
Parallel Computing
Exercise 1 (April 22, 2025)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface.
The submitted result is as a .zip or .tgz file which contains

• a single PDF (.pdf) file with
– a cover page with the title of the course, your name, matriculation number, and email

address,
– the source code of the sequential program,
– the demonstration of a sample solution of the program,
– the source code of the parallel program,
– the demonstration of a sample solution of the program,
– a benchmark of the sequential and of the parallel program.

• the source (.c/.cpp/.java) files of the sequential and of the parallel program.

1

Shared Memory Programming in OpenMP C/C++ or Java

Develop a sequential and a parallel solution to one of the subsequently stated problems, either in
C/C++ with OpenMP or in Java using the Java basic thread/high-level concurrency API.

Instrument the source code of your program to measure the real (“wall clock”) time spent (only) in
that part of your program that you are interested in (the core function without initialization of input
data and output of results) and print this time to the standard output. In C/C++ with OpenMP, you
can determine wall clock times by the function omp_get_wtime(), in Java you can determine it by
System.currentTimeMillis().

When running the parallel programs, make sure that threads are pinned to freely available cores;
use top to verify the applied thread/core mapping and the thread’s share of CPU time (which should
be close to 100%). In a C/C++ solution with OpenMP, make sure that both your sequential and
parallel program are compiled with all optimizations switched on (option -O3).

When benchmarking the parallel program, make sure that you run the parallel program with the
same actual inputs (not only the same input sizes) as the sequential one by using the same random
number generator seeds in the generation of inputs (if applicable).

Repeat each benchmark (at least) five times, collect all results, drop the smallest and the highest
value and take the average of the remaining three values. For automating this process, the use of a
shell script is recommended. For instance, a shell script loop.sh with content

#!/bin/sh
for P in 1 2 4 8 16 32 ; do
echo $P

done

can be run as sh loop.sh >log.txt to print a sequence of values into file log.txt.
Present all timings in an adequate form in the report by

• a numerical table with the (average) execution times of sequential and parallel programs for
varying input sizes and processor numbers, (absolute) speedups and (absolute) efficiencies;

• diagrams that illustrate execution times, speedups, and efficiencies with both linear and al-
gorithmic axes, as shown in class (multiple runs should be shown in the same diagram by
different curves, if the scales are comparable);

• ample verbal explanations that explain your compilation/execution settings, how you interpret
the results, how you judge the performance/scalability of your programs.

Hint In Assignment 3, you will be asked for an MPI solution of this problem in C/C++, you may
consider this when choosing the problem and/or the implementation language for this assignment.

Tip If you program in C/C++, the tool valgrind1 is useful to debug invalid memory accesses;
this package is included in many Linux distributions (Debian: apt-get install valgrind).

Presentation Please be prepared to give a short (10 min) presentation of your results on April 29;
you will be notified by April 24 whether such a presentation is requested from you.

1http://valgrind.org/

2

http://valgrind.org/

Alternative A: Matrix Inversion by Gauss-Jordan Elimination

Given a regular matrix 𝐴 = (𝑎𝑖 𝑗) with 𝑛 rows and 𝑛 columns, our goal is to compute the inverse
of 𝐴, i.e., that matrix 𝐵 = (𝑏𝑖 𝑗) with 𝑛 rows and 𝑛 columns that satisfies 𝐴 · 𝐵 = 𝐼 where 𝐼 is the
identity matrix: ©­­«

𝑎11 . . . 𝑎1𝑛
...

. . .
...

𝑎𝑛1 . . . 𝑎𝑛𝑛

ª®®¬ ·
©­­«
𝑏11 . . . 𝑏1𝑛
...

. . .
...

𝑏𝑛1 . . . 𝑏𝑛𝑛

ª®®¬ =
©­­«

1 . . . 0
...

. . .
...

