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We start with the following telescoping problem:

Given an expression f(k) that evaluates to a sequence.
Find an expression g(k) such that the telescoping equation holds:

f(k) = g(k + 1)− g(k) (1)

Suppose we find such an expression g(k). Then we proceed as follows.
Summing (1) over k from a to b (and assuming that no poles arise during
the evaluation) yields

b∑
k=a

f(k) = g(b+ 1)− g(a). (2)

Note: we could always choose

g(k) =

k−1∑
i=a

f(i) (3)

which would turn (2) to the trivial identity
∑b

k=a f(k) =
∑b

k=a f(k).
Thus we should refine our problem from above:

Find an expression g(k) with (1) where g(k) is simpler than the trivial
solution (3).
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Indefinite summation of polynomials

We start with one of the most simplest cases: the summand is a
polynomial, i.e., f(x) ∈ K[x].

The following questions arise:

1. What is the domain of expressions in which we search g(k)?

2. How can we calculate a solution g(k) in this solution domain?

As it turns out, the first question can be answered nicely: a solution g(x)
exists always in K[x]. For the second question, we will consider two
different tactics that are often used in summation packages.
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Tactic 1: the classical approach

Note that for indefinite integration of polynomials one can utilize the
following well known property: for any m ∈ N we have

Dxx
m = mxm−1

which implies ∫ b

a
xmdx =

xm+1

m+ 1

∣∣∣b
a
=

bm+1 − am+1

m+ 1
.

Thus by linearity we can integrate any polynomial by∫ b

a

d∑
m=0

cm xmdx =

d∑
m=0

cm

∫ b

a
xmdx =

d∑
m=0

cm(bm+1 − am+1)

m+ 1
.
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For indefinite summation of polynomials we can follow precisely the same
classical strategy.
Definition. For any sequence (expression) g(k) we define

∆g(k) := g(k + 1)− g(k).

Lemma
For m ∈ N we have

∆xm = mxm−1 .

Proof.
We have

∆xm = (x+ 1)m − xm

= (x+ 1)x(x− 1) . . . (x−m+ 2)− x(x− 1) . . . (x−m+ 1)

= ((x+ 1)− (x−m+ 1))x(x− 1) . . . (x−m+ 2)

= mxm−1.
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As a consequence we get

∆
xm+1

m+ 1
= xm, m ∈ N

and summing this equation over k from a to b yields

b∑
x=a

xm =
(b+ 1)m+1 − am+1

m+ 1
.

Note that this is nothing else than the continuous version for integration. In
particular, for given

f(x) =

d∑
m=0

cm xm ∈ K[x]

with d ∈ N it follows that

g(x) =

d∑
m=0

cmxm+1

m+ 1

is a telescoping solution. Furthermore,
b∑

x=a

f(x) =

d∑
m=0

cm

b∑
k=a

km =

d∑
m=0

cm((b+ 1)m+1 − am+1)

m+ 1
.
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The only problem is that in many cases one does not have a polynomial
given in the representation of falling factorials but in the standard form

d∑
m=0

c̄m xm ∈ K[x].

Luckily one can rewrite a polynomial written in the basis

1, x, x2, . . . , xd

to the representation written in the basis

x0 = 1, x1 = x, x2 = x(x− 1), . . . , xd = x(x− 1) . . . (x− d+ 1)

by using the formula

xm =
m∑
k=0

S(m, k)xk

where S(n, k) denotes the Stirling numbers of second kind. They can be
computed by

S(n, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n;

alternatively.
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Example. Consider the polynomial

f(x) = x4.

Using the formulas from above, we get

f(x) = x4 =

4∑
k=0

S(4, k)xk = 0x0 + 1x1 + 7x2 + 6x3 + 1x4.

Thus we get

g(x) =
1

2
x2 +

7

3
x3 +

3

2
x4 +

1

5
x5

=
1

30
(x− 1)x(2x− 1)(3x2 − 3x− 1).

such that
g(x+ 1)− g(x) = f(x)

holds. In particular we get
n∑

k=1

k4 =

n∑
k=1

f(k) = g(n+ 1)− g(1) =
1

30
n(n+ 1)(2n+ 1)(3n2 + 3n− 1).
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Tactic 2: linear algebra.

We use the following property: for f(x) ∈ K[x] there is a g(x) ∈ K[x]
with (1) where

deg(g) ≤ deg(f) + 1.

Thus setting d := deg(f) + 1 for given f ∈ K[x] the desired solution has
the form

g(x) =

d∑
m=0

gm xm

and we can determine the unknowns g0, . . . , gd ∈ K by linear algebra as
follows.
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Example. Take f(x) = x4 ∈ Q[x]. With d = deg(f) + 1 = 5 the ansatz

g(x) = g0 + g1x+ g2x
2 + g3x

3 + g4x
4 + g5x

5

for the unknowns g0, g1, g2, g3, g4, g5 ∈ Q is in place. This gives

x4 =∆g(x) = g(x+ 1)− g(x) = 0x5

+ 5g5x
4

+ (4g4 + 10g5)x
3

+ (3g3 + 6g4 + 10g5)x
2

+ (2g2 + 3g3 + 4g4 + 5g5)x

+ (g1 + g2 + g3 + g4 + g5)x
0.

By coefficient comparison this yields the linear system

[x4] 1 =5g5
[x3] 0 =4g4 + 10g5
[x2] 0 =3g3 + 6g4 + 10g5
[x1] 0 =2g2 + 3g3 + 4g4 + 5g5
[x0] 0 =g1 + g2 + g3 + g4 + g5

which is already in triangular form.
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Thus we can read off the solution

g5 =
1

5
, g4 = −

1

2
, g3 =

1

3
, g2 = 0, g1 = −

1

30
, g0 = c

with c ∈ Q. In particular, we can choose c = 0 and obtain

g(x) =
x5

5
− x4

2
+

x3

3
− x

30
=

1

30
(x− 1)x(2x− 1)

(
3x2 − 3x− 1

)
.

To this end, we continue as in the previous example and get the desired
result.
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More general summation objects for indefinite and definite
summation

Clearly, the first tactic is very elegant, but it works only for the special case
of polynomial summation. For the second tactic one has to work more (i.e.,
has to solve in addition a linear system), but it turns out to be more
general. More precisely, one can carry over these ideas to a rather general
setting that works not only for the polynomial ring Q[x] but in more general
rings called RΠΣ-difference rings that have been implemented within the
summation package Sigma. In the following all technical details are omitted
and we proceed with a concrete example.
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Example. We want to sum n∑
k=0

Hk.

In order to accomplish this task, we take

f(k) = Hk

and search for
g(k) ∈ Q(k)[Hk]

with
f(k) = g(k + 1)− g(k).

Here we can use a similar tactic as used in the case of polynomial
summation. Namely, summation theory tells us that any such solution g(k)
has the property

deg(g) ≤ deg(f) + 1 = 1 + 1 = 2.

As a consequence we can make the ansatz

g(k) = g0(k)H
0
k + g1(k)H

1
k + g2(k)H

2
k

with g0(k), g1(k), g2(k) ∈ Q(k).
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Using recursive algorithms and linear system solving (details are skipped
here) we find

g0(k) = −k
g1(k) = k

g2(k) = 0,

i.e.,
g(k) = −k + kHk + 0H2

k .

Hence summing the telescoping equation over k from 0 to n gives

n∑
k=0

Hk = g(n+ 1)− g(0) = (n+ 1)Hn+1 − (n+ 1) = −n+ (1 + n)Hn.
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The above machinery can be carried out within the summation package
Sigma. After loading it into Mathematica

In[1]:= << Sigma.m

Sigma - A summation package by Carsten Schneider © RISC-JKU

one can insert the above sum

In[2]:= mySum = SigmaSum[SigmaHNumber[k], {k, 0, 1}]

Out[2]=

n∑
k=0

Hk

and can apply the command

In[3]:= SigmaReduce[mySum]

Out[3]= −n+ (1+ n)Hn
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In general one can insert, e.g., a sum of the form
n∑

k=l

f(k)

with l ∈ N where f(k) itself is given in terms of indefinite nested sums
defined over hypergeometric products.

Definition
Let K be a field. A product

∏k
j=l f(j), l ∈ N, is called hypergeometric in

k over K if f(x) ∈ K(x) is a rational function where the numerator and
denominator of f(j) are nonzero for all j ∈ Z with j ≥ l. An expression in
terms indefinite of nested sums over hypergeometric products in k
over K is composed recursively by the three operations (+,−, ·) with
▶ elements from the rational function field K(k),

▶ hypergeometric products in k over K,

▶ and sums of the form
∑k

j=l f(j) with l ∈ N where f(j) is an
expression in terms of indefinite nested sums over hypergeometric
products in j over K; here it is assumed that the evaluation of f(j) for
all j ≥ l does not introduce any poles.
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In[4]:= mySum =

SigmaSum[SigmaPower[−1, k]SigmaBinomial[n, k]SigmaHNumber[k], {k, a,b}]

Out[4]=

b∑
k=a

(−1)k
(n
k

)
Hk

In[5]:= SigmaReduce[mySum]

Out[5]=
( (a− n)(−1+ a− n)

an2
+

(−1+ a− n)Ha

n

)
(−1)1+a

( n

−1+ a

)
+
(−b+ n

n2
+

(−b+ n)Hb

n

)
(−1)b

(n
b

)

In[6]:= mySum = SigmaSum[SigmaSum[SigmaBinomial[n, k], {k, 0, r}]2, {r, 0,b}]

Out[6]=

b∑
r=0

( r∑
k=0

(n
k

))2

In[7]:= SigmaReduce[mySum]

Out[7]= (−b+ n)
(n
b

) b∑
i1=0

( n
i1

)
+

1

2
(2+ 2b− n)

( b∑
i1=0

( n
i1

))2 − 1

2
n

b∑
i1=0

( n
i1

)2
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The ground field (throughout this talk): G = K(x)

▶ For any element f = p
q ∈ G with p, q ∈ K[x] where q ̸= 0 and p, q

being coprime we define

ev(f, k) =

{
0 if q(k) = 0
p(k)
q(k) if q(k) ̸= 0.

