PARALLEL COMPUTING
Shared Memory

4

Armin Biere
2019/04/01

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Why Shared Memory?

B wide-spread availability of multi-core

O in servers for more than 20 years

O desktop for more than 10 years

O GPU computing for more than 10 years
O smart phones for more than 5 years

B power limits in CMOS technology

O around 2005 frequency scaling stopped
O Moore’s law still continued to hold
O more cores instead of higher frequency

m threads
O “known” programming model
O similar to sequential model
O but with globally shared memory
O and multiple processing units

B processes

O classical but more complicated
O fork / join paradigm

O communication over files / pipes
O mmap (..., MAP_SHARED, ...)

1/25

Shared Memory Programming Model

W programs / processes / threads

thread thread] !ocal allrchltec.tural (CPU) state
oo oc O including registers / program counter
registers registers O shared heap for threads
(0 shared memory for processes

L write T read L write T read B communicate over global memory
O think globally shared variables
B read and write atomic

O only for machine word values (and pointers)
O need other synchronization mechanisms

memory

W solution for mutual exclusion needed

2/25

Data Race

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int

main (void)

{
pthread_create (&t0, 0, incx, 0);
pthread_create (&tl1, 0, incx, 0);
pthread_join (t0, 0);
pthread_join (t1, 0);
printf ("/%d\n", x);
return 0;

pthread_t t0, t1;
int x;

void *
incx (void * dummy)
{

X++;

return 0;

3/25

Data Race

this code already gives some ideas about pthreads
increment function incx just increments the global variable x (without locking)
the main function creates two threads running incx

if first thread finishes executing incx before second starts then there is no problem

incrementing twice should always yield 2 as output

but there is a potential data race

. first thread t0 reads value 0 of x into local register r0

. also increments its local copy in r0 to value 1

. second thread t1 reads old value 0 of x into its local register r1

. also increments its local copy in r1 to value 1

. now first thread t0 writes back r0 to the global variable x with value 1

6. finally second thread t1 writes back r0 to the global variable x with value 1

]
]
|
B then waits for them to finish (joins with first thread t0 first, then with second t1)
]
]
]

a s wnNn =

B testing with massif load (schedule steering)
valgrind --tool=helgrind Or gcc -fsanitize=thread

4/25

Avoiding Data Races Through Locking / Mutual Exclusion

void *
inecx (void * dummy)

{ . .
?

Tock O); How to implement locking?
int tmp = x; | will first look at software only solutions
t ++; . . .
sz tmp ; m hardware solutions much more efficient
unlock ();
return 0;

}

5/25

Eraser / Lock-Set Algorithm

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, Thomas E. Anderson:
Eraser: A Dynamic Data Race Detector for Multithreaded Programs. ACM Trans. Comput. Syst. 15(4):

391-411 (1997)

B check for “locking discipline”

O shared access protected by at least one lock
O collect lock sets at read and write events
O check that intersection of lock sets non-empty

B if a lock-set becomes empty

O produce improper locking warning (potential data race)
O even though the actual race might not have occurred

W initialization is tricky (phases)

O spurious warnings
O only some can surpressed automatically

B for instance implemented in helgrind
B major problem is that it needs “sandboxing” (interpreting memory accesses)

6/25

Mutual Exclusion with Deadlock

#include

void *

. 4 %
pthread_t t0, t1; zncx e >
int x:
int x; lock (p);

. . X++;
int id[] ={0, 113 unlock (p);
int flagll = { 0, 0 }; return OF') ,
void lock (int * p) { ’
int me = *p, int
int other = !me; i i
main (void)
flaglmel = 1; {

thle (flaglother]) pthread_create (&t0, O, incx, &id[0]);

pthread_create (&t1, 0, incx, &id[1]);
pthread_join (t0, 0);

pthread_join (t1, 0);

printf ("%d\n", x);

return 0;

>

void unlock (int * p) {
int me = *p;
flag[me] = 0;

}
7/25

Deadlock

B data race
uncoordinated access to memory
interleaved partial views
inconsistent global state (incorrect)
“always consistent” = safety property
avoided by locking
which in turn might slow-down application
B deadlock
two threads wait for each other
each one needs the other to “release its lock” to move on
“no deadlock” = liveness property
does not necessarily need sandboxing
might be easier to debug
might actually not be that bad (“have you tried turning it off and on again?”)
more fine-grained versions later
B debugging dead-lock
O tools allow to find locking cycles
O run your own cycle checker after wrapping lock / unlock
O attach debugger to deadlocked program

oooooo

oDoooooo

8/25

Mutual Exclusion with Deadlock

#include

pthread_t t0, ti; W previous version

nt x; O flag to go first
) . O hope nobody else has the same idea at the same time
int 1dfl = {0, 1 ¥ O but check that and if this is not the case proceed
int victim = 0; O deadlock under contention
void lock (int * p) { W this version

int me = *p; O even more passive / helpful

victim = me; O always let the other go first

while (victim == me) O tell everybody that you are waiting

; O wait until somebody else waits too

3 0 almost always deadlocks (without contention)

i) B the Peterson algorithm combines both ideas
void unlock (int * p) {

}

9/25

Peterson Algorithm
actually broken on real modern hardware

m without the memory fence

id lock (int .
ver ock (int % p) { B because read in other thread

int me = *p;)

int other = !me; can be reordered before own write

flag[mel = 1; (even for restricted x86 memory model)

victim = me;

// __sync_synchronize ();

while (flaglother] && victim == me) expected:

i 0: write (f1ag[0], 1) 1: write (flag[1], 1)