0 . . . 1

ª®®¬
This problem can be solved by Gauss-Jordan Elimination2, a variant of Gaussian Elimination that
transforms in a sequence of steps the matrix (𝐴|𝐼) with 𝑛 rows and 2𝑛 columns into the corresponding
matrix (𝐼 |𝐵):

©­­«
𝑎11 . . . 𝑎1𝑛 1 . . . 0
...

. . .
...

...
. . .

...

𝑎𝑛1 . . . 𝑎𝑛𝑛 0 . . . 1

ª®®¬⇝ . . .⇝
©­­«

1 . . . 0 𝑏11 . . . 𝑏1𝑛
...

. . .
...

...
. . .

...

0 . . . 1 𝑏𝑛1 . . . 𝑏𝑛𝑛

ª®®¬
The algorithm proceeds in 𝑛 iterations where in iteration 𝑖, for 𝑖 = 1, . . . 𝑛, the element 𝑎𝑖𝑖 serves
as the pivot element: we divide line 𝑖 by 𝑎𝑖𝑖 and subtract from every row 𝑗 ≠ 𝑖 the multiple 𝑎 𝑗𝑖/𝑎𝑖𝑖
of row 𝑖; thus column 𝑖 gets 1 in row 𝑖 and 0 in every row 𝑗 ≠ 𝑖. Please note that 𝐴 is already in
diagonal form in every column 𝑗 < 𝑖 such that it is thus not necessary to consider this part any more.
For instance, for 𝑛 = 6 and 𝑖 = 4, we have the following situation:

©­­­­­­­«

1 0 0 .

0 1 0 .

0 0 1 .

0 0 0 𝑎4,4 .

0 0 0 .

0 0 0 .

ª®®®®®®®¬
While Gauss-Jordan Elimination is typically not used when the matrix coefficients are floating

point numbers (here mainly iterative methods are used for determining approximate solutions), it
may play a role if the coefficients are from a domain where the equation is to be solved exactly (as in
computer algebra systems). In this assignment we will consider the domain ℤ/𝑝 = {0, 1, . . . , 𝑝 − 1}
where 𝑝 is a prime number and arithmetic is integer arithmetic modulo 𝑝 as implemented by the
following C functions:

static long mAdd(long a, long b) { return (a+b)%p; }
static long mSub(long a, long b) { return (a+p-b)%p; }
static long mMul(long a, long b) { return (a*b)%p; }
static long mDiv(long a, long b) { return mMul(a, mInv(b)); }

Here mInv(𝑎) computes the modular inverse of 𝑎 (i.e., the value 𝑎′ for which 𝑎 · 𝑎′ ≡ 1 (mod 𝑝)
holds) by applying the extended Euclidean algorithm:

2https://de.wikipedia.org/wiki/Inverse_Matrix#Gau%C3%9F-Jordan-Algorithmus
https://en.wikipedia.org/wiki/Gaussian_elimination#Finding_the_inverse_of_a_matrix

3

https://de.wikipedia.org/wiki/Inverse_Matrix#Gau%C3%9F-Jordan-Algorithmus
https://en.wikipedia.org/wiki/Gaussian_elimination#Finding_the_inverse_of_a_matrix

static long mInv(long a)
{
long r = p; long old_r = a;
long s = 0; long old_s = 1;
while (r != 0)
{
long q = old_r/r;
long r0 = r; r = old_r-q*r; old_r = r0;
long s0 = s; s = old_s-q*s; old_s = s0;

}
return old_s >= 0 ? old_s : old_s+p;

}

Please note that for computing multiple modular quotients 𝑎𝑖/𝑏, one may compute once the
modular inverse 𝑏−1 and then compute multiple modular products 𝑎𝑖 · 𝑏−1.

Sequential Program

Your first task is to implement a sequential program solving the problem for a randomly generated
matrix 𝐴 and 𝑝 = 982451653 (≈ 230).

