g1 h + go € Q(x)[h)

=g D
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ANSATZ g = go h® + g1 h + go € Q(x)[h]

[0(g2 h® + g1h + g0)]
~[92h* + gih+ go] = h ]
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ANSATZ g = go h? + g1 h + go € Q(x)[h]

[0(g2) (h+ +15)* + o(g1h + 90)] ]

—[g21* + g1h + go] = h w*wmp-

o(g2) —g2=0
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ANSATZ g = go h? + g1 h + go € Q(x)[h]

[0(g2) (h+ +15)* + o(g1h + 90)] ]

—[g21* + g1h + go] = h w*wmp-

o(g2) —g2=0

g2 =c¢E
e(h+ 219 + o(grh+ g0)] =

—[eh®*+gh+g) =h




Part 4: Construction of appropriate difference rings (advanced CA)

ANSATZ g = go h? + g1 h + go € Q(x)[h]

[o(g )(h+w+1) + a(gih + go)]

—[g2h* + g1h +go] = h wjomp. I:I

o(92) =92 =0

h — c Qh(x"‘l ;}/

o(g1h+go) — (g1 h+ go) = T
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ANSATZ g = go h? + g1 h + go € Q(x)[h]

[o(g )(h+w+1) + a(gih + go)]

—[g2h* + g1h +go] = h ﬂcomp I:I

o(g2) —g2=0
o(gih + g0) = (91 b+ go) = h — o[ HEELE }/
Nﬁff comp.
2
o(g1) —g1=1- Coa
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ANSATZ g = go h? + g1 h + go € Q(x)[h]

[o(g )(h+x+1) + a(gih + go0)]

—[g2h* + g1h +go] = h ﬂ*comp I:I

o(g2) —g2=0
o(g1h+g0) — (911 + go) = h — [ 2] }/
\iff comp.
2
o(g1) —g1=1-cziy
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—0 g =z+d
deQ
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ANSATZ g = go h? + g1 h + go € Q(x)[h]

[o(g )(h+x+1) + a(gih + go0)]

—[g2h? + g1h+g] =h

ﬂ*comp I:I

o(grh+g0) —(g1h+go) =h—c Qh((;::
( ) 1—-d L
gl{go go = I+ 1

0(92)—92=0
\iff comp.
2
o(g1) —g1 = — ¢z
/ o, gi=xz+d

deQ
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ANSATZ g = go h? + g1 h + go € Q(x)[h]

(92)(h+ 757)" + o(g1h + go)
[ ( +1) [92h2+91h+.]90:| =h %comp

o(g2) —g2=0
o(g1h+g0) — (911 + go) = h — [ 2] }/
Nﬁff comp.
olg)) —g1=1-c3g

s
S
|
|
8
—

—0 g =z+d
z+1 deqQ

d:_ < |o(g) —go=—-1—d
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Telescoping in the given difference ring

FIND g € A:

We compute

This gives
lg(k+1) — g(k) = Si(k) |
with
g(k) = (S1(k) — 1)k
Hence,

3

(Si(n+1) = 1)(n+1) =Y Si(k).

k=1



Part 4: Construction of appropriate difference rings (advanced CA)

Remarks. All results can be generalized to the following setting:

> the mixed multibasic hypergeometric case:
G:=K(z,x1,...,2,) with K= K(q1,...,q,) For f = p € G with
p,q € K[z, 21,...,2,] where ¢ # 0 and p, ¢ being coprlme we define

if q(k,qt,....¢¥) =0

ev(f,k): p(k,q17 L i L
dodbgty Fatk,ar,. . q) # 0.
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Remarks. All results can be generalized to the following setting:

> the mixed multibasic hypergeometric case:
G:=K(z,x1,...,2,) with K= K(q1,...,q,) For f = p € G with
p,q € K[z, 21,...,2,] where ¢ # 0 and p, ¢ being coprlme we define

if q(k,q¥,....d¥) =0

eV(f, k): p(k,ql, L i L
dodbgty Fatk,ar,. . q) # 0.

» simple products: Prod*(G) is the smallest set that contains 1 with:

1. If r € R then RPow(r) € Prod™(G).

2. If f€G*, 1 eNwith [ > Z(f) then Prod(l,f ) € Prod™(G).
3. If p,q € Prod™(G) then p ® q € Prod*(G).

4. 1f p € Prod*(G) and z € Z\ {0} then 122 € Prod*(G).



Part 4: Construction of appropriate difference rings (advanced CA)

Remarks. All results can be generalized to the following setting:

> the mixed multibasic hypergeometric case:

A& w oo =V

G:=K(z,x1,...,2,) with K= K(q1,...,q,) For f = p € G with
p,q € K[z, 21,...,2,] where ¢ # 0 and p, ¢ being coprlme we define

0 if q(k,q¥,....d¥) =0
ev(f,k) =9 plkigt...d) L .
dodbgty Fatk,ar,. . q) # 0.

nested products: Prod*(G) is the smallest set that contains 1 with:

. If r € R then RPow(r) € Prod™(G).

. If p e Prod"(G), f € G*, Il € Nwith [ > Z(f) then Prod(l,f®p) € Prod™(G).
. If p,q € Prod"(G) then p ® q € Prod*(G).

If p € Prod*(G) and z € Z\ {0} then 2 € Prod*(G).
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Remarks. All results can be generalized to the following setting:

> the mixed multibasic hypergeometric case:
G :=K(z,z1,...,z,) with K= K(q,...,qy) For f = GGW|th
p,q € K[z, 21,...,2,] where ¢ # 0 and p, ¢ being coprlme we define

Gy =1 if q(k,qf,....q5) =0
ev ’ = p(kqua 7q'u) M k; k,‘
q( 7q1’ 7qv) IfQ(k;7q17"'7qU)7éO'
nested products: Prod*(G) is the smallest set that contains 1 with:
. If r € R then RPow(r) € Prod*(G).
. If p e Prod"(G), f € G*, Il € Nwith [ > Z(f) then Prod(l,f®p) € Prod™(G).
If p,q € Prod*(G) then p ® q € Prod™(G).
If p € Prod*(G) and z € Z\ {0} then 2 € Prod*(G).

