Theory and Software

Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

What is the purpose of logical modeling?

Precisely describe the problem to be solved.
Clarification of mind, resolution of ambiguities.
Specification of program to be developed.
Software-supported analysis of the problem and its solution.
Validation of specification.
Validation/verification of solution.
Interactive/automatic provers and model checkers.
Automatic computation of solution respectively simulation of execution.
Logical solvers (SMT: Satisfiability Modulo Theories) and theorem provers.
Perhaps: rapid prototyping of a later manually written program.

To profit from software, we need computer-understandable models.

1/48

1. Specifying Problems

2/48

A (computational) problem:
Input: x; € T4, ...,x, € T,, where I,
Output: y; € Uy, ..., ym € Uy, Where O

Input variables x1, ..., x,.
With types T, ..., T,.
Input condition (precondition) 1.
A formula whose free variables occur in x1, ..., x,.
Output variables y1, ..., ym.
With types Uy, ..., Uy,.
Output condition (postcondition) O y.
A formula whose free variables occur in x1,...,%0, Y1, -+ Ym-

Formulas refer to functions and predicates that characterize the problem domain.

3/48

Extract from a finite sequence s a subsequence of length n starting at position p.

JHEEN [EEE

Input: s € T*,n € N, p € N where

n+ p < length(s)
Output: r € T* where
length(z) =n A
Vie N.i <n=tli] =s[i+p]

The resulting sequence must have appropriate length and contents.

4/48

The specification demands a function f: T3 x...xT,, — U; X...x U, such that

Vxi€Ti,....xp €T Iy = let (yi,...,ym) = f(x1,...,Xx,) IN Ox y

For all arguments x4, ..., xn that satisfy the input condition,
the result (y4,...,yn) of f satisfies the output condition.

The specification itself already implicitly defines such a function:

f(x1,...,x,) :=choose y; € U1,...,ym € Un. Oy

An implicit function definition (whose result is arbitrary, if no values satisfy 0).
An actual implementation must provide an explicitly defined function.
Right-side of definition is a term that describes a constructive computation.

The ultimate goal of computer science/mathematics is to provide explicit
definitions of functions (i.e., programs) that implement problem specifications.

5/48

An (explicit) function definition

fTix...xT, »T
F(X1,..0,Xy) =1y
Special case n = 0: a constant definition ¢ : T, ¢ := 1.
Function constant f of arity n.
Type signature Ty x ... xT, > T.
Parameters x1, ..., x, (variables).

Body ¢, (a term whose free variables occur in x1, ..., x,).
We thus know Vx1 € Ty, ..., x, € Ty, f(x1,...,x,) = ty.

6/48

Definition: Let x and y be natural numbers. Then the square sum of x and y is
the sum of the squares of x and y.
squaresum: N X N — IN
squaresum(x, y) = x2 + y*
Definition: Let x and y be natural numbers. Then the squared sum of x and y
is the square of z where z is the sum of x and y.
sumsquared: N X N — N
sumsquared(x, y) == let z = x + y in 22
Definition: Let n be a natural number. Then the square sum set of n is the set
of the square sums of all numbers x and y from 1 to n.
squaresumset: N — P (IN)

squaresumset(n) := {squaresum(x,y) | x,ye NAl1<x<nAl<y<n}
7/48

An (explicit) predicate definition

pCTiX...xT,

p(x1,...,x,) : & Fy

Predicate constant p of arity n.
Type signature Ty X ... x Tp,.
Parameters x1,...,x, (variables).

Body F, (a formula whose free variables occur in x1, ..., x,).

We thus know Vx; € T1,...,x, € Ty p(x1,...,x,) © F.

8/48

Definition: Let x, y be natural numbers. Then x divides y (written as x|y) if
x - z = y for some natural number z.
o €INXIN
xly:©3JzeN.x-z=y
Definition: Let x be a natural number. Then x is prime if x is at least two and
the only divisors of x are one and x itself.
isprime € IN
isprime(x) :©@x >2AVyeN.yx=>y=1Vvy=x
Definition: Let p, n be a natural numbers. Then p is a prime factor of n, if p is
prime and divides n.

isprimefactor C IN x IN

isprimefactor(p, n) :< isprime(p) A p|n o/48

An implicit function definition

f:Tix...xT, =>T
f(x1,...,x,) :=choose y € T. F, ,

Function constant f of arity n.
Type signature Ty X ... xT,, — T.
Parameters x1, ..., x, (variables).
Result variable y.