You may construct a “straight-forward” version of the algorithm that aborts with a corresponding
message, if matrix 𝐴 is not regular. Since arithmetic is exact, any non-zero coefficient may serve as
a pivot element in the diagonalization (i.e., is not necessary to take the element with the maximum
absolute value).

Demonstrate the correctness of your program by inverting a random 4× 4 matrix for, e.g., 𝑝 = 11,
and giving the output of the program (system and solution). Benchmark the execution time of your
solution (the time for solving the system not including the initialization time) for randomly initialized
matrices with at least two different dimensions that let the program run at least 1 min and at least
3 min, respectively.

Please note that the input of the algorithm is 𝐴 and its output of 𝐵; it is the task of the algorithm
to convert 𝐴 into the intermediate form (𝐴|𝐼) and (𝐼 |𝐵) into 𝐵; the times for these conversions
therefore have to be attributed to the algorithm.

Parallel Program (Basic Version)

In iteration 𝑖 of the outermost loop, all coefficients of (𝐴|𝐼) in all rows and all columns 𝑗 ≥ 𝑖 have to
be processed; this can be done independently for each coefficient, i.e., in parallel. A simple strategy
to increase the task granularity is to utilize the parallelism just across rows: consequently modify
the sequential program (if necessary) such that the iterations of the loop that runs over matrix rows
can be performed independently of each other:

• C/C++: use OpenMP pragmas to ensure that the loop gets executed in parallel; do not forget
to mark “private” variables appropriately. Compile the program with options -O3 -openmp
-openmp-report 1. Experiment with different scheduling strategies respectively chunk
sizes to determine the one that gives best performance.

• Java: use the high-level Java concurrency API for creating a thread pool among which tasks
are scheduled each of which processes a block of 𝐵 rows of the matrix; experiment with
suitable values for the block size 𝐵 and report your experience (in particular whether 𝐵 = 1 is

4

already optimal). Please note that the pool is created only once and reused in every iteration
of the triangulation (you may use the method invokeAll3 which blocks until all tasks have
been processed).

Benchmark your program for 𝑃 = 1, 2, 4, 8, 16, 32 cores/threads (and potentially more).

Parallel Program (Advanced Version)

Most likely the basic version of the program will not scale well beyond 16 cores (1 blade on the UV
1000) due to the higher latency of memory access across blades. In particular, in every outermost
iteration of the algorithm, each matrix row may be accessed by a thread running on another node,
which leads to a transfer of the row to another blade in every iteration step. Therefore write another
version of the program that addresses this problem: every row is assigned to the same thread (pinned
to a node blade) across multiple iterations: if we have 𝑃 threads, thread 0 processes rows 0, 𝑃, 2𝑃, . . .,
thread 1 processes rows 1, 𝑃 + 1, 2𝑃 + 1, . . . and so on (generally rows are distributed to threads in
a “round-robin” fashion to ensure that the work load of a thread is not influenced by a particular
distribution of data in the matrix).

In Java, this may be achieved by explicitly creating 𝑃 threads that stay alive during the whole
computation. Each thread allocates (in the heap of the node on which it runs) the matrix rows which
it subsequently processes; after the allocation phase, the original main thread initializes the matrix
with the coefficients. Then the program runs in 𝑛 iterations where in every iteration each thread
processes the rows it is in charge of. For synchronizing all threads after every iteration, you may use
class CyclicBarrier4.

In OpenMP this may be achieved by using (like in Java) a matrix representation that stores in an
array the start addresses of each row and using repeated execution of omp parallel to let each
thread process a part of a matrix: in the first execution each thread allocates the memory of the rows
for which it is in charge, in every subsequent execution, it processes theses rows.

Benchmark the program in the same way as the original version.
Note: there is no guarantee that the advanced version of the program indeed scales better than the

basic version. However, the effort to achieve such an improvement and its evaluation will be judged.