~ wono ~ Vv

For further details see

Term Algebras, Canonical Representations and Difference Ring Theory for Symbolic Summation. To appear in:
Anti-Differentiation and the Calculation of Feynman Amplitudes, J. Bliimlein and C. Schneider (ed.),

Texts and Monographs in Symbolic Computuation, 2021. Springer, arXiv:2102.01471 [cs.SC]



Part 5: Application: particle physics

General picture:

Part 1: Symbolic summation (a short introduction)

Part 2: Modeling of sequences with a term algebra (user interface)

Part 3: Modeling of sequences in difference rings (computer algebra)

Part 4: Construction of appropriate difference rings (advanced CA)

Part 5: Applications



Part 5: Application: particle physics

A warm-up example: simplify
ii( (25 +k+n+2)5K( + k+n)!
GHe+D)G+n+ )G +E+DIG +n+ DIk +n+ 1)
+j!k!(j+k+n)!(—51(j)+Sl(j+k)+51(j+n) —Sl(j—l—k-i-n)))
G+Ee+DIG+n+1)Nk+n+1)!

f@)

k=05=0

where

Sitn) =25 (= Ho)

Arose in the context of

|. Bierenbaum, J. Bliimlein, and S. Klein, Evaluating two-loop massive operator matrix
elements with Mellin-Barnes integrals. 2006



Part 5: Application: particle physics

A warm-up example: simplify
o0 X (25 +k+n+2)jk( +k+n)!
ZZ((j+/’f+1)(

k=05=0

GAn+D)G+E+FDIG+n+D)(k+n+1)!

+j!k!(j +E+n)(=510)+ 51 +k) + 510 +n) = 5i(j+k+n))
G+ek+DG+n+ 1)1 k+n+1)!

f@)
FIND ¢(j):

fG) =90 +1)—g(j)

)



Part 5: Application: particle physics

A warm-up example: simplify
o0 X (25 +k+n+2)jk( +k+n)!
ZZ((J‘Jr/’erl)(

== GAn+D)G+E+FDIG+n+D)(k+n+1)!

+j!k!(j +E+n)(=510)+ 51 +k) + 510 +n) = 5i(j+k+n)) )
G+ek+DG+n+ 1)1 k+n+1)!
f(G)
FIND ¢(j):

fG) =90 +1)—g(j)

T summation package Sigma
N\ GAERD)G )R Gk n)! (S1.(5) —S1 (k) — 81 (-+n) +S1 (j+-+n) )
9(j) = En(G+Ek+ D) G+n+D)(ktn+1)!




Part 5: Application: particle physics

A warm-up example: simplify
ZZ (2] +k+n+2)jk!(j + Kk +n)!

= Uk D0 +n+ DG+ R+ DG +n+ DIk +n+1)

'k'(] +Ek+n)(-S

(')+S1(j+k)+51(j+n)—Sl(j—i—k—i-n)))
G+E+DG+n+DNk+n+1)

f@)
FIND ¢(j):

fG) =90 +1)—g(j)

Summing the telescoping equation over j from 0 to a gives

Zf gla+1)—g(0)



Part 5: Application: particle physics

A warm-up example: simplify
ZZ (2j+k+n+2)jk(+k+n)
G+HE+D)G+n+ ) G+E+DG+n+)(E+n+1)!

k=05=0
W(]"”“‘*‘”)( (')+S1(j+k)+51(j+n)—51<j+k+n)))
G+E+DIG+n+ DN k+n+1)!
f(G)
FIND ¢(j):

fG) =90 +1)—g(j)

Summing the telescoping equation over j from 0 to a gives

Zf gla+1) —g(0)

_ (a+D)(k—=1)(a+k+n+1)!(S1(a)—S1(a+k)—S1(a+n)+S1 (a+k+n))
- n(at+k+1)!(a+n+1)I(k+n+1)!

S1(k)+S51(n)—S1(k+n) (2a+k+n+2)alk!(a+k+n)!
T Rt D T @R D (et nt D) (et kD atnt )IETn D!
a:)roo




Part 5: Application: particle physics

A warm-up example: simplify
ii( (25 +k+n+2)5K( + k+n)!
GHe+D)G+n+ )G +E+DIG +n+ DIk +n+ 1)
+j!k!(j+k+n)!(—51(j)+Sl(j+k)+51(j+n) —Sl(j—i—k—i-n)))
G+HE+DIG+n+D)I(k+n+1)!

k=05=0

f(5)
o S1(k) + S1(n) — S1(k + n)
2 f6)= kn(k +n+ 1)

Jj=0



Part 5: Application: particle physics

)= << Sigma.m

| Sigma - A summation package by Carsten Schneider (©) RISC-Linz |

a

-~ mySum = (2j+k+n+2)j!k!(j+k+n)!
In[2]:= mySu —Z((j+k+1)(j+n+1)(j+k+ HIG+ Di(k+n+1)!
JK!'G+k+n)! (— Sl[']]+S1L]+k]+SlL]+n]_SlL]+k+n]))
G+k+1)!G+n+1)!(k+n+1)!

+




Part 5: Application: particle physics

n[1]:= << Sigma.m

| Sigma - A summation package by Carsten Schneider (©) RISC-Linz |

a

~ mySum = (2) + k+n+2)jik!( + k + n)!
In[2]:= mySu —Z((j+k+1)(j+n+1)(j+k+ DNG+n+Dik+n+D)!
JK!'G+k+n)! (— Sl[,]]+SlL]+k]+S1L]+n]_Slb+k+n]))
G+k+1)!Gi+n+1)(k+n+1)!