Result condition Fy , (a formula whose free variables occur in xi, ..., x,,y).
We thus know Vx; € Ty, ..., x, € Ty. (3y € T. Fxy) = lety = f(x1,...,x,) In Fy .

10/48

Definition: A root of x is some y such that y squared is x (if such a y exists).

aRoot: R—> R
aRoot(x) := choose y e R. y? =x

Definition: The root of x > 0 is that y such that the square of y is x and y > 0.

theRoot: Rsg — Ry
theRoot(x) := choose y € Rsg. y2=xAy >0

Definition: The quotient g of m and n # 0 is such that m =n - g + r for some r < n.

quotient: N x N\{0} - N
quotient(m,n) :=choose g e N.Ire NNm=n-qg+rAr<n

Definition: The gcd(x, y) of x, y (not both 0), is the greatest number dividing x and y.

ged: (NxN)\{(0,0)} » N
ged(x,y) :=choose ze N. zlx Azly AVZ e N. Z|x A |ly=72 <z

Function result need not be uniquely defined (may be even arbitrary). 11/48

A predicate gives rise to functions in two ways.
A predicate:

isprimefactor € IN x N
isprimefactor(p, n) :& isprime(p) A p|n

An implicitly defined function:

someprimefactor: N — N
someprimefactor(n) := choose p € N. isprimefactor(p, n)

An explicitly defined function whose result is a set:

allprimefactors: N — P (IN)
allprimefactors(n) := {p | p € N A isprimefactor(p, n)}

The preferred style of definition is a matter of taste and purpose.
12/48

Given a specification
Input: x where P, Output: y where O, ,,

we may ask the following questions:

Is precondition satisfiable? (3x. Py)
Otherwise no input is allowed.

Is precondition not trivial? (3x. =P,)
Otherwise every input is allowed, why then the precondition?

Is postcondition always satisfiable? (Vx. Px = 3y.Q« y)
Otherwise no implementation is legal.

Is postcondition not always trivial? (3x,y. Px A =Qy.y)
Otherwise every implementation is legal.

Is result unique? (Vx, y1,y2. Px A Qxyy A Qx,yp = Y1 =Y2)
Whether this is required, depends on our expectations.

13/48

Input: m e Nyn e N Output: g e Nre Nwherem=n-g+r
The postcondition is always satisfiable but not trivial.
Form =13,n=5,e.9.,,¢q=2,r =3 islegal but ¢ = 2,r = 4 is not.
But the result is not unique.
Form =13,n=5,both g =2,r=3and g =1,r =8 are legal.
Input: m e Nyne N Output: g e N,re Nwherem=n-g+rAr<n
Now the postcondition is not always satisfiable.
For m = 13,n =0, no output is legal.
Input: m e N,n e Nwheren#0 Output:ge N,re Nwherem=n-g+rAr<n
The precondition is not trival but satisfiable.
m=13,n=01is notlegalbutm =13,n=5s.

The postcondition is always satisfiable and result is unique.
Form =13,n=>5,0nly g =2,r = 3 is legal.

14/48

Given a finite integer sequence a and an integer x, determine the smallest
position p at which x occurs in a (p = -1, if x does not occur in a).
Example: a = [2,3,5,7,5,11],x =5~ p =2
Input: a € 2", x €7
Output: p € NU {-1} where
let n = length(a) in
fdpeN.p<nAaalp]=x

thenp <nAalpl=xA(VgeN.g<nAalg]l =x= p <q)

else p=-1

All inputs are legal; a result with the specified property always exists and is

uniquely determined.
15/48

Given a finite integer sequence a sorted in ascending order and an integer x,
determine some position p at which x occurs in a (p = -1, if x does not occur in a).