3https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/
ExecutorService.html#invokeAll(java.util.Collection)

4https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/
CyclicBarrier.html

5

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.html#invokeAll(java.util.Collection)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.html#invokeAll(java.util.Collection)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/CyclicBarrier.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/CyclicBarrier.html

Alternative B: Bin Packing

The “bin packing” problem is as follows5: we are given a supply of bins of capacity bsize > 0.
Furthermore, we have 𝑘 > 0 kinds of items which are determined by vectors size : ℕ𝑘 → ℕ and
count : ℕ𝑘 → ℕ where, for every 𝑖 ∈ ℕ𝑘 , size[𝑖] > 0 is the size of every item of kind 𝑖 and
count[𝑖] > 0 is the number of items of that kind. We want to pack items into bins such that the
number of bins is minimized, i.e., we want to find a vector result : ℕrlen → (ℕ𝑘 → ℕ) with minimal
length rlen such that, for every kind 𝑖 ∈ ℕ𝑘 , we have count[𝑖] = ∑

𝑗∈ℕrlen result[𝑗] [𝑖] and, for every
𝑗 ∈ ℕrlen, we have bsize ≥ ∑

𝑖∈ℕ𝑘
result[𝑗] [𝑖].

For instance, given bsize = 6, 𝑘 = 3, size = [1, 2, 3], count = [3, 6, 1], the packing result =

[[1, 1, 1], [2, 2, 0], [0, 3, 0]] has size rlen = 3 (which is minimal).
The problem of deciding whether a collection of items can be packed into a certain number of

bins is NP-complete, thus it is unlikely that an algorithm exists that can compute exact solutions of
every instance of the bin packing problem with better than exponential complexity (however, there
exist fast approximation algorithms also exact algorithms that are often fast). In the following, we
will consider a “brute-force” algorithm that solves the problem.

We start by the following algorithm that only computes the size rlen of an optimal solution:

binpack(count):
if size(count) = 0 then return 0
rlen := infinity
for every bin that is admissible and maximal do
rlen0 := binpack(count-bin)
if rlen0 < rlen then rlen := rlen0

return 1+rlen

Here size(𝑐𝑜𝑢𝑛𝑡) denotes the total size of all items listed in count. A bin is admissible if
bin ≤ count and size(𝑏𝑖𝑛) ≤ bsize (bin ≤ count holds if we have, for every kind 𝑖, bin[𝑖] ≤ count[𝑖];
size(𝑏𝑖𝑛) is analogous to size(count)). Furthermore, bin is maximal if there is no admissible bin′
with bin < bin′ (i.e., bin ≤ bin′ and bin ≠ bin′). Finally, count − bin denotes the component-wise
subtraction of vectors count and bin.

In a nutshell, this algorithm packs into the next bin as many items as possible in all possible ways
and then solves the problem recursively for the remaining items; among all possibilities the one with
the minimum number of bins is selected. The process stops when there are no more items left.

We can also formulate this algorithm in a tail-recursive way as follows:

binpack(count, rlen0): // global variable rlen
if size(count) = 0 then
if rlen0 < rlen then rlen := rlen0
return

if rlen0+1 >= rlen then return;
for every bin that is admissible and maximal do
binpack(count-bin, rlen0+1)

This algorithm uses the global variable rlen, which represents the smallest number of bins deter-
mined so far; this variable is initialized as “infinity”. The algorithm receives an additional parameter
rlen0 which represents the number of bins required for the current packing. Initially called as

5In the following, we denote by ℕ𝑘 the set {0, . . . , 𝑘 − 1} of the 𝑘 natural numbers less than 𝑘 .

6

binpack(count,0), the algorithm recursively calls itself with rlen0 incremented by one. In the
base case, the algorithm tests whether rlen0 is smaller than rlen and, if this is the case, updates rlen
correspondingly. The recursion terminates prematurely if the value of rlen0 indicates that the value
of rlen cannot be improved by the current recursive branch.