▶ We define L(f) to be the minimal value δ ∈ N such that q(k) ̸= 0
holds for all k ≥ δ; further,

Z(f) = max(L(1p), L(
1
q )) if f ̸= 0.
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The ground field (throughout this talk): G = K(x)
▶ For any element f = p

q ∈ G with p, q ∈ K[x] where q ̸= 0 and p, q
being coprime we define

ev(f, k) =

{
0 if q(k) = 0
p(k)
q(k) if q(k) ̸= 0.

▶ We define L(f) to be the minimal value δ ∈ N such that q(k) ̸= 0
holds for all k ≥ δ; further,

Z(f) = max(L(1p), L(
1
q )) if f ̸= 0.

Example: For

f =
p

q
=

x− 4

(x− 3)(x− 1)
we get

(ev(f, n))n≥0 = (−4
3 , 0, 2, 0, 0,

1
8 , . . . ) ∈ QN

For n ≥ L(f) = 4 no poles arise;

for n ≥ Z(f) = max(L(1p), L(
1
q )) = max(4, 5) = 5 no zeroes arise.
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The ground field (throughout this talk): G = K(x)
▶ For any element f = p

q ∈ G with p, q ∈ K[x] where q ̸= 0 and p, q
being coprime we define

ev(f, k) =

{
0 if q(k) = 0
p(k)
q(k) if q(k) ̸= 0.

▶ We define L(f) to be the minimal value δ ∈ N such that q(k) ̸= 0
holds for all k ≥ δ; further,

Z(f) = max(L(1p), L(
1
q )) if f ̸= 0.

▶ We define
R = {r ∈ K \ {1} | r is a root of unity}

with the function ord : R → Z≥1 where

ord(r) = min{n ∈ Z≥1 | rn = 1}.
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G −→ SumProd(G) (nested sums over hypergeometric products)

Let#∧ , ⊕, ⊙, Sum, Prod and RPow be operations with the signatures

#∧ : SumProd(G)× Z → SumProd(G)
⊕ : SumProd(G)× SumProd(G) → SumProd(G)
⊙ : SumProd(G)× SumProd(G) → SumProd(G)
Sum : N× SumProd(G) → SumProd(G)
Prod : N× SumProd(G) → SumProd(G)
RPow : R → SumProd(G).

Prod∗(G)= the smallest set that contains 1 with the following properties:

1. If r ∈ R then RPow(r) ∈ Prod∗(G).

2. If f ∈ G∗ and l ∈ N with l ≥ Z(f) then Prod(l, f) ∈ Prod∗(G).
3. If p, q ∈ Prod∗(G) then p⊙ q ∈ Prod∗(G).
4. If p ∈ Prod∗(G) and z ∈ Z \ {0} then p#∧z ∈ Prod∗(G).
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Example: In G = Q(x) we get

P = (Prod(1, x)︸ ︷︷ ︸
∈Π(G)

#∧(−2))⊙ RPow(−1)︸ ︷︷ ︸
Π(G)

∈ Prod∗(G).
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G −→ SumProd(G) (nested sums over hypergeometric products)

SumProd(G) = the smallest set containing G ∪ Prod∗(G) with:

1. For all f, g ∈ SumProd(G) we have f ⊕ g ∈ SumProd(G).

2. For all f, g ∈ SumProd(G) we have f ⊙ g ∈ SumProd(G).
3. For all f ∈ SumProd(G) and k ∈ Z≥1 we have f#∧k ∈ SumProd(G).
4. For all f ∈ SumProd(G) and l ∈ N we have Sum(l, f) ∈ SumProd(G).
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4. For all f ∈ SumProd(G) and l ∈ N we have Sum(l, f) ∈ SumProd(G).
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Furthermore, the set of nested sums over hypergeometric products is
given by

Σ(G) = {Sum(l, f) | l ∈ N and f ∈ SumProd(G)}
and the set of nested sums and hypergeometric products is given by

ΣΠ(G) = Σ(G) ∪Π(G).
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3. For all f ∈ SumProd(G) and k ∈ Z≥1 we have f#∧k ∈ SumProd(G).
4. For all f ∈ SumProd(G) and l ∈ N we have Sum(l, f) ∈ SumProd(G).

Example

With G = K(x) we get, e.g., the following expressions:

E1 = Sum(1,Prod(1, x)) ∈ Σ(G) ⊂ SumProd(G),

E2 = Sum(1, 1
x+1 ⊙ Sum(1, 1

x3 )⊙ Sum(1, 1x)) ∈ Σ(G) ⊂ SumProd(G),

E3 = (E1 ⊕ E2)⊙ E1 ∈ SumProd(G).
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ev : G× N→ K −→ ev : SumProd(G)× N→ K

1. For f, g ∈ SumProd(G), k ∈ Z \ {0} (k > 0 if f /∈ Prod∗(G)) we set

ev(f#∧k, n) := ev(f, n)k,

ev(f ⊕ g, n) := ev(f, n) + ev(g, n),

ev(f ⊙ g, n) := ev(f, n) ev(g, n);

2. for r ∈ R and Sum(l, f),Prod(λ, g) ∈ SumProd(G) we define

ev(RPow(r), n) :=
n∏

i=1

r = rn,

ev(Sum(l, f), n) :=
n∑
i=l

ev(f, i),

ev(Prod(λ, g), n) :=
n∏

i=λ

ev(g, i) =
n∏

i=λ

g(i).

Note: Π(G) defines all hypergeometric products (which
evaluate to sequences with non-zero entries).
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ev applied to f ∈ SumProd(G) represents a sequence.
f can be considered as a simple program and ev(f, n) with n ∈ N executes
it (like an interpreter/compiler) yielding the nth entry of the represented
sequence.

Definition
For F ∈ SumProd(G) and n ∈ N we write F (n) := ev(F, n).

Example

For Ei ∈ SumProd(K(x)) with i = 1, 2, 3 we get

E1(n) = ev(E1, n) = ev(Sum(1,Prod(1, x)), n) =
n∑

k=1

k∏
i=1

i =
n∑

k=1

k!,
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E2(n) = ev(Sum(1, 1
x+1 ⊙ Sum(1, 1

x3 )⊙ Sum(1, 1x)), n)

=

n∑
k=1

1
1+k

( k∑
i=1

1
i3

) k∑
i=1

1
i
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E3(n) = (E1(n) + E2(n))E1(n)
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General picture:
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Definition
An expression A ∈ SumProd(G) is in reduced representation if

A = (f1 ⊙ P1)⊕ (f2 ⊙ P2)⊕ · · · ⊕ (fr ⊙ Pr) (4)

with fi ∈ G∗ and

Pi = (ai,1
#∧zi,1)⊙ (ai,2

#∧zi,2)⊙ · · · ⊙ (ai,ni
#∧zi,ni)
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An expression A ∈ SumProd(G) is in reduced representation if

A = (f1 ⊙ P1)⊕ (f2 ⊙ P2)⊕ · · · ⊕ (fr ⊙ Pr) (4)

with fi ∈ G∗ and

Pi = (ai,1
#∧zi,1)⊙ (ai,2

#∧zi,2)⊙ · · · ⊙ (ai,ni
#∧zi,ni)

for 1 ≤ i ≤ r with one of the three choices

▶ ai,j = Sum(li,j , fi,j) with li,j ∈ N, fi,j ∈ SumProd(G) and zi,j ∈ Z≥1,

▶ ai,j = Prod(li,j , fi,j) with li,j ∈ N, fi,j ∈ Prod∗(G) and zi,j ∈ Z \ {0},
▶ ai,j = RPow(fi,j) with fi,j ∈ R and 1 ≤ zi,j < ord(ri,j)

and such that the following two properties hold:

1. for each 1 ≤ i ≤ r and 1 ≤ j < j′ < ni we have ai,j ̸= ai,j′ ;

2. for each 1 ≤ i < i′ ≤ r with ni = nj there does not exist a σ ∈ Sni

with Pi′ = (ai,σ(1)
#∧zi,σ(1))⊙ (ai,σ(2)

#∧zi,σ(2))⊙ · · · ⊙ (ai,σ(ni)
#∧zi,σ(ni)).



Part 2: Modeling of sequences with a term algebra (user interface) 26

Definition
An expression A ∈ SumProd(G) is in reduced representation if

A = (f1 ⊙ P1)⊕ (f2 ⊙ P2)⊕ · · · ⊕ (fr ⊙ Pr) (4)

with fi ∈ G∗ and

Pi = (ai,1
#∧zi,1)⊙ (ai,2

#∧zi,2)⊙ · · · ⊙ (ai,ni
#∧zi,ni)

for 1 ≤ i ≤ r with one of the three choices

▶ ai,j = Sum(li,j , fi,j) with li,j ∈ N, fi,j ∈ SumProd(G) and zi,j ∈ Z≥1,

▶ ai,j = Prod(li,j , fi,j) with li,j ∈ N, fi,j ∈ Prod∗(G) and zi,j ∈ Z \ {0},
▶ ai,j = RPow(fi,j) with fi,j ∈ R and 1 ≤ zi,j < ord(ri,j)

and such that the following two properties hold:

1. for each 1 ≤ i ≤ r and 1 ≤ j < j′ < ni we have ai,j ̸= ai,j′ ;

2. for each 1 ≤ i < i′ ≤ r with ni = nj there does not exist a σ ∈ Sni

with Pi′ = (ai,σ(1)
#∧zi,σ(1))⊙ (ai,σ(2)

#∧zi,σ(2))⊙ · · · ⊙ (ai,σ(ni)
#∧zi,σ(ni)).