Example: a = [2,3,5,5,5,7,11],x =5~ p € {2,3,4}
Input: a € Z*, x € Z where

let n = length(a) inVk e N. k <n—-1= alk] < alk +1]
Output: p e NU {-1} where
fdpeN.p<nAalp]=x

thenp <nnalp] =x

else p=-1

Not all inputs are legal; for every legal input, a result with the specified property

exists but may not be unique.
16/48

Given a finite integer sequence a, determine that permutation b of a that is sorted
in ascending order.
Example: a = [5,3,7,2,3] ~ b =12,3,3,5,7]
Input: « € 2*
Output: b € Z*where
let n = length(a) in
length(b) =n A (Vk e N.k <n—1= blk] <blk+1]) A
dp € N*. length(p) = n A
(Vk e N.k <n= plk] <n) A

(Vkl e N,k2e N. kl <nAk2<nAkl#k2= plkl] # pl[k2]) A
(Vk e N.k < n= alk] =b[plk]])

All inputs are legal; the specified result exists and is uniquely determined. 1748

2. The RISC Algorithm Language (RISCAL)

18/48

A system for formally modeling mathematical theories and algorithms.
Research Institute for Symbolic Computation (RISC), 2016-.
http://www.risc. jku.at/research/formal/software/RISCAL
Implemented in Java with SWT library for the GUI.
Tested under Linux only; freely available as open source (GPL3).
A language for the defining mathematical theories and algorithms.
A static type system with only finite types (of parameterized sizes).
Predicates, explicitly (also recursively) and implicitly def.d functions.
Theorems (universally quantified predicates expected to be true).
Procedures (also recursively defined).
Pre- and post-conditions, invariants, termination measures.
A framework for evaluating/executing all definitions.
Model checking: predicates, functions, theorems, procedures, annotations may
be evaluated/executed for all possible inputs.
All paths of a non-deterministic execution may be elaborated.
The execution/evaluation may be visualized. 19/48

http://www.risc.jku.at/research/formal/software/RISCAL

RISCAL divide.txt &

File Edit SMT TP Help
File: divide.tet
cesa

46 requires pre(n, m);

57 xequires pre(n, m);

61 q=qoAx=10;
62

65 requires pre(n, m);

6

72 invariant
73 decresses T,

47 3q:Num, T:Num. post(n, m, q, 1);

52 3qikum, TNum -post(n, m, a, T);
541/ 5. check that the output is uniquely defined

55// (optional, need not generally be the case)
56 theorem uniqueOutput (n:Num, m:Num)

58 o
59 VgiNum, TiNum. post(n, m, g, T) -
60 ¥go:Num, TO:Num. post(n, m, g0, 10) -

63// 6. check whether the algorithm satisfies the specification
64proc quotRemProc(n:Num, miNum): Tuple [Num,Nun]

65 ensures post(n, m, Tesult.l, result.2);
7

7 71 invariant and termination measure for verification

RISC Algorithm Language (RISCAL)

Analysis
e»0 ver &
Translation: @ Nondeterminism Default Value: O Other Values: 11

o Execution: @Silent Inputs: Per Mille: Branches: Depth:
49// 4. check that not every output satisfies the postcondition Visualization: | Trace ' Tree Width: 80C Height: 60C

50 theorem notEveryOutput(n:Num, m:Num) Parallelism: | /Multi-Threaded Threads: 4 Distributed Servers: =/
o1 requizes pre(n, m); Operation: & quotRemproc(7,7) =~

RISC Algorithm Language 4.2.7 (July 3, 2023)
https://wiw. Tisc. Jku. at/Tesearch/formal/softare/RISCAL

(C) 2016-, Research Institute for Symbolic Computation (RISC)
This is free software distributed under the terms of the GNU GPL
Execute "RISCAL -h" to see the available command line options

Reading file i ing
divide. txt

Using N=5.
Type checking and translation completed.

20/48

See also the (printed/online) “Tutorial and Reference Manual’.

Press button IE (or <Ctrl>-s) to save specification.
Automatically processes (parses and type-checks) specification.
Press button ¥ to re-process specification.

Choose values for undefined constants in specification.

Natural number for val const: N.
Default Value: used if no other value is specified.
Other Values: specific values for individual constants.

Select Operation from menu and then press button B
Executes operation for chosen constant values and all possible inputs.
Option Silent: result of operation is not printed.

Option Nondeterminism: all execution paths are taken.
Option Multi-threaded: multiple threads execute different inputs.
Press buttton @ to abort execution.

During evaluation all annotations (pre/postconditions, etc.) are checked. 21748

ASCII String

Unicode Character

Unicode Character

Int
Nat

true
false

/\

\/

=>

<=>
forall
exists
sum

product

Z N

[l T

OMw < g o< >

ASCII String

times

{3
intersect
union
Intersect
Union
isin
subseteq
<<

>>

vV IA B

~~NmC>OCD>sS x

Type the ASCII string and press <Citrl>-# to get the Unicode character.