+

In[3]:= res = SigmaReduce[mySum)]
S (a+1)!(k—1)!(a+k+n+1)! (Si[a] —Si[a+ k] —Si[a+n]+Si[a+k+n]) i
n(at+k+1)!(at+n+1)(k+n+1)!
S1[k] + S1[n] — S1[k +n] (2a 4k +n+2)alk!(a+k+n)!

kn(k +n 4+ 1)n! (a+k+1)(a+n+1)(a+k+1)!(a+n+1)!(k+n+1)




Part 5: Application: particle physics

n[1]:= << Sigma.m
‘ Sigma - A summation package by Carsten Schneider (©) RISC-Linz ‘

C vSum = S (2j + k+ n + 2)j'’k!(j + k + n)!
et mySu _JZ((j+k+1)(j+n+1)(j+k+ 0!G+t DiGkFn
G kot )t S S04+ S n] = Sili k)
(G+k+1)!G+n+1)(k+n+1)!
In[3]:= res = SigmaReduce[mySum)]
(a+1)!(k—1)!(a+k+n+1)! (Si[a] —Si[a+ k] —Si[a+n]+Si[a+k+n])
Out[3]= +
n(a+k+1)(a+n+1)(k+n+1)!
S1[k] + S1[n] — S1[k +n] (2a + k4 n + 2)alk!(a + k +n)!
kn(k +n + 1)n! (a+k+1)(a+n+1)(a+k+1)(a+n+1)!(k+n+1)

In[4]:= SigmaLimit[res, {n}, a]

Outft— l Sy [k] + S1[n] — S1[k —+ n]
~ ! kn(k +n+1)




Part 5: Application: particle physics

A warm-up example: simplify
ii( (25 +k+n+2)5K( + k+n)!
GHe+D)G+n+ )G +E+DIG +n+ DIk +n+ 1)
+j!k!(j+k+n)!(—51(j)+Sl(j+k)+51(j+n) —Sl(j—i—k—i-n)))
G+HE+DIG+n+D)I(k+n+1)!

k=05=0

f(5)
o S1(k) + S1(n) — S1(k + n)
2 f6)= kn(k +n+ 1)

Jj=0



Part 5: Application: particle physics

A warm-up example: simplify
ZZ (2j+k+n+2)jk(+k+n)
JHE+D)G+n+D)E+E+DIG+Hn+DI(k+n+1)!

'k'(]—l—k—i—n) (=S1(5 )+S1(]+k)+51(]+n)—Sl(j—i—k-l-n)))
G+ek+DG+n+ 1)1 k+n+1)!

f@)

k=05=0

= Sl -I-Sl Sl(k-l-n)
sz( n'z kn( k+n—|—1)

k=1;j=0



Part 5: Application: particle physics

Telescoping
GIVEN ‘

An) =)

— kn(k+n+1)

FIND g(k) :

L9k +1)— g(k) | =| (k) |

forall0 <k <mnandalln>0.




Part 5: Application: particle physics

Telescoping

— kn(k+n+1)

FIND g(k) :

L9k +1)— g(k) | =| (k) |

forall0 <k <mnandalln>0.

no solution @



Part 5: Application: particle physics

Zeilberger's creative telescoping paradigm

— kn(k+n+1)
= f(n7 k)

FIND g(n, k)

[g(n,k+1) — g(n. k)| =| f(n, k) |

forall0 <k <mnandalln>0.

no solution @



Part 5: Application: particle physics

Zeilberger's creative telescoping paradigm

— kn(k+n+1)
=: f(n, k)

FIND g(n, k) and co(n), c1(n):

[g(n,k+1) = g(n, k)| = [co(n)f(n, k) + ca(n) f(n+ 1,F) |

forall0 <k <mnandalln>0.



Part 5: Application: particle physics

Zeilberger's creative telescoping paradigm

GIVEN S 1(n) — S n
A(n)::ZS(k)-I—S() Sy (k+ )‘

— kn(k+n+1)
=: f(n, k)

FIND g(n, k) and co(n), c1(n):

[g(n,k+1) = g(n, k)| = [co(n)f(n, k) + ca(n) f(n+ 1,F) |

forall0 <k <mnandalln>0.

|Sigma computes: | co(n) = —n, c1(n) = (n+2) and

_ kSi(k) + (—n —1)S1(n) — kSy(k+n) — 2
g(n k) = (ETEECESE




Part 5: Application: particle physics

Zeilberger's creative telescoping paradigm

GIVEN o Su(k) + Si(n) = Si(k +n)
Aln) = kz_;\ kn(k+n+1) '
= f(n, k)

FIND g(n, k) and co(n), c1(n):

[g(n,k+1) = g(n, k)| = [co(n)f(n, k) + ca(n) f(n+ 1,F) |

forall0 <k <mnandalln>0.

Summing this equation over k from 1 to a gives:

a

[9n.a+1) = g0 1) |=| 3" [eo(n) £, k) + 1 (n) f+ 1,8)]

k=1




Part 5: Application: particle physics

Zeilberger's creative telescoping paradigm

GIVEN o Su(k) + Si(n) = Si(k +n)
Aln) = kz_;\ kn(k+n+1) '
= f(n, k)

FIND g(n, k) and co(n), c1(n):

[g(n,k+1) = g(n, k)| = [co(n)f(n, k) + ca(n) f(n+ 1,F) |

forall0 <k <mnandalln>0.

Summing this equation over k from 1 to a gives:

a

lg(n,a+1) = g(n, 1) |=| " co(n) f(n, k) + Y er(n) f(n +1,k)
k=1

k=1




Part 5: Application: particle physics

Zeilberger's creative telescoping paradigm

GIVEN o Su(k) + Si(n) = Si(k +n)
Aln) = kz_;\ kn(k+n+1) '
= f(n, k)

FIND g(n, k) and co(n), c1(n):

[g(n,k+1) = g(n, k)| = [co(n)f(n, k) + ca(n) f(n+ 1,F) |

forall0 <k <mnandalln>0.

Summing this equation over k from 1 to a gives:

a

[g(n,a+1) = g(n, 1) |=|co(n) Y f(n, k) +c1(n) D f(n+1,k)
k=1 k

=1




Part 5: Application: particle physics

Zeilberger's creative telescoping paradigm

GIVEN o Su(k) + Si(n) = Si(k +n)
Aln) = kz_;\ kn(k+n+1) '
= f(n, k)

FIND g(n, k) and co(n), c1(n):

[g(n,k+1) = g(n, k)| = [co(n)f(n, k) + ca(n) f(n+ 1,F) |

forall0 <k <mnandalln>0.