Part 2: Modeling of sequences with a term algebra (user interface) 26

Definition
An expression A ∈ SumProd(G) is in reduced representation if

A = (f1 ⊙ P1)⊕ (f2 ⊙ P2)⊕ · · · ⊕ (fr ⊙ Pr) (4)

with fi ∈ G∗

H ∈ SumProd(G) is in sum-product reduced representation if

▶ it is in reduced representation;
▶ for each Sum(l, A) and Prod(l, A) that occur recursively in H the

following holds:
▶ A is in reduced representation as given in (4);
▶ l ≥ max(L(f1), . . . , L(fr)) (i.e., no poles occur);
▶ the lower bound l is greater than or equal to the lower bounds of the

sums and products inside of A.
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sums and products inside of A.

Example

E3 = (E1 ⊕ E2)⊙ E1 is not in reduced representation

Sum(0, 1x) is not in sum-product reduced represenation

Sum(1,Sum(2, 1x)) is not in sum-product reduced represenation
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Definition
An expression A ∈ SumProd(G) is in reduced representation if

A = (f1 ⊙ P1)⊕ (f2 ⊙ P2)⊕ · · · ⊕ (fr ⊙ Pr) (4)

with fi ∈ G∗

H ∈ SumProd(G) is in sum-product reduced representation if

▶ it is in reduced representation;
▶ for each Sum(l, A) and Prod(l, A) that occur recursively in H the

following holds:
▶ A is in reduced representation as given in (4);
▶ l ≥ max(L(f1), . . . , L(fr)) (i.e., no poles occur);
▶ the lower bound l is greater than or equal to the lower bounds of the

sums and products inside of A.

Lemma
For any A ∈ SumProd(G), there is a B ∈ SumProd(G) in sum-product
reduced representation and λ ∈ N such that

A(n) = B(n) ∀n ≥ λ.
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Key-Definitions: Let W ⊆ ΣΠ(G).

SumProd(W,G) =the set of elements from SumProd(G) which
are in reduced representation and the arising
sums/products are taken from W .

▶ W is called shift-closed over G if for any A ∈ SumProd(W,G), s ∈ Z
there are B ∈ SumProd(W,G) and δ ∈ N such that

A(n+ s) = B(n) ∀n ≥ δ.

▶ W is called shift-stable over G if for any product or sum in W the
multiplicand or summand is built by sums and products from W .

▶ W is called canonical reduced over G if for any
A,B ∈ SumProd(W,G) with

A(n) = B(n) ∀n ≥ δ

for some δ ∈ N the following holds: A and B are the same up to
permutations of the operands in ⊕ and ⊙.
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Example

W = {Sum(1,Sum(1, 1x),
1
x)} is neither shift-closed nor shift-stable;

W = {Sum(1, 1x),Sum(1,Sum(1, 1x),
1
x)} is shift-closed and shift-stable;

W is shift-stable
⇒
⇍ W is shift-closed

▶ W is called canonical reduced over G if for any
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permutations of the operands in ⊕ and ⊙.



Part 2: Modeling of sequences with a term algebra (user interface) 27

Key-Definitions: Let W ⊆ ΣΠ(G).

SumProd(W,G) =the set of elements from SumProd(G) which
are in reduced representation and the arising
sums/products are taken from W .

▶ W is called shift-closed over G if for any A ∈ SumProd(W,G), s ∈ Z
there are B ∈ SumProd(W,G) and δ ∈ N such that

A(n+ s) = B(n) ∀n ≥ δ.

▶ W is called shift-stable over G if for any product or sum in W the
multiplicand or summand is built by sums and products from W .

Example

W = {Sum(1,Sum(1, 1x),
1
x)} is neither shift-closed nor shift-stable;

W = {Sum(1, 1x),Sum(1,Sum(1, 1x),
1
x)} is shift-closed and shift-stable;

W is shift-stable
⇒
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Definition
W ⊆ ΣΠ(G) is called σ-reduced over G if

1. the elements in W are in sum-product reduced form,

2. W is shift-stable (and thus shift-closed) and

3. W is canonical reduced.

In particular, A ∈ SumProd(W,G) is called σ-reduced (w.r.t. W ) if W is
σ-reduced over G.

Problem SigmaReduce: Compute a σ-reduced representation

Given: A1, . . . , Au ∈ SumProd(G) with G = K(x).
Find: a σ-reduced set W = {T1, . . . , Te} ⊂ ΣΠ(G),

B1 . . . , Bu ∈ SumProd(W,G) and δ1, . . . , δu ∈ N
such that for all 1 ≤ i ≤ r we get

Ai(n) = Bi(n) n ≥ δi.
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σ-reduced over G.

Problem SigmaReduce: Compute a σ-reduced representation

Given: A1, . . . , Au ∈ SumProd(G) with G = K(x).
Find: a σ-reduced set W = {T1, . . . , Te} ⊂ ΣΠ(G),

B1 . . . , Bu ∈ SumProd(W,G) and δ1, . . . , δu ∈ N
such that for all 1 ≤ i ≤ r we get

Ai(n) = Bi(n) n ≥ δi.
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• Canonical representation in term algebras

A1

��

A2

in SumProd(G)

B1 σ-reduced

B2

∀n ≥ δ ev(A1, n) = ev(B1, n)

= ev(A2, n) = ev(B2, n)

⇕ canonical simplifier

B1 = B2
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General picture:

Part 1: Symbolic summation (a short introduction)

Part 2: Modeling of sequences with a term algebra (user interface)

Part 3: Modeling of sequences in difference rings (computer algebra)

Part 4: Construction of appropriate difference rings (advanced CA)

Part 5: Applications
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Represent H = Sum(1, 1x) ∈ SumProd(G) with

H(n) = Hn =

n∑
k=1

1

k
.

1. a formal ring
2. an evaluation function
3. a ring automorphism

⇕
τ(σ(s)) = ⟨1, 1 + 1

2 , 1 +
1
2 + 1

3 , . . . ⟩ = S (⟨0, 1, 1 + 1
2 , . . . ⟩) = S(τ(s))

τ is an injective difference ring homomorphism:

(K(x)[s], σ)
τ≃ (τ(Q(x))︸ ︷︷ ︸

rat. seq.

[⟨Hn⟩n≥0], S) ≤ (KN/ ∼, S)
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Summary: we rephrase H ∈ SumProd(G) as element h in a formal
difference ring. More precisely, we will design

▶ a ring A with A ⊇ G ⊇ K in which H can be represented by h ∈ A;
▶ an evaluation function ev : A× N→ K such that H(n) = ev(h, n)

holds for sufficiently large n ∈ N;
▶ a ring automorphism σ : A→ A which models H(n+ 1) with σ(h).
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A hypergeometric APS-extension of (K(x), σ) is

▶ a ring

A := K(x)

[p1, p
−1
1 ][p2, p

−1
2 ] . . . [pe, p

−1
e ][z][s1][s2][s3] . . .

▶ with an automorphism where σ(c) = c for all c ∈ K and where

σ(x) = x+ 1

products σ(p2) = a2p2 a2 ∈ K(x)∗

...
σ(pe) = aepe ae ∈ K(x)∗

σ(s2) = s2 + f2 f2 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z][s1]

σ(s3) = s3 + f3 f3 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z][s1][s2]

...

such that constσE = K
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Definition (Evaluation function)

Take (A, σ) with a subfield K of A with σ|K = id.

1. ev : A× N→ K is called evaluation function for (A, σ) if for all
f, g ∈ A, c ∈ K and l ∈ Z there exists a λ ∈ N with

∀n ≥ λ : ev(c, n) = c, (5)

∀n ≥ λ : ev(f + g, n) = ev(f, n) + ev(g, n), (6)

∀n ≥ λ : ev(f g, n) = ev(f, n) ev(g, n), (7)

∀n ≥ λ : ev(σl(f), n) = ev(f, n+ l). (8)

2. L : A→ N is called o-function if for any f, g ∈ A with
λ = max(L(f), L(g)) the properties (6) and (7) hold and for any
f ∈ A and l ∈ Z with λ = L(f) + max(0,−l) property (8) holds.

Let F ∈ SumProd(G), (A, σ) be a DR containing G and equipped with an
evaluation function ev : A× N→ K. We say that f ∈ A models F if
ev(f, n) = F (n) holds for all n ≥ λ for some λ ∈ N.
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Connection between SumProd(G) and hypergeometric APS-extension

• Observation 1: Given {T1, . . . , Te} ⊆ ΣΠ(G), one can construct a
hypergeometric APS-extension (E, σ) of (G, σ) with ev and L such that
there are a1, . . . , ae ∈ E and δ1, . . . , δe with ev(ai, n) = Ti(n).