22/48

Given naturals n and m, compute the quotient ¢ and remainder r of n divided by m.

// the type of natural numbers less than equal N
val N: IN;
type Num = IN[NJ;

// the precondition of the computation
pred pre(n:Num, m:Num) & m # O;

// the postcondition, first formulation
pred postl(n:Num, m:Num, g:Num, r:Num) &
n=mq+rA
VqO0:Num, rO:Num.
n =mq0 + r0 = r < r0;

// the postcondition, second formulation
pred post2(n:Num, m:Num, q:Num, r:Num) &

n=mq+r Ar <m;

We will investigate this specification. 23/48

// for all inputs that satisfy the precondition
// both formulations are equivalent:
// Vn:Num, m:Num, g:Num, r:Num.
// pre(n, m) = (posti(n, m, q, r) < post2(n, m, q, r));
theorem postEquiv(n:Num, m:Num, q:Num, r:Num)
requires pre(n, m);

& postli(n, m, q, r) & post2(n, m, q, r);

// we will thus use the simpler formulation from now on
pred post(n:Num, m:Num, q:Num, r:Num) & post2(n, m, q, r);

Check equivalence for all values that satisfy the precondition.

24/48

Choose e.g. N =5.

Switch option Silent off:

Executing postEquiv(Z,Z,Z,7Z) with all 1296 inputs.
Ignoring inadmissible inputs...

Run 6 of deterministic function postEquiv(0,1,0,0):
Result (0 ms): true

Run 7 of deterministic function postEquiv(1,1,0,0):
Result (0 ms): true

Run 1295 of deterministic function postEquiv(5,5,5,5):
Result (0 ms): true
Execution completed for ALL inputs (6314 ms, 1080 checked, 216 inadmissible).

Switch option Silent on:
Executing postEquiv(Z,Z,Z,7Z) with all 1296 inputs.
Execution completed for ALL inputs (244 ms, 1080 checked, 216 inadmissible).

If theorem is false for some input, an error message is displayed.
25/48

Drop precondition from theorem.

theorem postEquiv(n:Num, m:Num, q:Num, r:Num) &
// requires pre(n, m);
posti(n, m, q, r) & post2(n, m, q, r);

Executing postEquiv(Z,Z,Z,7Z) with all 1296 inputs.
Run O of deterministic function postEquiv(0,0,0,0):
ERROR in execution of postEquiv(0,0,0,0): evaluation of
postEquiv
at line 25 in file divide.txt:
theorem is not true
ERROR encountered in execution.

Forn=0,m =0,qg =0,r =0, the modified theorem is not true.

26/48

Level 1: postl(n, m, g, r) - o x

Select N =1 and visualization option “Tree”.

Level O: postEquiv(n:Num,m:Num,q:Num,r:Num) - o x

qO)+r0)) = (r = r0)

n: 0

m: 0

q:0

r:0

value: false

Investigate the (pruned) evaluation tree to determine how the truth value of a
formula was derived (double click to zoom into/out of predicates). 27/48

Switch option “Nondeterminism” on.

// 1. investigate whether the specified input/output combinations are as desired
fun quotremFun(n:Num, m:Num): Tuple[Num,Num]

requires pre(n, m);

ensures post(n, m, result.l, result.2);

= choose q:Num, r:Num with post(n, m, q, r);

Executing quotremFun(Z,Z) with all 36 inputs.

Ignoring inadmissible inputs...

Branch 0:6 of nondeterministic function quotremFun(0,1):
Result (0 ms): [0,0]

Branch 1:35 of nondeterministic function quotremFun(5,5):
No more results (14 ms).
Execution completed for ALL inputs (413 ms, 30 checked, 6 inadmissible).

First validation by inspecting the values determined by output condition
(nondeterminism may produce for some inputs multiple outputs). 28/48

// 2. check that some but not all inputs are allowed
theorem someInput() < Fn:Num, m:Num. pre(n, m);
theorem notEveryInput() < dn:Num, m:Num. -pre(n, m);

Executing someInput().

Execution completed (0 ms).
Executing notEveryInput().
Execution completed (0 ms).