Summing this equation over k from 1 to a gives:

lg(n,a+1) — g(n,1) | =[co(n) A(n) + 1 (n) A(n + 1)




Part 5: Application: particle physics

Zeilberger's creative telescoping paradigm

GIVEN = Si(k) + Si(n) = Si(k +n)
Aln) = kz_;\ kn(k+n+1) '
—: f(n.k)

FIND g(n, k) and co(n), c1(n):

[g(n,k+1) = g(n, k)| = [co(n)f(n, k) + ca(n) f(n+ 1,F) |

forall0 <k <mnandalln>0.

Summing this equation over k from 1 to a gives:

lg(n,a+1) = g(n,1)|=|co(n) A(n) + c1(n) A(n + 1) |
| |

a S1(a)4+S1(n)—S1(a+n
e —nAm) + 2+ mAR )

+ a(a+1)
(n+1)3(a+n+1)(a+n+2)




Part 5: Application: particle physics

(n+2)A(n+1) —nA(n) = ( nt1)

recurrence finder

kn(k +n+1)

k=1




Part 5: Application: particle physics

(n+2)A(n+1) —nA(n) = (n+1)Si(n) +1

(n+1)3
recurrence solver
| 50 1 l
Ay = S SR) +Sim) =Skt | | {ex om
k=1 kn(k +n+1) S1(n)? + Sa(n) ceR)
2n(n + 1)
where

n



Part 5: Application: particle physics

(n 4+ 1)Sy(n) + 1

(n+2)A(n+1) —nA(n) = nt1)

Summation package Sigma
(based on difference field/ring algorithms/theory
see, e.g., Abramov, Karr 1981, Bronstein 2000, Schneider 2001/2004 /2005a—c/2007 /2008 /201pa—c)

1 +
o) = o~ S1(k) + Si(n) = Si(k+n) | _ 0%
An) 2 kn(k+n+1) N ((n)ji)sg(n)
2n(n + 1)
where § -
S=Y:  Sm=)

i=1 i=1



Part 5: Application: particle physics

a

In5]:= mySum = Z
k=1

S[1,k] + S[1,n] — S[1,k + n] .
kn(k +n+1) ’




Part 5: Application: particle physics

a

In5]:= mySum = Z
k=1

Compute a recurrence

Infe]:= rec = GenerateRecurrence[mySum, n][[1]]

S[1,k] + S[1,n] — S[1,k + n] .
kn(k +n+1) ’

a+1)(S[1,a]+S[1,n]—S[1,at+n a(a+1
Out{6]=nSUMIn] + (14n)(2+n)SUMIn+1] == )((7[1+1])_§(a[+n-]i—2)r£! b + (n+1)3(a+r(b+1)za+n+2)n!




Part 5: Application: particle physics

a

injs]:= mySum = Y S[1,k] + S[1,n] — S[1

)k+n].

= knk+n+1)
Compute a recurrence

)

Infe]:= rec = GenerateRecurrence[mySum, n][[1]]

Out[6]=nSUM[n] + (1+n)(2+n)SUM[n+1] == Lat1)(

S[1,a]+S[1,n]—=S[1,a4n])

a(at1)

(n+1)2(a+n+2)n! +

In[7:= rec = LimitRec[rec, SUM|[n], {n}, a]
out[7]= —nSUM[n] + (1 +1n)(2 +n)SUMn + 1] =

_ (a+10S[t,n]+1
a (@+1)°

(n+1)3(atn+1)(atnt2)n!



Part 5: Application: particle physics

a
In[5]:= mySum = Z S[l’k] * S[l’n] — S[l,k + n] 5
= knk+n+1)
Compute a recurrence
Infe]:= rec = GenerateRecurrence[mySum, n][[1]]

a+1)(S[1l,a S[1,n]—S[l,a+n a(a+1
Outfe]=nSUM(n] +(14n)(2-+n)SUMn+1] == (HDELL L -Sletnl) 4 o —alato

In[7:= rec = LimitRec[rec, SUM|[n], {n}, a]
oulfl= —nSUM] + (1 + n)(2 + n)SUMa + 1] == BFDSLal+1
(n+1)°

Solve a recurrence
Infgl:= recSol = SolveRecurrence[rec, SUM][n]]

1
S[17n]2 + Z §
i=1

mm={mm@+nhﬂ7 on(at 1) I3




Part 5: Application: particle physics

a

s[]-?k] + S[l,n] - S[]-)k + n]
In[s]:= mySum = Z H
= knk+n+1)

Compute a recurrence

Infe]:= rec = GenerateRecurrence[mySum, n][[1]]

a+1)(S[1l,a S[1,n]—S[l,a+n a(a+1
Outfe]=nSUM(n] +(14n)(2-+n)SUMn+1] == (HDELL L -Sletnl) 4 o —alato

In[7:= rec = LimitRec[rec, SUM|[n], {n}, a]

o= —nSUMIa] + (1 +n)(2 + n)SUM[n + 1] == (BF DS al+1
(n+1)?
SOIVe a recurrence

Infgl:= recSol = SolveRecurrence[rec, SUM][n]]

21
2 2

1 st _1_:1—1§
ut[8]= 0 1 —
outfgl= {{ ,n(n+1)}7{ @t D

Combine the solutions

in[9]:= FindLinearCombination[recSol, {1, {1/2}, n, 2]
s[1,n]2+ 3%, &
2n(n+1)

i3

Out[9]=



Part 5: Application: particle physics

A warm-up example: simplify
ZZ (2j+k+n+2)jk(+k+n)
JHE+D)G+n+D)E+E+DIG+Hn+DI(k+n+1)!

k=05=0
'k'(]+k+n)( ()+S1(]+k)+51(]+n)—Sl(j—i—/c-i-n)))
G+ek+DG+n+ 1)1 k+n+1)!
f(5)
= Sl -I-Sl Sl(k-l-n)
;]Z:%f( n'z kn( k;+n—|—1)
_ 1.51(n)* + Sz(n)
“nl 2n(n41)
where



Part 5: Application: particle physics

A warm-up example: simplify
ii( (25 +k+n+2)5K( + k+n)!
GHe+D)G+n+ )G +E+DIG +n+ DIk +n+ 1)
+j!k!(j+k+n)!(—51(j)+Sl(j+k)+51(j+n) —Sl(j—l—k—i-n)))
G+HE+DIG+n+D)I(k+n+1)!