• Observation 2:

(E, σ) with E = G⟨t1⟩ . . . ⟨te⟩ a hypergeometric APS-extension of (G, σ)
ev : E× N→ K, L : E→ Ny ∀n ≥ L(ti) :

ev(ti, n) = Ti(n) ∈ ΣΠ(G)

W = {T1, . . . , Te} ⊆ ΣΠ(G) is sum-product reduced and
shift stable: sums/products in Ti are from {T1, . . . , Ti−1}.
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0 ̸= F ∈ SumProd({T1, . . . , Te},G) with F (n) = ev(f, n) for all n ≥ L(f).
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For f ∈ E we also write expr(f) = F for this particular F .
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Example

For f = x+ x+1
x s4 ∈ Q(x)[s] we obtain

expr(f) = F = x⊕ (x+1
x ⊙ (Sum(1, 1x)

#∧4) ∈ Sum(Q(x)))

with F (n) = ev(f, n) for all n ≥ 1.
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Difference ring theory in action

Let (E, σ) be a hypergeometric APS-extension of (G, σ) with
ev : E× N→ K and let τ : E→ KN/ ∼ be the K-homomorphism given by

τ(f) = (ev(f, n))n≥0.

Lemma
Let W = {T1, . . . , Te} ∈ ΣΠ(G) with Ti = expr(ti). Then:

W is canonical reduced ⇔ τ is injective.

Using difference ring theory we get the following crucial property:

Theorem

τ is injective ⇔ constσE = K.
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Example

For our difference field G = K(x) with σ(x) = x+ 1 and constσK = K we
have constσK(x) = K.

Definition
A hypergeometric APS-extension (E, σ) of (G, σ) is called
hypergeometric RΠΣ-extension if

constσE = K.

Theorem
Let W = {T1, . . . , Te} ⊂ ΣΠ(G) be in sum-product reduced representation
and shift-stable, i.e., for each 1 ≤ i ≤ e the arising sums and products in Ti

are contained in {T1, . . . , Ti−1}. Then the following is equivalent:

1. There is a hypergeometric RΠΣ-extension (E, σ) of (G, σ) with
E = G⟨t1⟩ . . . ⟨te⟩ equipped with an evaluation function ev with
Ti = expr(ti) ∈ ΣΠ(G) for 1 ≤ i ≤ e.

2. W is σ-reduced over G.
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This yields a strategy (actually the only strategy for shift-stable sets).

A Strategy to solve Problem SigmaReduce

Given: A1, . . . , Au ∈ SumProd(G) with G = K(x).
Find: a σ-reduced set W = {T1, . . . , Te} ⊂ ΣΠ(G) with B1 . . . , Bu ∈

SumProd(W,G) and δ1, . . . , δu ∈ N such that Ai(n) = Bi(n)
holds for all n ≥ δi and 1 ≤ i ≤ r.

1. Construct RΠΣ-extension (E, σ) of (G, σ) with E = G⟨t1⟩ . . . ⟨te⟩
equipped with ev : E× N→ K such that we get a1, . . . , au ∈ E and
δ1, . . . , δu ∈ N with

Ai(n) = ev(ai, n) ∀n ≥ δi. (12)

2. Set W = {T1, . . . , Te} with Ti := expr(ti) ∈ ΣΠ(G) for 1 ≤ i ≤ e.

3. Set Bi := expr(ai) ∈ SumProd(W,G) for 1 ≤ i ≤ u.

4. Return W , (B1, . . . , Bu) and (δ1, . . . , δu).
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General picture:
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General picture:

Part 1: Symbolic summation (a short introduction)

Part 2: Modeling of sequences with a term algebra (user interface)

Part 3: Modeling of sequences in difference rings (computer algebra)

Part 4: Construction of appropriate difference rings (advanced CA)

Part 5: Applications
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A hypergeometric APS-extension of (K(x), σ) is
▶ a ring

A := K(x)[p1, p
−1
1 ][p2, p

−1
2 ] . . . [pe, p

−1
e ][z][s1][s2][s3] . . .

▶ with an automorphism where σ(c) = c for all c ∈ K and where

σ(x) = x+ 1

hypergeometric ↔ σ(p1) = a1 p1 a1 ∈ K(x)∗

products σ(p2) = a2p2 a2 ∈ K(x)∗
...

σ(pe) = aepe ae ∈ K(x)∗

γ is a primitive λth
root of unity

γk ↔ σ(z) = γ z zλ = 1

(nested) sum ↔ σ(s1) = s1 + f1 f1 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z]

σ(s2) = s2 + f2 f2 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z][s1]

σ(s3) = s3 + f3 f3 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z][s1][s2]

...

such that constσE = K
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σ(x) = x+ 1

hypergeometric ↔ σ(p1) = a1 p1 a1 ∈ K(x)∗

products σ(p2) = a2p2 a2 ∈ K(x)∗
...

σ(pe) = aepe ae ∈ K(x)∗

γ is a primitive λth
root of unity

γk ↔ σ(z) = γ z zλ = 1

(nested) sum ↔ σ(s1) = s1 + f1 f1 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z]

σ(s2) = s2 + f2 f2 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z][s1]

σ(s3) = s3 + f3 f3 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z][s1][s2]

...

such that constσE = K
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Represent sums (extension of Karr’s result, 1981)

▶ Let (A, σ) be a difference ring with constant set

constσA := {k ∈ A|σ(k) = k}.

Note 1: constσA is a ring that contains Q

Note 2: We always take care that constσA is a field

▶ Adjoin a new variable t to A (i.e., A[t] is a polynomial ring).

▶ Extend the shift operator s.t.

σ(t) = t+ f for some f ∈ A.
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Such a difference ring extension (A[t], σ) of (A, σ) is called Σ∗-extension
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A hypergeometric RΠΣ-extension of (K(x), σ) is
▶ a ring

A := K(x)[p1, p
−1
1 ][p2, p

−1
2 ] . . . [pe, p

−1
e ][z][s1][s2][s3] . . .

▶ with an automorphism where σ(c) = c for all c ∈ K and where

σ(x) = x+ 1

hypergeometric ↔ σ(p1) = a1 p1 a1 ∈ K(x)∗

products σ(p2) = a2p2 a2 ∈ K(x)∗
...

σ(pe) = aepe ae ∈ K(x)∗

γ is a primitive λth
root of unity

γk ↔ σ(z) = γ z zλ = 1

(nested) sum ↔ σ(s1) = s1 + f1 f1 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z]

σ(s2) = s2 + f2 f2 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z][s1]

σ(s3) = s3 + f3 f3 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z][s1][s2]

...

such that constσE = K
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Represent products (extension of Karr’s result, 1981)

▶ Let (A, σ) be a difference ring with constant field

constσA := {k ∈ A|σ(k) = k}.

▶ Take the ring of Laurent polynomials A[t, 1t ].
▶ Extend the shift operator s.t.

σ(t) = a t for some a ∈ A∗.
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Such a difference ring extension (A[t, 1t ], σ) of (A, σ) is called Π-extension
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The hypergeometric case

▶ Take the difference field (K(x), σ) with σ|K = id and σ(x) = x+ 1.

▶ Let α1, . . . , αr ∈ K(x)∗

▶ Then there is a difference ring

E

= K(x) [t1, t
−1
1 ] . . . [te, t

−1
e ]︸ ︷︷ ︸

tower of Π-ext.

[z]︸︷︷︸
(−1)k or γk

with
▶ σ(ti)

ti
∈ K(x)∗ for 1 ≤ i ≤ e

▶ σ(z) = γ z and zλ = 1 for some primitive λth root of unity γ ∈ K∗

▶ constσE = K

such that for 1 ≤ i ≤ r there are gi ∈ E∗ with

σ(gi) = αi gi

Note: There are similar results for the q-rational, multi-basic and mixed case
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A hypergeometric RΠΣ-extension of (K(x), σ) is
▶ a ring

A := K(x)[p1, p
−1
1 ][p2, p

−1
2 ] . . . [pe, p

−1
e ][z][s1][s2][s3] . . .

▶ with an automorphism where σ(c) = c for all c ∈ K and where

σ(x) = x+ 1

hypergeometric ↔ σ(p1) = a1 p1 a1 ∈ K(x)∗

products σ(p2) = a2p2 a2 ∈ K(x)∗
...

σ(pe) = aepe ae ∈ K(x)∗

γ is a primitive λth
root of unity

γk ↔ σ(z) = γ z zλ = 1

(nested) sum ↔ σ(s1) = s1 + f1 f1 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z]

σ(s2) = s2 + f2 f2 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z][s1]

σ(s3) = s3 + f3 f3 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z][s1][s2]

...

such that constσE = K
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This yields a strategy (actually the only strategy for shift-stable sets).

A Strategy to solve Problem SigmaReduce

Given: A1, . . . , Au ∈ SumProd(G) with G = K(x).
Find: a σ-reduced set W = {T1, . . . , Te} ⊂ ΣΠ(G) with B1 . . . , Bu ∈

SumProd(W,G) and δ1, . . . , δu ∈ N such that Ai(n) = Bi(n)
holds for all n ≥ δi and 1 ≤ i ≤ r.

1. Construct RΠΣ-extension (E, σ) of (G, σ) with E = G⟨t1⟩ . . . ⟨te⟩
equipped with ev : E× N→ K such that we get a1, . . . , au ∈ E and
δ1, . . . , δu ∈ N with

Ai(n) = ev(ai, n) ∀n ≥ δi. (12)

2. Set W = {T1, . . . , Te} with Ti := expr(ti) ∈ ΣΠ(G) for 1 ≤ i ≤ e.

3. Set Bi := expr(ai) ∈ SumProd(W,G) for 1 ≤ i ≤ u.

4. Return W , (B1, . . . , Bu) and (δ1, . . . , δu).
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Telescoping

GIVEN f(k) = S1(k).

FIND g(k):

f(k) = g(k + 1)− g(k)

for all 1 ≤ k ≤ n and n ≥ 0.
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Telescoping

GIVEN f(k) = S1(k).