This algorithm can be easily augmented to compute the actual packing:

binpack(count, rlen0, result0): // global variables rlen, result
if size(count) = 0 then
if rlen0 < rlen then { rlen := rlen0; result := result0 }
return

if rlen0+1 >= rlen then return;
for every bin that is admissible and maximal do
binpack(count-bin, rlen0+1, add(result0,bin))

This algorithm now also uses a global variable result that represents the best packing computed so
far and has an additional parameter result0 that represents the current partial packing which requires
rlen0 bins. Initially called as binpack(count,0,[]) with the empty list [] of bins, the algorithm
adds in every recursive call the chosen bin to the list. In the base case, if a new optimal packing is
found, both rlen and result are updated.

A problem that remains to be solved is how to determine in the loop every possible admissible
and maximal bin. In fact, all such bins are printed by the following algorithm:

binprint(count, bin, bfree, i):
if i = k then
if maximal(bin) then print bin
return

max := min(count[i],bfree/size[i])
if i < k-1 then
for c from 0 to max do
binprint(count[i<-count[i]-c], bin[i<-c], bfree-c*size[i], i+1)

else // i = k-1
binprint(count[i<-count[i]-max], bin[i<-max], bfree-max*size[i], i+1)

Called as binprint(count,empty,bsize,0) (where empty represents a new vector of length 𝑘

where all values are 0), the algorithm tail-recursively fills vector bin with all possible possible
admissible and maximal contents and prints them (in this code, 𝑎[𝑖 ← 𝑒] denotes a copy of 𝑎 that is
identical to 𝑎 except that at index 𝑖 it holds element 𝑒).

Since this algorithm is tail-recursive, it can be written in this more efficient iterative form:

binprint(count, bin, bfree, i):
loop
if i = k then
if maximal(bin) then print bin
return

max := min(count[i],bfree/size[i])
if i < k-1 then
for c from 1 to max do
binprint(count[i<-count[i]-c], bin[i<-c], bfree-c*size[i], i+1)

bin[i] := 0; // case c = 0 handled iteratively
else // i = k-1
count[i] := count[i]-max; bin[i] := max; bfree := bfree-max*size[i];

i := i+1

7

In every branch of this version of the algorithm, one recursive procedure call is replaced by an
update to the procedure parameters, which is followed another iteration of a loop; only in the case
𝑖 < 𝑘 − 1 we have max − 1 recursive procedure calls left.

However, we are not interested in printing the bins, we want to use them for the recursive calls
of the binpack procedure described above. Therefore we use the structure of binprint as a blue
print for the final version of binpack that combines the construction of a new bin with the packing
of the remaining items:

binpack(count, rlen0, result0, bin, bfree, i): // global variables rlen, result
loop
if size(count) = 0 then
if bfree < bsize then { rlen0 := rlen0+1; result0 := add(result0, bin) }
if rlen0 < rlen then { rlen := rlen0; result := result0 }
return

if rlen0+(if bfree < bsize then 1 else 0)) >= rlen then return
if i = k then
if not maximal(bin) then return
rlen0 := rlen0+1; result0 := add(result0,bin);
bin := empty; bfree := bsize, i := 0
continue

max = min(count[i],bfree/size[i])
if i < k-1 then
for c from 1 to max do
binpack(count[i<-count[i]-c], rlen0+1, copy(result0),

bin[i<-c], bfree-c*size[i], i+1)
bin[i] := 0 // case c = 0 handled iteratively

else // i = k-1
count[i] := count[i]-max; bin[i] := max; bfree := bfree-max*size[i];

i := i+1

This procedure is called as binprint(count,0,[],empty,bsize,0). Its core structure is a
loop, but one branch of the loop body may give rise to a number of recursive calls of the procedure
(admittedly the code is a bit complex, but the derivation given above should make it understandable).
This algorithm shall serve as the basis of a sequential and parallel implementation.