f(n7k7])

k=05=0

i i f(n,k,j) = S1(n)* + 353(n)

l
== 2n(n +1)!

where



Part 1: Crucial summation paradigms 48

1. Creative teleSCODInE (for the special case of hypergeometric terms see Zeilberger's algorithm (1991)
GIVEN a definite sum

n: extra parameter

n
A(n) = Z f(n7 k); f(n,k): indefinite nested product-sum in k;
k=0

FIND a recurrence for A(n)




Part 1: Crucial summation paradigms 48

1. Creative teleSCODInE (for the special case of hypergeometric terms see Zeilberger's algorithm (1991)
GIVEN a definite sum

n
A(n) = Z f(n, k); f(n,k): indefinite nested product-sum in k;
k=0

n: extra parameter

FIND a recurrence for A(n)

2. Recurrence solving

GIVEN a recurrence ao(n), ..., aaq(n), h(n):
indefinite nested product-sum expressions.

ap(n)A(n) + -+ -+ ag(n)A(n + d) = h(n);

FIND all solutions expressible by indefinite nested products/sums
(Abramov/Bronstein /Petkovdek /CS, in preparation)




Part 1: Crucial summation paradigms 48

1. Creative teleSCODInE (for the special case of hypergeometric terms see Zeilberger's algorithm (1991)
GIVEN a definite sum

n
A(n) = Z f(n, k); f(n,k): indefinite nested product-sum in k;
k=0

n: extra parameter

FIND a recurrence for A(n)

2. Recurrence solving

GIVEN a recurrence ao(n), ..., aaq(n), h(n):
indefinite nested product-sum expressions.

ap(n)A(n) + -+ -+ ag(n)A(n + d) = h(n);

FIND all solutions expressible by indefinite nested products/sums
(Abramov/Bronstein /Petkovdek /CS, in preparation)

3. Find a “closed form”

A(n)=combined solutions in terms of indefinite nested sums.




Part 1: Crucial summation paradigms

n—2 j+1 n—j+r—2 1)r+s (J+1) (—j+"+T_2) (—=j+n—2)r!

ZZ Z —$)(s+1)(=j+n+r)!

j=0r=0 s=0

Simple sum



Part 1: Crucial summation paradigms

n—2 j+1 n—j+r— 2 )r—l—s (J-H) (—j+n+r—2)(_j +n—2)r!

ZZ Z )(s+1$)(—j+n+r)!

j=0r=0 s=0 H

n—=2j+1|n—jt+r—2 (_1)r+s (j—i—l) (—j+n+r—2) (—j in— 2)!7.!

ZZ Z (n—rs)(s—i-ls)(—j+n+r)!

j=0 r=0 s=0




Part 1: Crucial summation paradigms

n—2j+1n—j+r—2 (_1)T+s (j+1) (—j+n+r—2) (_] in— 2)!7,!
r s

ZZ Z (n—=s)(s+1)(—j+n+r)!

j=0r=0 s=0 H

—2j+1|n—j+r—2 ] —j — .
n—27 n—j+r (_1)r+s(Jj:1)( J+n+r 2)(_j+n_2)!7.!

ZZ Z (n—s)(s+1s)(—j+n+r)!

7=0r=0 s=0
I

j+1 (—=1)"(—j +n — 2)lr!

( r )((n—l-l)(—j—i-n—i—r—1)(—j+n+r)!+
()" G+ DN (=F+n—2)(—j+n—1)7! )
(n = Dn(n+ 1)(—j + 7+ (=) = Dr@ )




Part 1: Crucial summation paradigms

n—2j+1ln—j+r—2 (_1)T+s (j+1) (—j+n+r—2) (_] in— 2)!7.!

j;; ; (n—rs)(s—i-ls)(—j+n+r)!
I
J+1 . .
Jj+1 (=) (=j +n—2)r!
- ;0( r ><(n+1)( Jrntr—D(—j+n+nl
(=)™ + DU —j +n—2)(- J+n—1)r7"!>
(n=Dnn+1)(=j+n+r)(=j—1)r(2-n);

[ing




Part 1: Crucial summation paradigms

n—2j+1ln—j+r—2 (_1)T+s (j+1) (—j+n+r—2) (_] in— 2)!7,!

ZZ Z (n—rs)(s—i-ls)(—j+n+r)!

j=0r=0 s=0 H
J+1 . .
j+1 (=1)"(=j +n —2)!r!
;( r )((n+1)(—j+n+r—1)(—j+n+r)!+

(=) (G + D (=F+n—2)(—j +n—1)7! )
(= Dntn + D= + 0+ =)~ D@

[\

n—

j
—n);
n2—n4+1 ; z+n—1 )2(i+1)!

<(n—1)2n2(n+1)(2—n)j+ D2 —n),

(1) (=j = 2)(=j+n—2)!\ . 1

GontDn+ 1) >(‘7+1)!_(n+1)2(—j+n—1)

+




Part 1: Crucial summation paradigms

n—2j+1ln—j+r—2 (_1)T+s (j+1) (—j+n+r—2) (_] in— 2)!7.!

ZZ Z (n—rs)(s—i-ls)(—j+n+r)!

j=0r=0 s=0 H

4 —n);
n—2 n2—mn+1 ; z-l—n—l )2(i 4 1)!
2 <<<n SR DE-n), | (D n);

(=17 (= = 2)(=j +n—2)!\ . 1
(j—n+1)(n+1)2n! >(‘7+1)!_ (n+1)2(—j+n—1))

+




Part 1: Crucial summation paradigms

n—2j+1ln—j+r—2 (_1)T+s (j+1) (—j+n+r—2) (_] in— 2)!7,!

