The Title of My Paper

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
Wolfgang.Schreiner @risc.jku.at

January 30, 2019

Abstract

This is my not really very long abstract. This is my not really very long abstract. This is
my not really very long abstract. This is my not really very long abstract. This is my not
really very long abstract. This is my not really very long abstract. This is my not really
very long abstract. This is my not really very long abstract. This is my not really very long
abstract. This is my not really very long abstract. This is my not really very long abstract.
This is my not really very long abstract. This is my not really very long abstract. This is my
not really very long abstract. This is my not really very long abstract. This is my not really
very long abstract.

1 Introduction

Note these beautiful Unicode symbols: 4 6 i € and B. See my papers [6, 5]. Also see [1] and [3]
and do not overlook [2] and [4]. See Section 4.

This is another paragraph. This is another paragraph. This is another paragraph. This is
another paragraph. This is another paragraph. This is another paragraph. This is another
paragraph. This is another paragraph. This is another paragraph. This is another paragraph.
This is another paragraph. This is another paragraph. This is another paragraph. This is another
paragraph. This is another paragraph. This is another paragraph.

The typographically very important effect of hyphenation. The typographically very impor-
tant effect of hyphenation. The typographically very important effect of hyphenation. The
typographically very important effect of hyphenation. The typographically very important effect
of hyphenation. The typographically very important effect of hyphenation. The typographically
very important effect of hyphenation. The typographically very important effect of hyphenation.
The typographically very important effect of hyphenation. The typographically very important
effect of hyphenation. The typographically very important effect of hyphenation. The typo-
graphically very important effect of hyphenation. The typographically very important effect of
hyphenation. The typographically very important effect of hyphenation. The typographically
very important effect of hyphenation. The typographically very important effect of hyphenation.

mailto:Wolfgang.Schreiner@risc.jku.at

RISC Algorithm Language (RISCAL)
File Edit Help

~ o x
File: /usr2/schreine/repositories/RISCAL/trunk/spec/qed.tit

OB

Analysis

EP0 O &

Translation: [Nondeterminism Default Value: o Other Values:| |5|
Execution: (v Silent Inputs: Per Mille:
6 type nat = NIND;

Branches:
Visualization: [_] Trace] Tree Width: 800

Spred divides(minat,ninat) o 3pinat. mop = n;
10 fu
1.

Height: 600
n ged(m:nat,n:nat

): nat
requires m % 8 v n # 8; gcdp(Z,2)
choose result:nat with —

divides(result,m) A divides(result,n) A
-3rnat. divides(r,m) A divides(r,n) A r > result;
16val g:mat

Parallelism: | Multi-Threaded Threads: 4
Operation:

(] Distributed ~ Servers:| |=|

RISC Algorithm Language 2.1.0 (July 17, 2018
= ged (N,N-1);

)
http://www.risc.jku.at/research/formal/software/RISCAL
(C) 2016-, Research Institute for Symbolic Computation (RISC)
This is free software distributed under the terms of the GNU GPL.
theorem gcdo(minat) = m=e - ged(m,@) = m; Execute to see the available command line options.
theorem gcdl(m:nat,n:nat) o 0'vn=6- gedln,n) - ged(n,m); -
20 theorem gcd2(m:nat,n:nat) « 1snAnsm= ged(m,n)

ged(min,n) ; Readi!
oc gedp(n:nat,n:nat): nat

e fusrz/schreine/repositories/RISCAL/trunk/spec/gcd. txt
Usin, .
Computing the value of g...
requires m#0 v n=0; Type checking and translation completed.
ensures result = gcd(m,n);
var a:nat = m;

Executing gedp(Z,Z) with all 441 inputs.

var binat = n;

while a> 8 A'b >0 do
invariant a # @

invariant ged(a

decreases ath;

Execution completed for ALL inputs {1883 ms, 440 checked, 1 inadmissible).
Vb o,
,b) = ged(old_a,old_b);
if a> b then

a = a%b;
else

b = b%a;

return if a = © then b else a;

40
41fun gedf(m:nat,n:nat): nat
2 requires m#@ v
43 ensures result = ged(m,n)
44__decreases mn:

—

Figure 1: My Figure
2 My Results

See Figure 1 on page 2.
One Thought Some formulas:

(a + b)* = a® + 2ab + b*
SUM =SUM=S-U-M

No new paragraph (no indentation).