A very rough validation of the input condition.

29/48

// 3. check whether for all inputs that satisfy the precondition
// there are some outputs that satisfy the postcondition
theorem someOutput (n:Num, m:Num)

requires pre(n, m);
& 3dq:Num, r:Num. post(n, m, q, r);

// 4. check that not every output satisfies the postcondition
theorem notEveryOutput (n:Num, m:Num)

requires pre(n, m);
& 3Jq:Num, r:Num. -post(n, m, q, r);

Executing someOutput(Z,Z) with all 36 inputs.
Execution completed for ALL inputs (5 ms, 30 checked, 6 inadmissible).

Executing notEveryOutput(Z,Z) with all 36 inputs.
Execution completed for ALL inputs (5 ms, 30 checked, 6 inadmissible).

A very rough validation of the output condition.

30/48

// 5. check that the output is uniquely defined
// (optional, need not generally be the case)
theorem uniqueOutput(n:Num, m:Num)

requires pre(n, m);
=4

Vq:Num, r:Num. post(n, m, q, r) =

Vq0:Num, rO:Num. post(n, m, g0, r0) =

q =90 A r = 10;

Executing uniqueOutput(Z,Z) with all 36 inputs.
Execution completed for ALL inputs (18 ms, 30 checked, 6 inadmissible).

The output condition indeed determines the outputs uniquely.

31/48

Select operation quotRemFun and press the button “Show/Hide Tasks”.

File Edit SMT TP Help
File: divide.txt
T8

1
1747 the postcondition, second foxnulation
Lepred posta(nifium, m:Num, q:fum, T:fium) -
qerazem

2
2174 for a1l inputs that satisfy the
2217 both formulstions are equivalent.
2374 ¥nilum, miMum, q:Num, Tilm
2471 pre(n, m) - (posti(n, m, 9, 1) « post2(n, m, q, 1))
25 theoren postEquiv(n:Nun, m:llum, q:Num, :Num)
26 requizes pre(n, m);

< postiin, m, q, 1) - post2(n, m, 4, 1);

2977 we will thus use the simpler fornulation from now on
s0pred post(nitium, miNum, oium, rikum) . post2(n, m, g, 1);
3

3247 1. investigate whether th 4

3347 input/output combinations are as desired

34fun quotrenFun(n:Num, m:hum): Tuple[hum, Num]
requires pre(n, m):

6 ensures postin, m, Tesult.1, result.2);
choose q:um, T:Num with post(n, m, q, 1)

917 2. check that some but nat all inputs are alloved
“0theoren soneInput() « 3n:hum, mitum. pre(n, m);

1 theoren notEVeryInQUE() - 3niNum, miNum. ~pre(n, m);

4347 3. check that for all inputs that satisfy the precondition
417 there ave some outputs that satisfy the postcondition
5theoren soneouTRUT (n:Num, m:hum)

s requires pre(n, m);

7w 3q:fum, TR post(n, m, 4, T);

9/ 4. check that not every output satisfies the postcondition
50 thearen notEveryOutput(n:fium, m:Num)

51 requizes pre(n, m;

52~ Jqifum, Tium. spast(n, m, q, T);

5

RISC Algorithm Language (RISCAL)

Analysis
=50 ve

Translation: @ Nondeterminism Default Value: 0 Other Values:
Execution: @Slent Inputs: Perbilles Branches: Depth:
Visuslizatio: ~ Trace Tree Width: 80C Height: 60C

Paralleism: | Multi Threaded Threads:4 | |Distributed Servers: =
Operation: B quotrenfun(2,2) -

o more resuits 4 ms)
Branch 0:32 of nondetexministic function _quotrenFun_5_spec(2,5)
Result (0 ms): [0,2]
Branch 1:32 of nondetexministic function _quotrenFun_5_spec(2,5)
Ho more results (7 ms:
Branch 2:33 of nondetexministic function _quotrenFun_S_pec(3,5)

0,31
Branch 1:33 of nondeterministic function _quotrenFun_S_pec(3,5)

Branch 0:34 of nondeterministic function _quatrenFun_S_Spec(d,5):
Result (0 ms): [0,4]

Branch 1:34 of nondeterministic function _quatrenFun_S_Spec(d,s):

Ho more Tesults (8 ns:

Branch 2:35 of nondeterministic function _quatrenFun_S_Spec(s,s):
Result (0 ms): [1,0]