ZZ Z (n—rs)(s—i-ls)(—j+n+r)!

j=0r=0 s=0 H

J —n);
n—2 n2—mn+1 ; z-l—n—l )2(i 4 1)!
(Qn—n%%n+n@—n»+ (nrhE-n);

j=0
(=1)7*7(—j — 2)(—j +n —2)!\, . 1
G—nt D+ 12 >“+”“%n+n%ﬁ+n—n>

—n?2-n-1 n (=)™ (n®+n+1) _ 255(n) S1(n) Sa(n)
n?(n+1)3 n?(n+1)3 n+1 (n+1)?2 -n-1

Note: S,(n) = SN, &l ¢ 7\ {0}.

i=1 " glal




Part 1: Crucial summation paradigms

In[1]:= << Sigma.m
| Sigma - A summation package by Carsten Schneider (©) RISC-Linz |

2= << HarmonicSums.m

| HarmonicSums by Jakob Ablinger (© RISC-Linz |

3= << EvaluateMultiSums.m
| EvaluateMultiSums by Carsten Schneider (©) RISC-Linz |
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In[1]:=

In[2]:=

In[3]:=

In[4]:=

In[5]:=

<< Sigma.m

| Sigma - A summation package by Carsten Schneider (©) RISC-Linz |

<< HarmonicSums.m

| HarmonicSums by Jakob Ablinger (© RISC-Linz |

<< EvaluateMultiSums.m
| EvaluateMultiSums by Carsten Schneider (©) RISC-Linz |

n—2j+1n—j+r—2 (_1)1'—‘,-5 (.H;l) (-j+“s+r—2)(_j +n— 2)!1.!

mySum = Z Z Z

j=0r=0 s=0 (n—s)(s+1)(=j+n+r)!

5

EvaluateMultiSum[mySum, {}, {n}, {1}]
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In[1]:=

In[2]:=

In[3]:=

In[4]:=

In[5]:=

Out[5]=

<< Sigma.m

‘ Sigma - A summation package by Carsten Schneider (©) RISC-Linz ‘

<< HarmonicSums.m

‘ HarmonicSums by Jakob Ablinger (© RISC-Linz ‘

<< EvaluateMultiSums.m
‘ EvaluateMultiSums by Carsten Schneider (©) RISC-Linz ‘

n—2j+1n—j+r—2 (_1)1'—‘,-5 (.H;l) (-j+“s+r—2)(_j +n— 2)!1.!

mySum = Z Z Z

j=0r=0 s=0 (n—s)(s+1)(=j+n+r)!

5

EvaluateMultiSum[mySum, {}, {n}, {1}]

—n’—n—1 (-1)"(@+n+1) 25[-2,n]  S[i,0] S[2,1]
n?(n+1)3 n?(n+1)3 n+1 (n+1)2 -—-n-—1
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Application: The simplification of
Feynman integrals
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Evaluation of Feynman Integrals

WG:ZE}W / O(N, e, z)dx

Behavior of particles

Feynman integrals
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L 1
Tt dr =

[l a2de =7

0
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L 1
Tt dr =

L 2
rodr =
Jo 3




Part 3: The simplification of Feynman integrals

Jy

Jy

I

2l dx

22 dx

23 dx

1/2

1/3
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L 1
zdr =
L 2
e dr =
L3
z>dr =
fO . 1/4




Part 3: The simplification of Feynman integrals

I 1
zdr =
fo . 1/2
/1 v L :
N dr = —— 22dr =
0 N +1 fO ) 1/3
fir N=1,2.3,4,...
foledx:
. 1/4
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Feynman integrals

1
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0



Part 3: The simplification of Feynman integrals

Feynman integrals

1N N
/ 2V (1+x) i
0

(1 —x)tte
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Feynman integrals

1—i—a:1
// 1—.(81 1+6 . .dxld.’l,‘g
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Feynman integrals

1 +
/ / / 1 — 5171 11—1—5 . d.’L‘l d.’EQ d$3



Part 3: The simplification of Feynman integrals

Feynman integrals

1+ac
//// (=) 11+6 .. dxy dxodrs dry
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Feynman integrals

N1+ x)
///// R 11+€,.d$1d$2d:1;3d1;4dx5
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Feynman integrals

1
/ / / / / / 1 = .—;—11‘11—’_6 ... dxr1dxo dxs dry drs drg
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Feynman integrals

gé(]+2)(iii)

Jj=0

1 N —Jj+k
X ///// 1+z1 1= ... dxy dxo drs dry drs dxg
o Jo -




Part 3: The simplification of Feynman integrals

Feynman integrals m@

a 3-loop massive ladder di-
N-3 Jj

agram [arXiv:1509.08324]
L2\ G+ 2 k+1

0 /0 /0 /01/01/019(1—965—xﬁ)(l—xg)(l_m)xz—e

(1-— 332)_6$i/2_1(1 — 934)6/2_193?1336_6”/2

<

X

[—1‘3(1 — .’1}4) — .’L‘4(1 — T5 — Te + TsT1 + l’ﬁ.%'g)]k

+ [563(1 - $4) - (1 - 1‘4)(1 — X5 — Tg + 501 + I6£C3)]k

X (1 —ax5 — 26+ x521 + $63§'3)j_k(1 — :UQ)N_?’_j

X w1 — (1 — 25 — 26) — T5T1 — wewg]N_3_j dxq dxo dxs dxy drs dag
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complicated
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Part 3: The simplification of Feynman integrals

Evaluation of Feynman Integrals

m@ﬂ / O(N, e, z)dx

Behavior of particles

Feynman integrals

DESY
(J. Bliimlein)

> F(N.ek)

complicated
multi-sums

expression in RISC
special functions (Sigma-package)




Part 3: massive 3-loop ladder integrals

Example 1:

massive 3-loop ladder integrals



Part 3: massive 3-loop ladder integrals

Feynman integrals m@

a 3-loop massive ladder di-
N-3 Jj

agram [arXiv:1509.08324]
L2\ G+ 2 k+1

0 /0 /0 /01/01/019(1—965—xﬁ)(l—xg)(l_m)xz—e

(1-— 332)_6$i/2_1(1 — 934)6/2_193?1336_6”/2

<

X

[—1‘3(1 — .’1}4) — .’L‘4(1 — T5 — Te + TsT1 + l’ﬁ.%'g)]k

+ [563(1 - $4) - (1 - 1‘4)(1 — X5 — Tg + 501 + I6£C3)]k

X (1 —ax5 — 26+ x521 + $63§'3)j_k(1 — :UQ)N_?’_j

X w1 — (1 — 25 — 26) — T5T1 — wewg]N_3_j dxq dxo dxs dxy drs dag
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Part 3: massive 3-loop ladder integrals

j’s’ LR

Fo(N)