Another Thought The Gauss formula } i = @ displayed:

ii: nn+1)

i=1 2

Now a new paragraph (indentation): Einstein says E = mc? (“Energy equals mass times the
square of the speed of light (¢)”).

Some Typography St. John vs. St. John. Fig. 5 vs. Fig. 5. Vice-president. Monday—Tuesday.
Wait — I have an idea. "Wrong Quote" vs. “Correct Quote”.

3 Some Programs

See Algorithm 1.

Algorithm 1 Compute the set P of all primes less than equal n € IN

Require: n € N
Ensure: P={p|p e NAp <nAisPrime(p)}

P20
C—{2,...,n}
while C # 0 do

p < min(C)

P~ PU{p}

C—{ceC:pjc}
end while

// HelloWorld.cpp
#include <iostream>
using namespace std;

int main() {
char message[] = "Hello, World!";
for (int i=0; i<10; i++)
cout << message << "\n";

// HelloWorld. cpp
#include <iostream >
using namespace std;

int main() {
char message[] = "Hello,_ World!";
for (int i=0; i<10; i++)
cout << message << "\n";

4 Conclusions

Bla. Bla, bla, bla bla. Bla. Bla, bla, bla bla. Bla. Bla, bla, bla bla. Bla. Bla, bla, bla bla. Bla.
Bla, bla, bla bla. Bla. Bla, bla, bla bla. Bla. Bla, bla, bla bla. Bla. Bla, bla, bla bla. Bla. Bla,
bla, bla bla. Bla. Bla, bla, bla bla. Bla. Bla, bla, bla bla. Bla. Bla, bla, bla bla. Bla. Bla, bla,
bla bla. Bla. Bla, bla, bla bla. Bla. Bla, bla, bla bla. Bla. Bla, bla, bla bla.

References

[1]

(2]

[3]

[4]

[5]

[6]

Wolfgang Ahrendt et al., eds. Deductive Software Verification —- The KeY Book: From
Theory to Practice. Vol. 10001. Lecture Notes in Computer Science. Springer, Berlin,
2018. por: 10.1007/978-3-319-49812-6.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. “The Spec# Programming System:
An Overview”. In: Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices (CASSIS 2004), Marseille, France, March 10-14, 2004. Ed. by Mihaela Bobaru
et al. Vol. 3362. Lecture Notes in Computer Science. Springer, Berlin, Germany, 2004,
pp- 49-69. por: 10.1007/978-3-540-30569-9_3.

David R. Cok. “OpenJML: JML for Java 7 by Extending OpenJDK”. In: NASA Formal
Methods (NFM 2011), Pasadena, CA, USA, April 18-20, 2011. Ed. by Mihaela Bobaru
et al. Vol. 6617. Lecture Notes in Computer Science. Springer, Berlin, Germany, 2011,
pp. 472-479. por: 10.1007/978-3-642-20398-5_35.

K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for Functional Correctness”.
In: Logic Programming and Automated Reasoning (LPAR-16), Dakar, Senegal, April 25—
May 1, 2010. Ed. by Edmund M. Clarke and Andrei Voronkov. Vol. 6355. Lecture Notes
in Computer Science. Springer, Berlin, Germany, 2010, pp. 348-370. por: 10.1007/978-
3-642-17511-4_20.

Wolfgang Schreiner. “Validating Mathematical Theories and Algorithms with RISCAL”.
In: CICM 2018, 11th Conference on Intelligent Computer Mathematics, Hagenberg, Austria,
August 13—17. Ed. by F. Rabe et al. Vol. 11006. Lecture Notes in Computer Science/Lecture
Notes in Artificial Intelligence. Springer, Berlin, 2018, pp. 248-254. por: 10.1007/978-
3-319-96812-4_21.

Wolfgang Schreiner, Alexander Brunhuemer, and Christoph Fiirst. “Teaching the Formal-
ization of Mathematical Theories and Algorithms via the Automatic Checking of Finite
Models”. In: Post-Proceedings ThEdu’17, Theorem proving components for Educational
software, Gothenburg, Sweden, August 6, 2017. Ed. by Pedro Quaresma and Walther Neu-
per. Vol. 267. EPTCS. 2018, pp. 120-139. por: 10.4204/EPTCS.267.8.

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-319-96812-4_21
https://doi.org/10.1007/978-3-319-96812-4_21
https://doi.org/10.4204/EPTCS.267.8

	Introduction
	My Results
	Some Programs
	Conclusions