FIND g(k):

f(k) = g(k + 1)− g(k)

for all 1 ≤ k ≤ n and n ≥ 0.

Sigma computes
g(k) = (S1(k)− 1)k.
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Telescoping

GIVEN f(k) = S1(k).

FIND g(k):

f(k) = g(k + 1)− g(k)

for all 1 ≤ k ≤ n and n ≥ 0.

Summing this equation over k from 1 to n gives

n∑
k=1

S1(k) = g(n+ 1)− g(1)

=(S1(n+ 1)− 1)(n+ 1).
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Telescoping in the given difference ring

FIND a closed form for
n∑

k=1

S1(k).

A difference ring for the summand

Consider a ring
A

:= Q(x)[h]

with the automorphism σ : A→ A defined by

σ(c) = c ∀c ∈ Q,

σ(x) = x+ 1, S k = k + 1,

σ(h) = h+
1

x+ 1
, S S1(k) = S1(k) +

1

k + 1
.
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Telescoping in the given difference ring

FIND g ∈ A:
σ(g)− g = h.

We compute
g = (h− 1)x ∈ A.

This gives

g(k + 1)− g(k) = S1(k)

with
g(k) = (S1(k)− 1)k.

Hence,

(S1(n+ 1)− 1)(n+ 1) =
n∑

k=1

S1(k).
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FIND g ∈ Q(x)[h]:
σ(g)− g = h.

Degree bound: COMPUTE b ≥ 0:

∀g ∈ Q(x)[h] σ(g)− g = h ⇒ deg(g) ≤ b.

b = 2

Polynomial Solution: FIND

g = g2 h
2 + g1 h+ g0 ∈ Q(x)[h].
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x+1

g0 = −x
d = 0
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1

x+ 1

g=hx-x
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coeff. comp.
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ANSATZ g = g2 h
2 + g1 h+ g0 ∈ Q(x)[h]

[
σ(g2)

(
h+ 1

x+1

)2
+ σ(g1h+ g0)

]
−
[
g2 h

2 + g1h+ g0
]
= h coeff. comp.

%%

σ(g2)− g2 = 0

g2 = c ∈ Q

yyσ(g1 h+ g0)− (g1 h+ g0) = h− c
[2h(x+1)+1

(x+1)2

]
coeff. comp.
%%

σ(g1)− g1 = 1− c 2
x+1

c = 0,
g1 = x+ d
d ∈ Q

yyg0 = −x
d = 0

← σ(g0)− g0 = −1− d
1

x+ 1
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Telescoping in the given difference ring

FIND g ∈ A:
σ(g)− g = h.

We compute
g = (h− 1)x ∈ A.

This gives

g(k + 1)− g(k) = S1(k)

with
g(k) = (S1(k)− 1)k.

Hence,

(S1(n+ 1)− 1)(n+ 1) =

n∑
k=1

S1(k).



Part 4: Construction of appropriate difference rings (advanced CA) 53

Remarks. All results can be generalized to the following setting:

▶ the mixed multibasic hypergeometric case:
G := K(x, x1, . . . , xv) with K = K(q1, . . . , qv) For f = p

q ∈ G with
p, q ∈ K[x, x1, . . . , xv] where q ̸= 0 and p, q being coprime we define

ev(f, k) =

0 if q(k, qk1 , . . . , q
k
v ) = 0

p(k,qk1 ,...,q
k
v )

q(k,qk1 ,...,q
k
v )

if q(k, qk1 , . . . , q
k
v ) ̸= 0.

▶ simple products: Prod∗(G) is the smallest set that contains 1 with:

1. If r ∈ R then RPow(r) ∈ Prod∗(G).

2. If

p ∈ Prod∗(G),

f ∈ G∗, l ∈ N with l ≥ Z(f) then Prod(l,f

⊙p

) ∈ Prod∗(G).

3. If p, q ∈ Prod∗(G) then p⊙ q ∈ Prod∗(G).

4. If p ∈ Prod∗(G) and z ∈ Z \ {0} then p#∧z ∈ Prod∗(G).

For further details see
Term Algebras, Canonical Representations and Difference Ring Theory for Symbolic Summation. To appear in:
Anti-Differentiation and the Calculation of Feynman Amplitudes, J. Blümlein and C. Schneider (ed.),
Texts and Monographs in Symbolic Computuation, 2021. Springer, arXiv:2102.01471 [cs.SC]



Part 4: Construction of appropriate difference rings (advanced CA) 53

Remarks. All results can be generalized to the following setting:

▶ the mixed multibasic hypergeometric case:
G := K(x, x1, . . . , xv) with K = K(q1, . . . , qv) For f = p

q ∈ G with
p, q ∈ K[x, x1, . . . , xv] where q ̸= 0 and p, q being coprime we define

ev(f, k) =

0 if q(k, qk1 , . . . , q
k
v ) = 0

p(k,qk1 ,...,q
k
v )

q(k,qk1 ,...,q
k
v )

if q(k, qk1 , . . . , q
k
v ) ̸= 0.

▶ simple products: Prod∗(G) is the smallest set that contains 1 with:

1. If r ∈ R then RPow(r) ∈ Prod∗(G).

2. If

p ∈ Prod∗(G),

f ∈ G∗, l ∈ N with l ≥ Z(f) then Prod(l,f

⊙p

) ∈ Prod∗(G).

3. If p, q ∈ Prod∗(G) then p⊙ q ∈ Prod∗(G).

4. If p ∈ Prod∗(G) and z ∈ Z \ {0} then p#∧z ∈ Prod∗(G).

For further details see
Term Algebras, Canonical Representations and Difference Ring Theory for Symbolic Summation. To appear in:
Anti-Differentiation and the Calculation of Feynman Amplitudes, J. Blümlein and C. Schneider (ed.),
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General picture:

Part 1: Symbolic summation (a short introduction)

Part 2: Modeling of sequences with a term algebra (user interface)

Part 3: Modeling of sequences in difference rings (computer algebra)

Part 4: Construction of appropriate difference rings (advanced CA)

Part 5: Applications
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A warm-up example: simplify
∞∑
k=0

∞∑
j=0

( (2j + k + n+ 2)j!k!(j + k + n)!

(j + k + 1)(j + n+ 1)(j + k + 1)!(j + n+ 1)!(k + n+ 1)!

+
j!k!(j + k + n)! (−S1(j) + S1(j + k) + S1(j + n)− S1(j + k + n))

(j + k + 1)!(j + n+ 1)!(k + n+ 1)!︸ ︷︷ ︸
f(j)

)

where

S1(n) =

n∑
i=1

1

i
(= Hn)

where

S1(n) =

n∑
i=1

1

i
S2(n) =

n∑
i=1

1

i2

Arose in the context of
I. Bierenbaum, J. Blümlein, and S. Klein, Evaluating two-loop massive operator matrix
elements with Mellin-Barnes integrals. 2006
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Summing the telescoping equation over j from 0 to a gives

a∑
j=0

f(j) = g(a+ 1)− g(0)

= (a+1)!(k−1)!(a+k+n+1)!(S1(a)−S1(a+k)−S1(a+n)+S1(a+k+n))
n(a+k+1)!(a+n+1)!(k+n+1)!

+S1(k)+S1(n)−S1(k+n)
kn(k+n+1)n! + (2a+k+n+2)a!k!(a+k+n)!
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A warm-up example: simplify
∞∑
k=0
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j=0

( (2j + k + n+ 2)j!k!(j + k + n)!

(j + k + 1)(j + n+ 1)(j + k + 1)!(j + n+ 1)!(k + n+ 1)!

+
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(j + k + 1)!(j + n+ 1)!(k + n+ 1)!︸ ︷︷ ︸
f(j)

)

∑
k=1

∞∑
j=0

f(j) =

1

n!

∑
k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)

=
1

n!

S1(n)
2 + S2(n)

2n(n+ 1)

where

S1(n) =
n∑

i=1

1

i
S2(n) =

n∑
i=1

1

i2
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In[8]:= << Sigma.m

Sigma - A summation package by Carsten Schneider © RISC-Linz

In[9]:= mySum =
a∑

j=0

( (2j + k + n + 2)j!k!(j + k + n)!

(j + k + 1)(j + n + 1)(j + k + 1)!(j + n + 1)!(k + n + 1)!
+

j!k!(j + k + n)! (−S1[j] + S1[j + k] + S1[j + n] − S1[j + k + n])

(j + k + 1)!(j + n + 1)!(k + n + 1)!

)
;

In[10]:= res = SigmaReduce[mySum]

Out[10]=
(a+ 1)!(k− 1)!(a+ k+ n+ 1)! (S1[a]− S1[a+ k]− S1[a+ n] + S1[a+ k+ n])

n(a+ k+ 1)!(a+ n+ 1)!(k+ n+ 1)!
+

S1[k] + S1[n]− S1[k+ n]

kn(k+ n+ 1)n!
+

(2a+ k+ n+ 2)a!k!(a+ k+ n)!

(a+ k+ 1)(a+ n+ 1)(a+ k+ 1)!(a+ n+ 1)!(k+ n+ 1)!

In[11]:= SigmaLimit[res, {n}, a]

Out[11]=
1

n!

S1[k] + S1[n]− S1[k+ n]

kn(k+ n+ 1)
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j!k!(j + k + n)! (−S1[j] + S1[j + k] + S1[j + n] − S1[j + k + n])

(j + k + 1)!(j + n + 1)!(k + n + 1)!