N-3 j k —j+N-3 —l+N—q-3 —l+N—q—s-3
222 2 X (1) RN

01 r=0
A% (’?)(?‘5)( NN YT )R (e N =g r—s=3) (s 1))
X N == EN=T) (N=q=r—5=2)(qFs+1)

4S1(—j + N —1) — 48y (—j + N — 2) — 28, (k)

—(S1(=l4+N—-q—2)+S1(-l+N—-q—r—s—3)—251(r+9))

+2S51(s —1) —251(r + s) | + 3 further 6-fold sums




Part 3: massive 3-loop ladder integrals

Fo(N) |=

7 (17N + 5)S1(N)3 35N2 —2N —5  13S2(N)  5(—1)V

PRl 3N(N +1) (2N2(N+1)2 Tt oz VS
_1\N

(= e + (e = 18 + (5 = ()Y ssv)

_1\N
M) S+ (§ (DY) a2
4(-1)N

+ (26 +4-DN) SN + )

8(—1)N(2N + 1)
N(N +1)

+ (=224 6(-1)N)S2(N) —

+ (24 2(=1)N)Sa,1(N) — 285 _2,1(N) +

A=)V S o (V)2 + S_a() (2B =D)

N(N +1)
—1)N(5—-3N 5
(% — 53)S2(N) + S_2(N) (1081(N)? + (

4(3N — 1) 8(—1)N (3N +1) 16
N TN NN+
_1\N
+ (a2 = 208 + (5 = A=) Sa() + (= 6+ 5(-DN)S_a()
_1\N
+ (- % - %)32,1(N) + (20 4+ 2(=1)N) Sz, —2(N) + ( = 17+ 13(=1)V) 53,1 (N)
8(—1)N(2N 4+ 1) +4(9N + 1)
B N(N +1)

3
+325_21,1(N) + <2

S-21(N) = (24 +4(=1)N)S-5,1(N) + (3 = 5(=1)") S2,1,1(N)

. 351(1\7)

s - 2 +§<—1>Ns_z<N)><<z>
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Fo(N) |=

7 (17N + 5)S1(N)3 35N2 —2N —5  13S2(N)  5(—1)V

o5 Gl 3N(N +1) ( NN+ 12 T 2 oz VS
N HN@eN+1) 13 29

+( N+ D —W)S2(N)+(§—(—1)N)S3(N)

Si(N) =) =

i hss o) + 2D 6 4 (G (c)M) s

N2(N +1) 4

(= 1)NS_a(NY? + S,g,(N)(%?JJ\\;; f)) + (26 +4(—1)N)SL(N) + 41(v_41r)iv)
(G2 2 s + s 08 (7 + (BN LD
iﬁ’j\\: 1)) )S1(N) + —8(;22(?17; D) + (=224 6(-1)N)S2(N) — 1\7(1\];711))
+ (EDENED 2500 + (5 = 2-DM)Si) + (=64 51N Sa(N)
+ (- % - %)smw) + (20 4+ 2(=1)N) Sz, —2(N) + (= 17+ 13(-1)V) S5 1 (N)
- 8(_1)N(2]]:’,(J;V13:1”)4(9N +1) S_21(N)— (24 +4(-1)M)S_3,1(N) + (3 = 5(=1)N)S2,1,1(V)

+32572,1,1(N) + (251(1\02 - 353\(,]\[) + 2(—1)N5—2(N)>C(2)
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Fo(N) |=

7 (17N + 5)S1(N)3 35N2 —2N —5  13S2(N)  5(—1)V

o5 Gl 3N(N +1) ( NN+ 12 T 2 oz VS
HN@eN+1) 13 29

+( N+ D —W)S2(N)+(§—(—1)N)S3(N)

+(2 i=1 " 28521 (N) + 2 ‘ M) Sa2(N)?

2(3N — 5)
N(N +1)

)S2(N) + S—2(N)(10S1(N)? + (=

—2(-1)VS_a(N)? + S_s(N)(

(=N (5 - 3N) 5
( 2N2(N +1)  2N2

N(N +1)

L]l\gz()’]]\\: 1)) )S1(N) + —S(;zg(i]\ll; D) + (=224 6(-1)N)S2(N) — 1\7(1\1/711))
+ (EDENED 2500 + (5 = 2-DM)Si) + (=64 51N Sa(N)
+ (- % - %)smw) + (20 4+ 2(=1)N) Sz, —2(N) + ( = 17+ 13(=1)V) 53,1 (N)
- 8(_1)N(2]]:’,(J;V13:1”)4(9N +1 S_21(N)— (24 +4(-1)M)S_3,1(N) + (3 = 5(=1)N)S2,1,1(V)
+325_511(N) + (251(1\02 - 351T(N) + 2(—1)NS—2(N)><(2)
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Fo(N) |=

7 (17N + 5)S1(N)3 35N2 —2N —5  13S2(N)  5(—1)V

o5 Gl 3N(N +1) (2N2(N+1)2 Tt oz VS
N

+( SENED B gm0+ (2 - M

+(2 =1 ! 28521 (N) + 2 M) Sa(N)?

A=)V S o (V)2 + S_a() (2B =D)

N(N +1) ;
(-1)N(5-3N) 5 o v+ 1)
+ (W — —=)S5(N) +572(N>(1Jpsl<N)2 +C Ny
4(3N 4 1 16
TN Z = [~DY)S2(N) - N(N + 1))
ARV
n (( 1) N k=1 —6+5(—1)N)S_4(N)
+ (P9 S_a11(N) = Z i2 )S2,-2(N) + (= 17+ 13(~1)V) 53,1 (N)
8(\ = N N
_ NN D) StV = (ZaFa(—1)")S_31(N) + (3= 5(—=1)")S2,1,1(N)

+ 32:9'_'2,1,1(N) + <251(N)2 - SslT(N) + Z(—l)Ns_z(N)><(2)
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Example 2:

2-mass 3-loop Feynman integrals
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Example: a 2-mass 3-loop Feynman mtegral [arXiv:1804.02226]

(arose in the calculation of the gluonic operator matrix element Aqq o)

All diagrams are produced with axodraw (J. Vermaseren).
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Example: a 2-mass 3-loop Feynman mtegral [arXiv:1804.02226]

