
Parallel Computing
Exercise 4 (June , 2024)

Alois Zoitl
alois.zoitl@jku.at
Adriano Vogel

adriano.vogel@jku.at

The result is to be submitted by the deadline stated above via the Moodle interface. The
submitted result is as a .zip or .tgz file which contains:

○ a single PDF (.pdf) file with:
■ a cover page with the title of the course, your name(s),

Matrikelnummer(s), and email address (es);
■ answers to the tasks provided in the requirements below

○ Output generated by the program;
○ The actual source code of your solutions.

If you work in a team, the quality of the solution is expected to be higher, and grading
will take this into account.

Tips:
- Understand the parallel codes explored in the lecture.
- See the code examples provided.
- In case of compilation errors, try to understand what the compiler is throwing

because the compilers are usually helpful.
- Understand the sequential version provided.

Installation requirements

It is recommended to compile and run the codes in a Linux environment, such as a
machine running Ubuntu.
Windows users can easily set up a deployment environment, such as using WSL and
Visual Studio Code
Using Linux is important for compilers support and performance
The code examples and assignment support C++-17. The recommended compiler to
use is G++ 9 or newer. One can check if G++ is installed and which version with the
command:

https://code.visualstudio.com/docs/remote/wsl
https://code.visualstudio.com/docs/remote/wsl


g++ --version

For instance, this is the output when G++ 9.4 is installed:

g++ (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0

In case it is not installed, the package build-essential should be installed (e.g., in
Ubuntu):

sudo apt install build-essential

The parallel algorithms also require Threading Building Blocks, which can be installed in
Linux with:

sudo apt install libtbb-dev

Goal

The assignment is to introduce parallelism to the sequential application to significantly
accelerate the execution (reducing the execution time and increasing the throughput).
The application folder contains:

● Sequential CPP code version: Code to be parallelized
● Makefile: Compilation helper: the command make should compile the application,

which can then be run with the command: ./sequential
● input: is a folder with a CSV file used as input and CSV file with previous values

to be used as baseline.

The program reads a CSV file where each line is an entry from a sensor with values
such as a sensor_id, a timestamp, a temperature value collected, and a humidity value
collected. The application processes the lines sequentially, with operations of loading,
filtering, aggregating, and generating alerts according to predefined rules. A correct
execution output is:

./sensorsDataProcessing_sequential
[...list of 78 Alerts…]
Total alerts generated: 78
Execution Time(seconds): 26.34 Throughput (records/s): 37961.76

Please note that the focus is on supporting parallelism instead of optimizing business
logic code.



Requirements

● (1) The final program should execute in parallel.
● (2) The final program should provide a correct output in terms of alerts and total

alert counting, comparable to the sequential implementation.
● (3) provide significant performance improvements compared to the sequential

implementation.
● (4) A performance analysis with at least 3 repetitions of each execution.
● (5) A results discussion explaining (i) the design adopted for the parallel solution,

(ii) how the implementation works, (iii) the rationale for the performance results,
and (iv) a discussion on what are the expected advantages and limitations of the
parallel implementation.


