Assignment 3 for Formal Modeling (Winter Semester 2025)

Symbolic Summation and the modeling of sequences

Carsten.Schneider@risc.jku.at

Deadline: January 28, 2025

For this assignment carry out one of the following two tasks.

Task 1 Implement polynomial summation.

Let $\mathbb{Q}[x]$ be the polynomial ring in the variable x with coefficients form the rational function field \mathbb{Q} . Implement two functions PolynomialTelescoping_i(f) where both produce for the input $f \in \mathbb{Q}[x]$ the output $g \in \mathbb{Q}[x]$ with

$$g(x+1) - g(x) = f(x).$$
 (1)

- 1. For the function i = 1 use the basis transformation between the standard basis and the falling factorial basis.
- 2. For the function i = 2 use the degree bounding lemma and solve the underlying system of linear equations.

Finally, implement the corresponding functions Polynomial Summation, (f, a, b) which computes

$$\sum_{x=a}^{b} f(x)$$

by using the solution g(x) of (1) computed by PolynomialTelescoping_i(f).

Your implementation can be carried out with your preferred computer algebra system (like Mathematica, Maple or Sage). The following files should be submitted:

- 1. A file with your documented code
- 2. together with file that contains concrete examples that can be carried out in your chosen CA system (e.g., a Mathematica notenook if you choose Mathematica); in particular, the efficiency should be compared between both methods.
- 3. A pdf-file where the computations (examples) from step 2 are documented explicitly.

Task 2: Implement the basic functionality of the term algebra SumProd($\mathbb{Q}(x)$).

Let $\mathbb{G} := \mathbb{Q}(x)$ be the rational function field in the variable x defined over the rational numbers \mathbb{O} .

- 1. Implement the term algebra SumProd(\mathbb{G}) together with the evaluation function ev: SumProd $\times \mathbb{N} \to \mathbb{Q}$ from Section 2. More precisely, given $A \in \text{SumProd}(\mathbb{G})$ with expressions as defined in Section 2 and given $n \in \mathbb{N}$, your function ev(A, n) should evaluate the expression accordingly.
- 2. Furthermore implement the function

$$ReducedRepresentation : SumProd(\mathbb{G}) \rightarrow SumProd(\mathbb{G})$$

which transforms an expression from $SumProd(\mathbb{G})$ to the reduced representation; see Definition 2.8. Note: a transformation to the sum-product reduced representation is not necessary.

Your implementation can be carried out with your preferred computer algebra system (like Mathematica, Maple or Sage). Hint: for the implementation of ReducedRepresentation you are allowed to use the standard field/ring operations (together with functions working on variables) of your available computer algebra system.

The following files should be submitted:

- A file with your documented code
- together with file that contains concrete examples that can be carried out in your chose CA system (e.g., a Mathematica notenook if you chose Mathematica); in particular, the correctness of the evaluations should be demonstrated.
- A pdf-file where the computations (examples) from step 2 are documented explicitly.