(arose in the calculation of the gluonic operator matrix element A(m o)

expression (95 MB) with
e 150 single sums

e 1000 double sums

e 12160 triple sums

e 1555 quadruple sums

Mellin-Barnes-
and , Fy-technologies

~




Part 3: 2-mass 3-loop Feynman integrals

Example: a 2-mass 3-loop Feynman mtegral [arXiv:1804.02226]

(arose in the calculation of the gluonic operator matrix element A(m o)

expression (95 MB) with
e 150 single sums

e 1000 double sums

e 12160 triple sums

e 1555 quadruple sums

Mellin-Barnes-
and , Fi-tech nologies\

Typical triple sum:

N j i —k 3.
DD (4+€)(_2+N)(51§N)N"(_1>2 x 2m2te = STk
j=0i=0k=0
F(1— £ —itj+k)(—1-§)F(2+ 5)T(1+N)T(1e+i—k)T (= 32 +K)F(1—c+k)T(3—c+k)T (-1 - £ +k)
(=3 —5)I(3+5)r @+ (1+K) T (2—i+))T(2—e+k)T(F —e+k) T (= 5+K)T(+5+N)
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Example: a 2-mass 3-loop Feynman mtegral [arXiv:1804.02226]

(arose in the calculation of the gluonic operator matrix element A(N o)

expression (95 MB) with
e 150 single sums

e 1000 double sums

e 12160 triple sums

e 1555 quadruple sums

Mellin-Barnes-
and , Fi-tech nologies\

Typical triple sum:

N j i —k 3.
DD (4+€)(_2+N)(51§N)N"(_1)2 x 2m2te = STk
j=0i=0k=0
F(1— £ —itj+k)(—1-§)F(2+ 5)T(1+N)T(1e+i—k)T (= 32 +K)F(1—c+k)T(3—c+k)T (-1 - £ +k)
(=3 —5)I(3+5)r @+ (1+K) T (2—i+))T(2—e+k)T(F —e+k) T (= 5+K)T(+5+N)

6 hours for this sum

~ 10 years of calculation time for full expression
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Example: a 2-mass 3-loop Feynman mtegral [arXiv:1804.02226]

(arose in the calculation of the gluonic operator matrix element A(m o)

expression (95 MB) with
e 150 single sums

e 1000 double sums

e 12160 triple sums

e 1555 quadruple sums

Mellin-Barnes-
and , Fi-tech nologies\

lSumProduction.m (2 hours)

expression (377 MB)
consisting of 8 multi-sums
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Example: a 2-mass 3-loop Feynman mtegral [arXiv:1804.02226]

(arose in the calculation of the gluonic operator matrix element A(m o)

expression (95 MB) with
e 150 single sums

e 1000 double sums

e 12160 triple sums

e 1555 quadruple sums

Mellin-Barnes-
and , Fi-tech nologies\

lSumProduction.m (2 hours)

expression (377 MB)
consisting of 8 multi-sums

lEvaIuateMuItiSums.m
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63

Example: a 2-mass 3-loop Feynman mtegral [arXiv:1804.02226]

(arose in the calculation of the gluonic operator matrix element AQQ)Q)

i1=3

sum | size of sum | summand size of time of number of
(with €) constant term | calculation indef. sums
N_3i12-2 i3 oo
33 3 17.7 MB 266.3 MB 177529 s (2.1 days) 1188
i4=21i3=0i5=0i1=0
N-4iz—1 oo
S>3 232 MB 1646.4 MB 980756 s (11.4 days) 747
i3=31i5=01i1=0
N-4 oo
3 67.7 MB 458 MB 524485 s (6.1 days) 557
in=31i1=0
> 38.2 MB 90.5 MB 689100 s (8.0 days) 44
i1=0
N_3i4-2 i3 i
3 >3 1.3 MB 6.5 MB 305718 s (3.5 days) 1933
ig=21i3=0ip=0141=0
N—4iz—1 ip
S>3 11.6 MB 32.4 MB 710576 s (8.2 days) 621
i3=31i9=0i1=0
N—4 ig
3 4.5 MB 5.5 MB 435640 s (5.0 days) 536
in=31i1=0
N—4
> 0.7 MB 1.3 MB 9017s (2.5 hours) 68
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Example: a 2-mass 3-loop Feynman mtegral [arXiv:1804.02226]

(arose in the calculation of the gluonic operator matrix element A(N o)

expression (95 MB) with
e 150 single sums

e 1000 double sums

e 12160 triple sums

e 1555 quadruple sums

Mellin-Barnes-
and , Fi-tech nologies\

lSumProduction.m (2 hours)

expression (377 MB)
consisting of 8 multi-sums

lEvaIuateMuItiSums.m
(3 month)

expression (154 MB)
consisting of 4110 indefinite sums
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Example: a 2-mass 3-loop Feynman mtegral [arXiv:1804.02226]

(arose in the calculation of the gluonic operator matrix element Ayg)Q)

Most complicated objects: generalized binomial sums, like

i=1

(20

i
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Example: a 2-mass 3-loop Feynman mtegral [arXiv:1804.02226]

(arose in the calculation of the gluonic operator matrix element A(N o)

expression (95 MB) with
e 150 single sums

e 1000 double sums

e 12160 triple sums

e 1555 quadruple sums

Mellin-Barnes-
and , Fi-tech nologies\

lSumProduction.m (2 hours)

expression (377 MB)
consisting of 8 multi-sums

lEvaIuateMuItiSums.m
(3 month)

expression (8.3 MB)
consisting of
74 indefinite sums

Sigma.m (32 days) | expression (154 MB)
consisting of 4110 indefinite sums




Part 3: 2-mass 3-loop Feynman integrals

Evaluation of Feynman Integrals

m@m / O(N, e, z)dx

Behavior of particles

Feynman integrals

DESY
(J. Bliimlein)

> F(N.ek)

complicated
multi-sums

expression in RISC
special functions (Sigma-package)
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Evaluation of Feynman Integrals

Ul [ o

Behavior of particles

Feynman integrals

DESY
(J. Bliimlein)
LHC at CERN
applicable
N,e, k
expression in RISC Z I . )
special functions (Sigma-package) complicated

multi-sums