As an optimization, this algorithm is to be called only after already some non-optimal packing
has been constructed by some simple but fast algorithm. For instance, we may “greedily” scan the
list of items and either place the next item in the list into the current bin or, if the item does not fit
into the bin, close this bin and start a new one. In this way, we may initialize result and rlen before
calling the optimal algorithm which will then only consider packings of length less than rlen.

Sequential Program

Implement either in C/C++ or in Java (choose here the same language that you use in the parallel
solution) a sequential program that solves the problem for bins of size bsize and 𝑛 items distributed
among 𝑘 kinds.

For randomly assigining item numbers to kinds, you may split the interval [0, 𝑛] into 𝑘 subintervals
by generating 𝑘 −1 different random numbers in [1, 𝑛−1] and use the sizes of the subintervals as the
item numbers. For distributing the sizes of the items, you may choose 𝑘 different random numbers in

8

the interval [1, 1+ bsize/2] such that no too many bins are forced to hold just single items. However,
you may also apply other strategies for the distribution of item numbers and sizes.

It is a good idea to parameterize the program with the seed of the random number generator (such
that runs can be repeated for the same input, -1 may indicate to use the current time as the seed) and
the number of threads to be used for later parallel computation (0 may indicate sequential execution).
Please let the program check that indeed a correct packing has been constructed (all items are placed
in some bin and the content of a bin does not exceed the size of the bin). A possible program output
for the sequential algorithm might thus be:

BinPack 1737068196857 0 30 6 12
==============================
seed:1737068196857, threads:0, items:30, kinds:6,
number*size:[4*1,4*2,7*3,3*5,3*6,9*7], bin size:12
Greedy bin packing (0 ms): 15 bins.
[4,4,0,0,0,0],[0,0,4,0,0,0],[0,0,3,0,0,0],[0,0,0,2,0,0],[0,0,0,1,1,0],[0,0,0,0,2,0],
[0,0,0,0,0,1],[0,0,0,0,0,1],[0,0,0,0,0,1],[0,0,0,0,0,1],[0,0,0,0,0,1],[0,0,0,0,0,1],
[0,0,0,0,0,1],[0,0,0,0,0,1],[0,0,0,0,0,1]
The packing is correct.
Optimal bin packing (15210 ms, sequential computation): 11 bins.
[1,1,1,0,1,0],[2,0,1,0,0,1],[1,0,1,0,0,1],[0,1,1,0,0,1],[0,1,1,0,0,1],[0,1,1,0,0,1],
[0,0,1,0,0,1],[0,0,0,1,0,1],[0,0,0,1,0,1],[0,0,0,1,0,1],[0,0,0,0,2,0]
The packing is correct.

In contrast, the program output for the parallel algorithm (see below) might look as follows:

BinPack 1737068196857 4 30 6 12
==============================
seed:1737068196857, threads:4, items:30, kinds:6,
number*size:[4*1,4*2,7*3,3*5,3*6,9*7], bin size:12
Greedy bin packing (0 ms): 15 bins.
[4,4,0,0,0,0],[0,0,4,0,0,0],[0,0,3,0,0,0],[0,0,0,2,0,0],[0,0,0,1,1,0],[0,0,0,0,2,0],
[0,0,0,0,0,1],[0,0,0,0,0,1],[0,0,0,0,0,1],[0,0,0,0,0,1],[0,0,0,0,0,1],[0,0,0,0,0,1],
[0,0,0,0,0,1],[0,0,0,0,0,1],[0,0,0,0,0,1]
The packing is correct.
Optimal bin packing (5707 ms, parallel computation with 4 threads): 11 bins.
[1,2,0,0,0,1],[0,0,2,0,1,0],[0,0,0,1,0,1],[0,0,0,1,0,1],[0,0,0,1,0,1],[0,0,0,0,2,0],
[2,0,1,0,0,1],[1,0,1,0,0,1],[0,1,1,0,0,1],[0,1,1,0,0,1],[0,0,1,0,0,1]
The packing is correct.