BTanch 1:35 of nondeterministic function _quatrenfun_S_Spec(s,5):

to more Tesults (5 ns)

Execution completed for ALL inputs (323 ms, 30 checked, & inadnissible)
Executing _quotzenfun_5_Presat()

Execution conpleted (2

Executing _quotzenfun_5_PrefiotTrivial ()

Execution conpleted (2 ms)

Executing _quotzenFun_5_Postsat(Z,2) with all 36 inputs

Execution completed for ALL inputs (21 s, 30 checked, § inadnissible)
Executing _quotzenFun_5_PostNotTrivialAlL(Z,2) with all 36 inputs
Execution completed for ALL inputs (19 ns, 30 checked, 6 inadnissible)
Executing _quotzenFun__PosthotTrivialsome()

Execution completed (1 ms)

Executing _quotrenFun_s_PostUnique(Z,Z) with all 36 inputs

Execution completed for ALL inputs (17 s, 30 checked, § inadnissible)

Tasks
- quotremFun(z,2)
Bxecute operation
- Validate specification
Execute specification
Is precondition satisfisble?
Is precondition not trivial?
Is postcandition always satisfiable?
Is postcondition always not trival?
Is postondition sometimes ot trivial?
Is result uniquely determined?
Verify specification precanditions
~ Verify correctness of result
Is result correct?
Verffy iteration and recursion
~ Verify implementation preconditions
Is choice possible?

Automatic generation of those formulas that validate a specification.

32/48

Right-click to print definition of a formula, double-click to check it.

For every input, is postcondition true for only one output?

theorem _quotremFun_5_PostUnique(n:Num, m:Num)
requires pre(n, m);
& Vresult:Tuple[Num,Num] with post(n, m, result.1l, result.2).
(V_result:Tuple [Num,Num] with let result = _result in
post(n, m, result.1l, result.2). (result = _result));

Using N=5.

Type checking and translation completed.

Executing _quotremFun_5_PostUnique(Z,Z) with all 36 inputs.

Execution completed for ALL inputs (7 ms, 30 checked, 6 inadmissible).

The output is indeed uniquely defined by the output condition.

33/48

// 6. check whether the algorithm satisfies the specification
proc quotRemProc(n:Num, m:Num): Tuple [Num,Num]

requires pre(n, m);

ensures let g=result.l, r=result.2 in post(n, m, q, r);
{

var q: Num = O;

var r: Num = n;

while r > m do

{
r = r-m;
q = g+1;

}

return (q,r);

Check whether the algorithm satisfies the specification.

34/48

Executing quotRemProc(Z,Z) with all 36 inputs.

Ignoring inadmissible inputs...

Run 6 of deterministic function quotRemProc(0,1):
Result (0 ms): [0,0]
Run 7 of deterministic function quotRemProc(1,1):
Result (0 ms): [1,0]

Run 32
Result
Run 33
Result
Run 34
Result
Run 35
Result

of
(0
of
(0
of
(0
of
1

Execution

A verification of the algorithm by checking all possible executions.

deterministic function quotRemProc(2,5):

ms): [0,2]

deterministic function quotRemProc(3,5):

ms): [0,3]

deterministic function quotRemProc(4,5):

ms): [0,4]

deterministic function quotRemProc(5,5):

ms): [1,0]

completed for ALL inputs (161 ms, 30 checked, 6 inadmissible).

35/48

proc quotRemProc(n:Num, m:Num): Tuple [Num,Num]
requires pre(n, m);
ensures post(n, m, result.l, result.2);

var q: Num = O; var r: Num = n;
while r > m do // error!
{
r = r-m; q = gq+l;
}

return (q,r);

Executing quotRemProc(Z,Z) with all 36 inputs.
ERROR in execution of quotRemProc(1,1): evaluation of
ensures let g = result.l, r = result.2 in post(n, m, q, r);
at line 65 in file divide.txt:
postcondition is violated by result [0,1]
ERROR encountered in execution.

A falsificaton of an incorrect algorithm.