)
;

In[10]:= res = SigmaReduce[mySum]

Out[10]=
(a+ 1)!(k− 1)!(a+ k+ n+ 1)! (S1[a]− S1[a+ k]− S1[a+ n] + S1[a+ k+ n])

n(a+ k+ 1)!(a+ n+ 1)!(k+ n+ 1)!
+

S1[k] + S1[n]− S1[k+ n]

kn(k+ n+ 1)n!
+

(2a+ k+ n+ 2)a!k!(a+ k+ n)!

(a+ k+ 1)(a+ n+ 1)(a+ k+ 1)!(a+ n+ 1)!(k+ n+ 1)!

In[11]:= SigmaLimit[res, {n}, a]

Out[11]=
1

n!

S1[k] + S1[n]− S1[k+ n]

kn(k+ n+ 1)
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In[8]:= << Sigma.m

Sigma - A summation package by Carsten Schneider © RISC-Linz
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;

In[10]:= res = SigmaReduce[mySum]

Out[10]=
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A warm-up example: simplify
∞∑
k=0

∞∑
j=0

( (2j + k + n+ 2)j!k!(j + k + n)!

(j + k + 1)(j + n+ 1)(j + k + 1)!(j + n+ 1)!(k + n+ 1)!

+
j!k!(j + k + n)! (−S1(j) + S1(j + k) + S1(j + n)− S1(j + k + n))

(j + k + 1)!(j + n+ 1)!(k + n+ 1)!︸ ︷︷ ︸
f(j)

)

∑
k=1

∞∑
j=0

f(j) =

1

n!

∑
k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)

=
1

n!

S1(n)
2 + S2(n)

2n(n+ 1)

where

S1(n) =
n∑

i=1

1

i
S2(n) =

n∑
i=1

1

i2



Part 5: Application: particle physics 57

A warm-up example: simplify
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k=0

∞∑
j=0
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+
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(j + k + 1)!(j + n+ 1)!(k + n+ 1)!︸ ︷︷ ︸
f(j)

)

∞∑
k=1

∞∑
j=0

f(j) =
1

n!

∞∑
k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)

=
1

n!

S1(n)
2 + S2(n)

2n(n+ 1)

where

S1(n) =
n∑

i=1

1

i
S2(n) =

n∑
i=1

1

i2
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Telescoping

GIVEN
A(n) :=

a∑
k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)︸ ︷︷ ︸
=: f(k)

.

FIND g(k) :

and c0(n), c1(n):

g(k + 1)− g(k) = f(k)

for all 0 ≤ k ≤ n and all n ≥ 0.
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Telescoping

GIVEN
A(n) :=

a∑
k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)︸ ︷︷ ︸
=: f(k)

.

FIND g(k) :

and c0(n), c1(n):

g(k + 1)− g(k) = f(k)

for all 0 ≤ k ≤ n and all n ≥ 0.

no solution⃝◦ ◦⌢
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Zeilberger’s creative telescoping paradigm

GIVEN
A(n) :=

a∑
k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)︸ ︷︷ ︸
=: f(n, k)

.

FIND g(n, k)

and c0(n), c1(n):

g(n, k + 1)− g(n, k) = f(n, k)

for all 0 ≤ k ≤ n and all n ≥ 0.

no solution⃝◦ ◦⌢
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Zeilberger’s creative telescoping paradigm

GIVEN
A(n) :=

a∑
k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)︸ ︷︷ ︸
=: f(n, k)

.

FIND g(n, k) and c0(n), c1(n):

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + c1(n) f(n+ 1, k)

for all 0 ≤ k ≤ n and all n ≥ 0.



Part 5: Application: particle physics 58

Zeilberger’s creative telescoping paradigm

GIVEN
A(n) :=

a∑
k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)︸ ︷︷ ︸
=: f(n, k)

.

FIND g(n, k) and c0(n), c1(n):

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + c1(n) f(n+ 1, k)

for all 0 ≤ k ≤ n and all n ≥ 0.

Sigma computes: c0(n) = −n, c1(n) = (n+ 2) and

g(n, k) =
kS1(k) + (−n− 1)S1(n)− kS1(k + n)− 2

(k + n+ 1)(n+ 1)2
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Zeilberger’s creative telescoping paradigm

GIVEN
A(n) :=

a∑
k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)︸ ︷︷ ︸
=: f(n, k)

.

FIND g(n, k) and c0(n), c1(n):

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + c1(n) f(n+ 1, k)

for all 0 ≤ k ≤ n and all n ≥ 0.

Summing this equation over k from 1 to a gives:

g(n, a+ 1)− g(n, 1) =

a∑
k=1

[
c0(n) f(n, k) + c1(n) f(n+ 1, k)

]
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Zeilberger’s creative telescoping paradigm

GIVEN
A(n) :=

a∑
k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)︸ ︷︷ ︸
=: f(n, k)

.

FIND g(n, k) and c0(n), c1(n):

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + c1(n) f(n+ 1, k)

for all 0 ≤ k ≤ n and all n ≥ 0.

Summing this equation over k from 1 to a gives:

g(n, a+ 1)− g(n, 1) =

a∑
k=1

c0(n) f(n, k) +

a∑
k=1

c1(n) f(n+ 1, k)



Part 5: Application: particle physics 58

Zeilberger’s creative telescoping paradigm

GIVEN
A(n) :=

a∑
k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)︸ ︷︷ ︸
=: f(n, k)

.

FIND g(n, k) and c0(n), c1(n):

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + c1(n) f(n+ 1, k)

for all 0 ≤ k ≤ n and all n ≥ 0.

Summing this equation over k from 1 to a gives:

g(n, a+ 1)− g(n, 1) = c0(n)

a∑
k=1

f(n, k) + c1(n)

a∑
k=1

f(n+ 1, k)
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Zeilberger’s creative telescoping paradigm

GIVEN
A(n) :=

a∑
k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)︸ ︷︷ ︸
=: f(n, k)

.
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g(n, k + 1)− g(n, k) = c0(n)f(n, k) + c1(n) f(n+ 1, k)

for all 0 ≤ k ≤ n and all n ≥ 0.

Summing this equation over k from 1 to a gives:

g(n, a+ 1)− g(n, 1) = c0(n)A(n) + c1(n)A(n+ 1)
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Zeilberger’s creative telescoping paradigm

GIVEN
A(n) :=

a∑
k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)︸ ︷︷ ︸
=: f(n, k)

.

FIND g(n, k) and c0(n), c1(n):

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + c1(n) f(n+ 1, k)

for all 0 ≤ k ≤ n and all n ≥ 0.

Summing this equation over k from 1 to a gives:

g(n, a+ 1)− g(n, 1) = c0(n)A(n) + c1(n)A(n+ 1)

|| ||
(a+1)(S1(a)+S1(n)−S1(a+n))

(n+1)2(a+n+2) − nA(n) + (2 + n)A(n+ 1)

+ a(a+1)
(n+1)3(a+n+1)(a+n+2)
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(n+ 2)A(n+ 1)− nA(n) =
(n+ 1)S1(n) + 1

(n+ 1)3

recurrence finder

A(n) =
∞∑
k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)

{c× 1

n(n+ 1)

+
S1(n)

2 + S2(n)

2n(n+ 1)
|c ∈ R}

where

S1(n) =
n∑

i=1

1

i

S2(n) =
n∑

i=1

1

i2
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(n+ 2)A(n+ 1)− nA(n) =
(n+ 1)S1(n) + 1

(n+ 1)3

recurrence solver

A(n) =
∞∑
k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)
∈
{c× 1

n(n+ 1)

+
S1(n)

2 + S2(n)

2n(n+ 1)
|c ∈ R}

where

S1(n) =
n∑

i=1

1

i
S2(n) =

n∑
i=1

1

i2



Part 5: Application: particle physics 59

(n+ 2)A(n+ 1)− nA(n) =
(n+ 1)S1(n) + 1

(n+ 1)3

Summation package Sigma
(based on difference field/ring algorithms/theory

see, e.g., Abramov, Karr 1981, Bronstein 2000, Schneider 2001/2004/2005a–c/2007/2008/2010a–c)

A(n) =
∞∑
k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)
=

0× 1

n(n+ 1)

+
S1(n)

2 + S2(n)

2n(n+ 1)

where

S1(n) =
n∑

i=1

1

i
S2(n) =

n∑
i=1

1

i2
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In[12]:= mySum =
a∑

k=1

S[1, k] + S[1,n] − S[1, k + n]

kn(k + n + 1)
;

Compute a recurrence
In[13]:= rec = GenerateRecurrence[mySum,n][[1]]

Out[13]=−nSUM[n]+(1+n)(2+n)SUM[n+1] ==
(a+1)(S[1,a]+S[1,n]−S[1,a+n])

(n+1)2(a+n+2)n!
+

a(a+1)

(n+1)3(a+n+1)(a+n+2)n!

In[14]:= rec = LimitRec[rec,SUM[n], {n}, a]

Out[14]= −nSUM[n] + (1+ n)(2+ n)SUM[n+ 1] ==
(n+ 1)S[1, n] + 1

(n+ 1)3

Solve a recurrence
In[15]:= recSol = SolveRecurrence[rec, SUM[n]]

Out[15]= {{0,
1

n(n+ 1)
}, {1,

S[1, n]2 +
n∑

i=1

1

i2

2n(n+ 1)
}}

Combine the solutions
In[16]:= FindLinearCombination[recSol, {1, {1/2},n, 2]

Out[16]=
S[1, n]2 +

∑n
i=1

1
i2

2n(n+ 1)
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In[12]:= mySum =
a∑

k=1

S[1, k] + S[1,n] − S[1, k + n]

kn(k + n + 1)
;

Compute a recurrence
In[13]:= rec = GenerateRecurrence[mySum,n][[1]]

Out[13]=−nSUM[n]+(1+n)(2+n)SUM[n+1] ==
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+
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In[15]:= recSol = SolveRecurrence[rec, SUM[n]]

Out[15]= {{0,
1

n(n+ 1)
}, {1,

S[1, n]2 +
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A warm-up example: simplify
∞∑
k=0

∞∑
j=0

( (2j + k + n+ 2)j!k!(j + k + n)!

