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Abstract
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1 Introduction

Note these beautiful Unicode symbols: 4 6 i € and B. See my papers [6, 5]. Also see [1] and [3]
and do not overlook [2] and [4]. See Section 4.
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): nat
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theorem gcdo(minat) = m=e - ged(m,@) = m; Execute to see the available command line options.
theorem gcdl(m:nat,n:nat) o 0'vn=6- gedln,n) - ged(n,m); -
20 theorem gcd2(m:nat,n:nat) « 1snAnsm= ged(m,n)
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Usin, .
Computing the value of g...
requires m#0 v n=0; Type checking and translation completed.
ensures result = gcd(m,n);
var a:nat = m;

Executing gedp(Z,Z) with all 441 inputs.

var binat = n;

while a> 8 A'b >0 do
invariant a # @

invariant ged(a

decreases ath;

Execution completed for ALL inputs {1883 ms, 440 checked, 1 inadmissible).
Vb o,
,b) = ged(old_a,old_b);
if a> b then

a = a%b;
else

b = b%a;

return if a = © then b else a;

40
41fun gedf(m:nat,n:nat): nat
2 requires m#@ v
43 ensures result = ged(m,n)
44__decreases mn:

—

Figure 1: My Figure
2 My Results

See Figure 1 on page 2.
One Thought Some formulas:

(a + b)* = a® + 2ab + b*
SUM =SUM=S-U-M

No new paragraph (no indentation).

Another Thought The Gauss formula } i = @ displayed:

ii: nn+1)

i=1 2

Now a new paragraph (indentation): Einstein says E = mc? (“Energy equals mass times the
square of the speed of light (¢)”).

Some Typography St. John vs. St. John. Fig. 5 vs. Fig. 5. Vice-president. Monday—Tuesday.
Wait — I have an idea. "Wrong Quote" vs. “Correct Quote”.

3 Some Programs

See Algorithm 1.



Algorithm 1 Compute the set P of all primes less than equal n € IN

Require: n € N
Ensure: P={p|p e NAp <nAisPrime(p)}

P20
C—{2,...,n}
while C # 0 do

p < min(C)

P~ PU{p}

C—{ceC:pjc}
end while

// HelloWorld.cpp
#include <iostream>
using namespace std;

int main() {
char message[] = "Hello, World!";
for (int i=0; i<10; i++)
cout << message << "\n";

// HelloWorld. cpp
#include <iostream >
using namespace std;

int main() {
char message[] = "Hello,_ World!";
for (int i=0; i<10; i++)
cout << message << "\n";

4 Conclusions
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