36/48

val N:Nat; val M:Nat;
type nat = Nat[M]; type array = Array[N,nat]; type index = Nat[N-1];

proc sort(a:array): array
ensures Vi:nat. i < N-1 = result[i] < result[i+1];
ensures Jp:Array[N,index]. (Vi:index,j:index. i # j = pl[il # p[jl1) A
(Vi:index. ali] = result([pl[ill);

var b:array = a;
for var i:Nat[N]:=1; i<N; i:=i+1 do {
var x:nat := b[i];
var j:Int[-1,N] := i-1;
while j > 0 A b[j] > x do {
b[j+1] := b[jl;

j o= 3-1;
¥
blj+1] := x;
}
return b;
37/48

}

Using N=5.

Using M=5.

Type checking and translation completed.

Executing sort(Array[Z]) with all 7776 inputs.

1223 inputs (1223 checked, O inadmissible, O ignored)...
2026 inputs (2026 checked, O inadmissible, O ignored)...

5792 inputs (5792 checked, 0

6118 inputs (6118 checked, 0

6500 inputs (6500 checked, inadmissible, O ignored)...
0
0
0

0 inadmissible,
0
0
6788 inputs (6788 checked, O inadmissible,
0
0
0

ignored) ...
inadmissible, O ignored)...
ignored)...
7070 inputs (7070 checked,
7354 inputs (7354 checked,
7634 inputs (7634 checked, O inadmissible, O ignored)...

Execution completed for ALL inputs (32606 ms, 7776 checked, O inadmissible).
Not all nondeterministic branches may have been considered.

inadmissible, O ignored)...

inadmissible, ignored)...

Also this algorithm can be automatically checked.
38/48

Two fundamental techniques for validation/verification.

Model checking: processing a semantic model.
Fully automatic, no human interaction is required.
Completely possible only if the model is finite.
State space explosion: “finite” actually means “not too big”.
Proving: constructing a logical deduction.
Assumes a sound deduction calculus.
Also possible if the model is infinite.
Complexity of deduction is independent of size of model.
Many properties can be automatically proved (automated reasoners); in general,
however, interaction with a human is required (proof assistants).

While verifying the validity of a conjecture generally requires deduction, its
invalidity can be often quickly established by checking.

39/48

3. Modeling Computations

40/48

Programs are just special cases of “(computational) systems”.

Computational System
One or more active components.
Deterministic or nondeterministic behavior.
May or may not terminate.
Safety
“Nothing bad will ever happen.”
Partial correctness of programs: for every admissible input, if the program
terminates, its output does not violate the output condition.
Liveness
“Something good will eventually happen.”
Termination of programs: for every input, the program eventually terminates.

General goal is to establish the safety and liveness of computational systems.
41/48

Any computational system can be modelled as a transition system 7 = (S, I, R).

State space S = 51 x ... x S,: the set of all possible system states.

Determined by the possible values of system variables x1, . . ., x, with values
from (finite or infinite) domains S, ..., S,.

Initial states 7 € S: the possible starts of the execution of the system.
Typically defined by an a predicate I,, on the system variables x1, ..., x,.
Transition relation R € S x S: the possible execution steps.

Typically defined by a predicate R - between the prestate values x and the
poststate values x” of the program variables.

Nondeterminism: for some prestate x there may be multiple poststates x’.

42/48

System C = (S, I, R) with counters x und y which may be independently incremented.
+1 +1

S =2ZxZ ¥ !

I(x,y):©x=yAy =0 . y

R((x,y), ")) &
xX'=x+1Ay =y)V

xX'=xAy =y+1)
Infinitely many starting states.

[x=0,y=0],[x=1Ly=1],[x=2,y=2],...
In each state two possibilities.
[x=2,y=3] » [x=3,y=3]
- [x=2,y=4]

A nondeterministic system.
43/48

Transition system T = (S, I, R).

System run: (finite or infinite) sequence sg — s1 — so — ... of states in S.
so is initial: I(sg).
s; — s;i41 ist a transition: R(sg, s1).
If run stops in s, then s,, has no successor: =R(s,, s’), for all s’ € S.

S0

System run- . _

System runs can be understood as paths in a directed graph.
44/48

System C = (S, 1, R).
S=ZxZ

I(x,y):©x=yAy =0
R({x, y), (x',y")) r&
(xX'=x+1Ay =y)Vv
(xX'=xAny =y+1)
Safety: o(x >0Ay >0)
Both x als y never become negative.
True, because every system run has this property.
Liveness: ox > 1.

Variable x eventually becomes greater equal 1.
False, because this system run does not have this property.

