
Pthreads Introduction

Parallel Computing

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria



Programmiersprache C++ Winter 2005 Operator overloading (2)Parallel Computing SS 2018 Pthreads Introduction (2)

Threads vs. Processes

Process can have multiple 
threads

Thread: “lightweight” process
Threads share address space, file 

descriptors, sockets,...
Per-thread stack, program 

counter, registers: thread's 
context

Switching threads more efficient 
than switching processes
“lightweight” context



Programmiersprache C++ Winter 2005 Operator overloading (3)Parallel Computing SS 2018 Pthreads Introduction (3)

Benefits of Threading
Parallelism

computing independent tasks at the same time
speed-up (Amdahl's Law!)

need multiprocessor HW for “true” parallelism
exploiting capabilities of modern multi-core processors

Concurrency
progress despite of blocking (overlapping) operations
no multiprocessor HW needed
“illusion” of parallelism

analogy: multiple running processes in multi-tasking operating systems

Threaded programming model
shared-memory (no message passing)
sequential program: implicit, strong synchronization via ordering of operations
threaded program: explicit code constructs for synchronizing threads
synchronization clearly designates dependencies
better understanding of “real” dependencies



Programmiersprache C++ Winter 2005 Operator overloading (4)Parallel Computing SS 2018 Pthreads Introduction (4)

Costs of Threading
Overhead (Synchronization, Computation)

directly: more synchronization → less parallelism, higher costs
indirectly: scheduling, memory architecture (cache coherence), 

operating system, calling C library,...

Programming discipline
“thinking in parallel”
careful planning
avoidance of

deadlocks: circular waiting for resources
races: threads' speed (scheduling) determines outcome of operation 

Debugging and Testing
nondeterminism: timing of events depends on threads' speed (scheduling)
bugs difficult to reproduce

e.g. what thread is responsible for invalid memory access?

probe effect: adding debugging information can influence behaviour 
how to test possible interleavings of threads?



Programmiersprache C++ Winter 2005 Operator overloading (5)Parallel Computing SS 2018 Pthreads Introduction (5)

When (not) to Use Threads?
Pro threads

independent computations on decomposable data
Example: arraysum

frequently blocking operations, e.g. waiting for I/O requests
server applications

Contra threads
highly sequential programs: every operation depends on the previous one
massive synchronization requirements

Challenges in Threaded Programming
(applies to parallel computation in general)
Amdahl's Law is optimistic (ignores underlying HW, operating system,...) 
keeping the sequential part small: less synchronization
increasing the parallel part: data decomposition


	Introduction
	Slide 2
	Slide 3
	Slide 4
	Slide 5