(j + k + 1)(j + n+ 1)(j + k + 1)!(j + n+ 1)!(k + n+ 1)!

+
j!k!(j + k + n)! (−S1(j) + S1(j + k) + S1(j + n)− S1(j + k + n))

(j + k + 1)!(j + n+ 1)!(k + n+ 1)!︸ ︷︷ ︸
f(j)

)

∞∑
k=1

∞∑
j=0

f(j) =
1

n!

∞∑
k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)

=
1

n!

S1(n)
2 + S2(n)

2n(n+ 1)

where

S1(n) =

n∑
i=1

1

i
S2(n) =

n∑
i=1

1

i2



Part 5: Application: particle physics 61

A warm-up example: simplify
∞∑
k=0

∞∑
j=0

( (2j + k + n+ 2)j!k!(j + k + n)!

(j + k + 1)(j + n+ 1)(j + k + 1)!(j + n+ 1)!(k + n+ 1)!

+
j!k!(j + k + n)! (−S1(j) + S1(j + k) + S1(j + n)− S1(j + k + n))

(j + k + 1)!(j + n+ 1)!(k + n+ 1)!︸ ︷︷ ︸
f(n, k, j)

)

∞∑
k=0

∞∑
j=0

f(n, k, j) =
S1(n)

2 + 3S2(n)

2n(n+ 1)!

where

S1(n) =

n∑
i=1

1

i
S2(n) =

n∑
i=1

1

i2



Part 1: Crucial summation paradigms 62

1. Creative telescoping (for the special case of hypergeometric terms see Zeilberger’s algorithm (1991))

GIVEN a definite sum

A(n) =
n∑

k=0

f(n, k); f(n, k): indefinite nested product-sum in k;
n: extra parameter

FIND a recurrence for A(n)

2. Recurrence solving
GIVEN a recurrence a0(n), . . . , ad(n), h(n):

indefinite nested product-sum expressions.

a0(n)A(n) + · · ·+ ad(n)A(n+ d) = h(n);

FIND all solutions expressible by indefinite nested products/sums
(Abramov/Bronstein/Petkovšek/CS, in preparation)
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1. Creative telescoping (for the special case of hypergeometric terms see Zeilberger’s algorithm (1991))

GIVEN a definite sum

A(n) =
n∑

k=0

f(n, k); f(n, k): indefinite nested product-sum in k;
n: extra parameter

FIND a recurrence for A(n)

2. Recurrence solving
GIVEN a recurrence a0(n), . . . , ad(n), h(n):

indefinite nested product-sum expressions.

a0(n)A(n) + · · ·+ ad(n)A(n+ d) = h(n);

FIND all solutions expressible by indefinite nested products/sums
(Abramov/Bronstein/Petkovšek/CS, in preparation)

3. Find a “closed form”

A(n)=combined solutions in terms of indefinite nested sums.
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n−2∑
j=0

j+1∑
r=0

n−j+r−2∑
s=0

(−1)r+s
(
j+1
r

)(−j+n+r−2
s

)
(−j + n− 2)!r!

(n− s)(s+ 1)(−j + n+ r)!

Simple sum

||
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n−2∑
j=0

j+1∑
r=0

n−j+r−2∑
s=0

(−1)r+s
(
j+1
r

)(−j+n+r−2
s

)
(−j + n− 2)!r!

(n− s)(s+ 1)(−j + n+ r)!

||

n−2∑
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(−1)r+s
(
j+1
r
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s

)
(−j + n− 2)!r!

(n− s)(s+ 1)(−j + n+ r)!
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j+1
r
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s
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j + 1

r

)( (−1)r(−j + n− 2)!r!

(n+ 1)(−j + n+ r − 1)(−j + n+ r)!
+

(−1)n+r(j + 1)!(−j + n− 2)!(−j + n− 1)rr!

(n− 1)n(n+ 1)(−j + n+ r)!(−j − 1)r(2− n)j
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(n− 1)n(n+ 1)(−j + n+ r)!(−j − 1)r(2− n)j
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( n2 − n+ 1

(n− 1)2n2(n+ 1)(2− n)j
+

j∑
i=1

(2− n)i
(−i+ n− 1)2(i+ 1)!

(n+ 1)(2− n)j
+

(−1)j+n(−j − 2)(−j + n− 2)!

(j − n+ 1)(n+ 1)2n!

)
(j + 1)!− 1

(n+ 1)2(−j + n− 1)
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+
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n−2∑
j=0

j+1∑
r=0

n−j+r−2∑
s=0

(−1)r+s
(
j+1
r

)(−j+n+r−2
s

)
(−j + n− 2)!r!

(n− s)(s+ 1)(−j + n+ r)!

||

n−2∑
j=0

(( n2 − n+ 1

(n− 1)2n2(n+ 1)(2− n)j
+

j∑
i=1

(2− n)i
(−i+ n− 1)2(i+ 1)!

(n+ 1)(2− n)j
+

(−1)j+n(−j − 2)(−j + n− 2)!

(j − n+ 1)(n+ 1)2n!

)
(j + 1)!− 1

(n+ 1)2(−j + n− 1)

)
||

−n2 − n− 1

n2(n+ 1)3
+

(−1)n
(
n2 + n+ 1

)
n2(n+ 1)3

− 2S−2(n)

n+ 1
+

S1(n)

(n+ 1)2
+

S2(n)

−n− 1

Note: Sa(n) =
∑N

i=1
sign(a)i

i|a|
, a ∈ Z \ {0}.
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In[1]:= << Sigma.m

Sigma - A summation package by Carsten Schneider © RISC-Linz

In[2]:= << HarmonicSums.m

HarmonicSums by Jakob Ablinger © RISC-Linz

In[3]:= << EvaluateMultiSums.m

EvaluateMultiSums by Carsten Schneider © RISC-Linz

In[4]:= mySum =

n−2∑
j=0

j+1∑
r=0

n−j+r−2∑
s=0

(−1)r+s
(j+1

r

)(−j+n+r−2
s

)
(−j + n − 2)!r!

(n − s)(s + 1)(−j + n + r)!
;

In[5]:= EvaluateMultiSum[mySum, {}, {n}, {1}]

Out[5]=
−n2 − n− 1

n2(n+ 1)3
+

(−1)n
(
n2 + n+ 1

)
n2(n+ 1)3

−
2S[−2, n]

n+ 1
+

S[1, n]

(n+ 1)2
+

S[2, n]

−n− 1
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Application: The simplification of
Feynman integrals



Part 3: The simplification of Feynman integrals 66

Evaluation of Feynman Integrals

Behavior of particles

∫
Φ(N, ϵ, x)dx

Feynman integrals

LHC at CERN

∑
f(N, ϵ, k)

complicated
multi-sums



Part 3: The simplification of Feynman integrals 66

Evaluation of Feynman Integrals

Behavior of particles

//
∫

Φ(N, ϵ, x)dx

Feynman integrals

LHC at CERN

∑
f(N, ϵ, k)

complicated
multi-sums



Part 3: The simplification of Feynman integrals 67

∫ 1

0

xN dx =
1

N + 1

für N = 1, 2, 3, 4, . . .

∫ 1

0 x dx = ?

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�2

∫ 1

0 x2 dx =

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�3

∫ 1

0 x3 dx =

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�4



Part 3: The simplification of Feynman integrals 67

∫ 1

0

xN dx =
1

N + 1

für N = 1, 2, 3, 4, . . .

∫ 1

0 x dx =

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�2

∫ 1

0 x2 dx =

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�3

∫ 1

0 x3 dx =

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�4



Part 3: The simplification of Feynman integrals 67

∫ 1

0

xN dx =
1

N + 1

für N = 1, 2, 3, 4, . . .

∫ 1

0 x1 dx =

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�2

∫ 1

0 x2 dx = ?

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�3

∫ 1

0 x3 dx =

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�4



Part 3: The simplification of Feynman integrals 67

∫ 1

0

xN dx =
1

N + 1

für N = 1, 2, 3, 4, . . .

∫ 1

0 x1 dx =

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�2

∫ 1

0 x2 dx =

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�3

∫ 1

0 x3 dx =

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�4



Part 3: The simplification of Feynman integrals 67

∫ 1

0

xN dx =
1

N + 1

für N = 1, 2, 3, 4, . . .

∫ 1

0 x1 dx =

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�2

∫ 1

0 x2 dx =

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�3

∫ 1

0 x3 dx = ?

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�4



Part 3: The simplification of Feynman integrals 67

∫ 1

0

xN dx =
1

N + 1

für N = 1, 2, 3, 4, . . .

∫ 1

0 x1 dx =

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�2

∫ 1

0 x2 dx =

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�3

∫ 1

0 x3 dx =

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�4



Part 3: The simplification of Feynman integrals 67

∫ 1

0

xN dx =
1

N + 1

für N = 1, 2, 3, 4, . . .