[x=0,y=0] - [x=0,y=1] > [x=0,y=2] > [x=0,y=3] —> ...

For establishing liveness properties, “unfair” system runs must be ruled out. 45/48

M = OF.

Verify that formula F is an invariant of system M.

M =(S,I,R).
I(s) & ...

R(s,s") :© Ro(s,8") VRi(s,8) V...V R,_1(s,5).

Proof by induction.
Vs. I(s) = F(s).
F holds in every initial state.
Vs,s'. F(s) AR(s,s") = F(s').
Each transition preserves F.
Reduces to a number of subproofs:

F(s) ARo(s,s") = F(s')

F(s) ARu-1(s,s") = F(s')

The verification of a safety property by an induction proof.

46/48

val N:IN;
type int = Z[-1,N];

shared system Counter

{
var x:int = 0; var y:int = 0;
invariant 0 < x Ax <N A O <Ly Ay<N;

1t1 0[0<=xAx<NAO<LyAy<NI];
1tl[fairness] (O[x 21D A (O[y =21 D3

action incX() fairness weak;
{ x = if x < N-1 then x+1 else 0; }
action incY() fairness weak;
{y=if y < N-1 then y+1 else 0; }

Fairness constraints also ensure liveness properties.
47/48

File Edit SMT TP Help
File: counter.txt
% @
1val N:N;
2type int = 2[-1,N];
3

4shared system Countex

XS
6 var x:int = @; var y:int

7 invariant 0 s x AX<NAOSYAY <N

B 1 0<=xAX<NADSYAY<NI;
9 1tlfaimess] (ol x21 1) A (ol y211);

10 action incX() fairness weak;

11 { x = if x < N-1 then x+1 else 0;
12 action incY() fairness weak;

13 {y=1if y < N-1 then ys1 else 0;
14}

15

Verification by state space exploration and/or induction proofs.

RISC Algorithm Language (RISCAL)

Analysis
290 v =

Translation: ©@Nondeterminism Default Value: 0 Other Values: |-
Execution: @Silent Inputs: PerMile: Branches: Depth:
Visualization: ~Trace ~ Tree Width: 80C Height: 60C

Parallelism: ~Multi-Threaded Threads:4 ~Distributed Servers:

Operation: B/ systen Counter ~

Executing systen Counter
25 system states found with search depth 25

Execution conpleted (4 ms)

Executing _ltl1,

Checking LTL fornula CI(((8 < x) A (x < N)) A (0 £ ¥)) A (y < N)]
Fornula automaton with 3 states generated

25 system states and 51 product automaton states investigated

LTL formula is satisfied (model checking time: 14 ms)

Execution completed (16 ms)

Executing _1t12()

Checking LTL formula (o[x 2 11) A (oly 2 11).

Fornula automaton with 4 states generated

9 system states and 12 product automaton states investigated

LTL formula is satisfied (nodel checking time

Execution completed (13 ms)

Executing _Counter_o_initPre_cverify_0(7,7) with all 49 inputs
Execution completed for ALL inputs (1 ms, 1 checked, 48 inadmissible)
Executing _Counter_0_actionPre_0_cverify_0(2,2) with all 49 inputs
Execution completed for ALL inputs (1 ms, 25 checked, 24 inadmissible).
Executing _Counter_0_actionPre_1_cverify 0(2,Z) with all 49 inputs
Execution completed for ALL inputs (12 ms, 25 checked, 24 inadmissible)
Executing _Counter_0_actionPre_0_cpre 0(2,Z) with all 49 inputs
Execution completed for ALL inputs (8 ms, 25 checked, 24 inadmissible)
Executing _Counter_0_actionPre_1_cpre 0(7,7) with all 49 input
Execution completed for ALL inputs (1 ms, 25 checked, 24 inadmissible).

Tasks
Execute operation
Verify specification preconditions
~ Verify temporal properties
Is temporal property satisfied?
Is temporal property satisfied?
- Verify specification
Does system invariant nitially hold?
- actioninX
Is system invariant preserved?
~ actionincY
Is system invariant preserved?
Verify initialization precondtions
- Verify action preconditions
- actioninX
Is assigned value legal?
* actionincY
Is assigned value legal?

48/48

	Specifying Problems
	The RISC Algorithm Language (RISCAL)
	Modeling Computations