The concrete input may significantly influence the runtime of the algorithm; thus benchmark the
program for (at least) two inputs of different sizes that let the sequential program run at least 1 min
and at least 3 min, respectively.

Parallel Program

Implement a shared memory version of the parallel algorithm in Java or in OpenMP C/C++. For
this, consider the following points:

• The main source of parallelism are the max − 1 recursive calls of binpack which can be
executed asynchronously in parallel (with each other and with the main procedure) such that
the search tree for an optimal packing is investigated in parallel. Please note, however, that

9

parallel executions of binpack have to be performed on copies of those array arguments that
are updated by these calls.

• The parallel program may (or may not) perform faster if the recursion tree is “cut off” at a certain
depth, i.e., recursive calls beyond that depth are executed sequentially. Please experiment with
some cut-off strategies and report your experience.

• The only point of synchronization among parallel tasks is the access to the global (shared)
variables rlen and result which must be appropriately protected by the application of
a suitable synchronization construct. However, it is possible that a frequent comparison
with variable rlen (in order to prematurely terminate the execution, see the algorithm)
becomes a bottleneck. Therefore it may be a good idea to perform such a comparison
without synchronization, either on a potentially outdated value of the variable (which may
lead to superfluous executions), or using the keyword volatile in the declaration of rlen
(which ensures without synchronization that the latest value of the variable is read); please
experiment with some variable access strategies and report your experience.
However, for actually updating rlen and result, the comparison has to be indeed performed
(by the use of a suitable synchronization construct) atomically together with the updates.

Below some suggestions are given how to implement the parallel solution in various parallel
programming frameworks.

Java Solution The program may be based on the Java concurrency framework, using the classes
ForkJoinTask and ForkJoinPool6. In order to recognize the termination of the parallel solution,
the body of the recursive function should keep track of the subtasks it has generated and, before
returning, wait for their termination. Rather than the Java concurrency framework, you may also use
virtual threads (introduced in Java 21) for the tasks.

Alternatively, one may explicitly create a set of worker threads that operate on a shared pool
(queue or stack) of task descriptions (access to this stack has to be propertly synchronized); each
task description consists of the arguments of a call to the recursive function. Rather than executing a
recursive call directly, a corresponding task description may be generated and placed into the pool.
The main program may recognize the termination of the algorithm by checking whether the pool is
empty and all threads are in a state where they wait for another task from the pool (which may be
indicated by a corresponding variable set by each thread).

It may be that one alternative is substantially faster than the other one, so implement both and
compare them in your benchmarks.

OMP C/C++ Solution The program may annotate each recursive function call that shall be ex-
ecuted in parallel by the annotation omp task to create a parallel task (since the functions do not
return a result, it is not necessary to use omp taskwait; a function automatically waits for the
termination of all tasks it has generated before returning). The main program has to embed the initial
function call into a section marked as omp parallel to create the parallel threads that process these
tasks; the function call itself must be annotated as omp single to let one thread start the execution
of the function.

6See https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html and the docu-
mentation of these classes

10

https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

Alternatively, one may use the annotation omp parallel to create a set of worker threads that
process a shared pool of task descriptions (see above explanation of the Java solution).

It may be that one alternative is substantially faster than the other one, so implement both and
compare them in your benchmarks.

Please note that (different from the Java solution) the C/C++ solution has to explicitly manage
heap-allocated memory, i.e., every array allocated on the heap must be eventually freed (since many
temporary arrays are created, the program may run out of memory otherwise). For instance, if
a recursive function receives a freshly allocated array as an argument for local use, this function
should free the array before return. To speedup execution, you also may implement your own memory
management scheme (but then make sure that it works correctly in a parallel execution context).

Benchmarks Benchmark the program for 𝑃 = 1, 2, 4, 8, 16, 32 cores/threads (potentially more).

11