∫ 1

0 x1 dx =

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�2

∫ 1

0 x2 dx =

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�3

∫ 1

0 x3 dx =

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1�4



Part 3: The simplification of Feynman integrals 68

Feynman integrals

N−3∑
j=0

j∑
k=0

(
N − 1

j + 2

)(
j + 1

k + 1

)

∫ 1

0
xN dx
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Feynman integrals

N−3∑
j=0

j∑
k=0

(
N − 1

j + 2

)(
j + 1

k + 1

)

×
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

xN1 (1 + x1)
N−j+k

(1− x1)1+ε
. . . dx1 dx2 dx3 dx4 dx5 dx6
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Feynman integrals
a 3-loop massive ladder di-
agram [arXiv:1509.08324]

N−3∑
j=0

j∑
k=0

(
N − 1

j + 2

)(
j + 1

k + 1

)
||

×
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
θ(1− x5 − x6)(1− x2)(1− x4)x

−ε
2

(1− x2)
−εx

ε/2−1
4 (1− x4)

ε/2−1xε−1
5 x

−ep/2
6[

[−x3(1− x4)− x4(1− x5 − x6 + x5x1 + x6x3)]
k

+ [x3(1− x4)− (1− x4)(1− x5 − x6 + x5x1 + x6x3)]
k

]
× (1− x5 − x6 + x5x1 + x6x3)

j−k(1− x2)
N−3−j

× [x1 − (1− x5 − x6)− x5x1 − x6x3]
N−3−j dx1 dx2 dx3 dx4 dx5 dx6
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Evaluation of Feynman Integrals

Behavior of particles

//
∫

Φ(N, ϵ, x)dx

Feynman integrals

DESY
(J. Blümlein)

��

LHC at CERN

expression in
special functions

∑
f(N, ϵ, k)

complicated
multi-sums

RISC

(Sigma-package)
oo
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Example 1:

massive 3-loop ladder integrals
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Feynman integrals
a 3-loop massive ladder di-
agram [arXiv:1509.08324]

N−3∑
j=0
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k=0
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N − 1

j + 2

)(
j + 1

k + 1

)
||

×
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0

∫ 1
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0
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−ε
2
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−εx
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ε/2−1xε−1
5 x

−ep/2
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[−x3(1− x4)− x4(1− x5 − x6 + x5x1 + x6x3)]
k

+ [x3(1− x4)− (1− x4)(1− x5 − x6 + x5x1 + x6x3)]
k

]
× (1− x5 − x6 + x5x1 + x6x3)

j−k(1− x2)
N−3−j

× [x1 − (1− x5 − x6)− x5x1 − x6x3]
N−3−j dx1 dx2 dx3 dx4 dx5 dx6
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= F−3(N)ε−3 + F−2(N)ε−2 + F−1(N)ε−1 + F0(N)

Simplify ||
N−3∑
j=0

j∑
k=0

k∑
l=0

−j+N−3∑
q=0

−l+N−q−3∑
s=1

−l+N−q−s−3∑
r=0

(−1)−j+k−l+N−q−3×

× (j+1
k+1)(

k
l)(

N−1
j+2 )(

−j+N−3
q )(−l+N−q−3

s ) (−l+N−q−s−3
r )r!(−l+N−q−r−s−3)!(s−1)!

(−l+N−q−2)!(−j+N−1)(N−q−r−s−2)(q+s+1)[
4S1(−j +N − 1)− 4S1(−j +N − 2)− 2S1(k)

− (S1(−l +N − q − 2) + S1(−l +N − q − r − s− 3)− 2S1(r + s))

+ 2S1(s− 1)− 2S1(r + s)

]
+ 3 further 6–fold sums
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k+1)(

k
l)(

N−1
j+2 )(

−j+N−3
q )(−l+N−q−3

s ) (−l+N−q−s−3
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F0(N) =

7

12
S1(N)4 +

(17N + 5)S1(N)3

3N(N + 1)
+
(35N2 − 2N − 5

2N2(N + 1)2
+

13S2(N)

2
+

5(−1)N

2N2

)
S1(N)2

+
(
−

4(13N + 5)

N2(N + 1)2
+
(4(−1)N (2N + 1)

N(N + 1)
−

13

N

)
S2(N) +

(29
3

− (−1)N
)
S3(N)

+
(
2 + 2(−1)N

)
S2,1(N)− 28S−2,1(N) +

20(−1)N

N2(N + 1)

)
S1(N) +

(3
4
+ (−1)N

)
S2(N)2

− 2(−1)NS−2(N)2 + S−3(N)
(2(3N − 5)

N(N + 1)
+
(
26 + 4(−1)N

)
S1(N) +

4(−1)N

N + 1

)
+
( (−1)N (5− 3N)

2N2(N + 1)
−

5

2N2

)
S2(N) + S−2(N)

(
10S1(N)2 +

(8(−1)N (2N + 1)

N(N + 1)

+
4(3N − 1)

N(N + 1)

)
S1(N) +

8(−1)N (3N + 1)

N(N + 1)2
+
(
− 22 + 6(−1)N
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Example 2:

2-mass 3-loop Feynman integrals
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Example: a 2-mass 3-loop Feynman integral [arXiv:1804.02226]
(arose in the calculation of the gluonic operator matrix element A

(3)
gg,Q)

Mellin-Barnes-

and pFq-technologies−−−−−−−−−−−−−→

expression (95 MB) with
• 150 single sums
• 1000 double sums
• 12160 triple sums
• 1555 quadruple sums

All diagrams are produced with axodraw (J. Vermaseren).
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Example: a 2-mass 3-loop Feynman integral [arXiv:1804.02226]
(arose in the calculation of the gluonic operator matrix element A

(3)
gg,Q)
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and pFq-technologies−−−−−−−−−−−−−→

expression (95 MB) with
• 150 single sums
• 1000 double sums
• 12160 triple sums
• 1555 quadruple sums

Typical triple sum:

N∑
j=0

j∑
i=0

i∑
k=0

(4+ε)(−2+N)(−1+N)Nπ(−1)2−k

2+ε
× 2

−2+ε
e
− 3εγ

2 η
k×

Γ(1− ε
2
−i+j+k)Γ(−1− ε

2
)Γ(2+ ε

2
)Γ(1+N)Γ(1+ε+i−k)Γ(− 3ε

2
+k)Γ(1−ε+k)Γ(3−ε+k)Γ(− 1

2
− ε

2
+k)

Γ(− 3
2
− ε

2
)Γ( 5

2
+ ε

2
)Γ(2+i)Γ(1+k)Γ(2−i+j)Γ(2−ε+k)Γ( 5

2
−ε+k)Γ(− ε

2
+k)Γ(5+ ε

2
+N)

6 hours for this sum

∼ 10 years of calculation time for full expression
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Example: a 2-mass 3-loop Feynman integral [arXiv:1804.02226]
(arose in the calculation of the gluonic operator matrix element A

(3)
gg,Q)

Mellin-Barnes-

and pFq-technologies−−−−−−−−−−−−−→

expression (95 MB) with
• 150 single sums
• 1000 double sums
• 12160 triple sums
• 1555 quadruple sumsySumProduction.m (2 hours)

expression (377 MB)
consisting of 8 multi-sums

yEvaluateMultiSums.m

(3 month)

expression (8.3 MB)
consisting of
74 indefinite sums

Sigma.m (32 days)
←−−−−−−−−−−−− expression (154 MB)

consisting of 4110 indefinite sums
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Example: a 2-mass 3-loop Feynman integral [arXiv:1804.02226]
(arose in the calculation of the gluonic operator matrix element A

(3)
gg,Q)

sum size of sum summand size of time of number of
(with ε) constant term calculation indef. sums

N−3∑
i4=2

i4−2∑
i3=0

i3∑
i2=0

∞∑
i1=0

17.7 MB 266.3 MB 177529 s (2.1 days) 1188

N−4∑
i3=3

i3−1∑
i2=0

∞∑
i1=0

232 MB 1646.4 MB 980756 s (11.4 days) 747

N−4∑
i2=3

∞∑
i1=0

67.7 MB 458 MB 524485 s (6.1 days) 557

∞∑
i1=0

38.2 MB 90.5 MB 689100 s (8.0 days) 44

N−3∑
i4=2

i4−2∑
i3=0

i3∑
i2=0

i2∑
i1=0

1.3 MB 6.5 MB 305718 s (3.5 days) 1933

N−4∑
i3=3

i3−1∑
i2=0

i2∑
i1=0

11.6 MB 32.4 MB 710576 s (8.2 days) 621

N−4∑
i2=3

i2∑
i1=0

4.5 MB 5.5 MB 435640 s (5.0 days) 536

N−4∑
i1=3

0.7 MB 1.3 MB 9017s (2.5 hours) 68
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Example: a 2-mass 3-loop Feynman integral [arXiv:1804.02226]
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Example: a 2-mass 3-loop Feynman integral [arXiv:1804.02226]
(arose in the calculation of the gluonic operator matrix element A

(3)
gg,Q)

Most complicated objects: generalized binomial sums, like

N∑
h=1

2−2h(1− η)h
(
2h

h

) h∑
i=1

22i(1− η)−i

i

(
2i

i

)

 h∑

i=1

(1− η)i
(
2i

i

)
22i

×

×


h∑

i=1

22i(1− η)−i
i∑

j=1

j∑
k=1

(1− η)k

k

j

i

(
2i

i

)


.
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Example: a 2-mass 3-loop Feynman integral [arXiv:1804.02226]
(arose in the calculation of the gluonic operator matrix element A
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Evaluation of Feynman Integrals

Behavior of particles

//
∫

Φ(N, ϵ, x)dx

Feynman integrals

DESY
(J. Blümlein)

��

LHC at CERN

expression in
special functions

∑
f(N, ϵ, k)

complicated
multi-sums

RISC

(Sigma-package)
oo
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