¥ 0: write (victim, 0) 1: write (victim, 1)

0: read (flagl[1]) =1 1: read (flagl[0]) =1
void unlock (int * p) {

int me = *p; .
flaglmel = 0; possible:
} 0: read (flag[1])= 0 1: read(flag[0])= 0
0: write (flagl[0], 1) 1: write(flag[1], 1)
0: write (victim, 0) 1: write (victim, 1)

10/25

Mutual Exclusion Algorithms

B classical “software-only” algorithms

O more of theoretical interest only now
O because memory model of multi-core machines weak (reorders reads and writes)
O but would be on reorder-free hardware still not really efficient (in space and time)

B need hardware support anyhow

O various low-level (architecture) depedent primitives
O atomic increment, bit-set, compare-and-swap and memory fences
O better use platform-independent abstractions, such as pthreads

m we will latter see how-those low-level primitives can be used

11/25

Sequential Consistency

Leslie Lamport:
How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs.

IEEE Trans. Computers 28(9): 690-691 (1979)

B systems with processors (cores) and memories (caches)
O think HW: processors and memories work in parallel
O processors read (fetch) values and write (store) computed values to memories
[0 common abstraction: consider each memory address as single memory module
B (single) processor sequential iff programs (reads / writes) executed sequentially
O sequentially means without parallelism
0 between memories and the single processor
B processors sequentially consistent iff
every parallel execution of programs
can be reordered into a sequential execution
such that sequential semantics of programs and memories are met

[0 sequential (single) program semantics: read / writes executed in program order
O sequential (single) memory semantics: read returns what was written (array axioms in essence)

12/25

FIFO Read / Write Order

P1 P2 P1 P2

A
write read write read write

read write read

FIFO

|«—={FIFO] |
|«—»{FIFO
|«—[FIFO
|«—»{FIFO

M1
M
M

M g

global FIFO read / write operation gives sequential consistency (left)

projected to individual memory addresses too (right)
13/25

Out-of-Order Write-to-Read

long a, b;
void * £ (void * q) { pthread_t s, t;
a = 1;
long ¢ = aj; int main () {
long d = b; pthread_create (&s, 0, £, 0);
long u = ¢ + d; pthread_create (&t, 0, g, 0);
return (voidx*) u; long u, v;
¥ pthread_join (s, (void*x) &u);
pthread_join (t, (voidx*x) &v);
void * g (void * p) { long m = u + v;
b = 1; printf ("%1d\n", m);
long e = b; return 0;
long f = a; ¥
long v = e + £
return (voidx*) v;
}

14/25

Out-of-Order Write-to-Read

long a,

long £ (
long g (

void * f
a = 1;
long ¢
long d
long u
return

void * g
b = 1;
long e
long f£
long v
return

b
) { a = 1; long
) { b =1; long

(void * q) {

= a;
= b;

= ¢ + d;
(voidx*) uj;

(void * p) {

= b;
= a;

= e + f;
(voidx*) wv;

tmp
tmp

//
/7
/7
/7

!/
1/
1/
/7

a;
b

fwal
frac
frbd
fadd

gubl
grbe
graf
gadd

return tmp + b; }
return tmp + a; }

H H H H

0] 03 03 0"

writes
reads
reads
adds

writes
reads
reads
adds

value
value
value
and

value
value
value
and

Q o o0 -

H Hh O =

to memory
from memory
from memory
locally

to memory
from memory
from memory
locally

15/25

common sequentially consistent interleaved scenario with result 3

long a,

void * f
a = 1;
long ¢
long d
long u
return

void * g
b = 1;
long e
long f
long v
return

b;

(void * q)

= a;
= b;

= c + d;
(void*) u;

(void * p)

= b;
= a;

= e + f;
(voidx*) v;

/7
/7
/7
/7

/7
/7
/7
/7

fwal
frac
frbd
fadd

gubl
grbe
graf
gadd

abcdefuvm memory-fifo

11101----
111011 ---
111011 ---
111011---
1110112--
11101122~
111011223

fwal

frac
frbd

grbe
grbe
graf

gadd
gadd
madd

frbd

graf

madd

16/25

rare sequentially consistent interleaved scenario with result 4

long a,

void * f
a = 1;
long ¢
long d
long u
return

void * g
b = 1;
long e
long £
long v
return

b;

(void * q)

a;
= b,
= c + d;
(voidx*) u;

(void * p)

= b;
= a;

= e + f;
(voidx*) wv;

/7
/7
/7
/7

/7
/7
/7
/7

fwal
frac
frbd
fadd

gwbl
grbe
graf
gadd

abcdefuvm memory-fifo

111-1----
11111 ----
111111 ---
111111 ---
111111 ---
1111112--
11111122~
111111224

fwal

gwbl
gwbl
gwbl
gwbl
gwbl
frac
grbe
frod
graf

gadd
gadd
madd

frac
frac
frac
frac
grbe
frbd
graf

madd

grbe
grbe
grbe
frbd
graf

frbd

frbd graf

graf

17/25

less frequent sequentially inconsistent scenario with result 2

long a,

void * f
a = 1;
long ¢
long d
long u
return

void * g
b = 1;
long e
long f
long v
return

b;

(void * q)

= a;
= b;

= c + d;
(void*) u;

(void * p)

= b;
= a;

= e + f;
(voidx*) v;

/7
/7
/7
/7

/7
/7
/7
/7

fwal
frac
frbd
fadd

gubl
grbe
graf
gadd

abcdefuvm memory-fifo

00101----
001010---
101010---
111010---
111010---
111010---
1110101 - -
11101011 -
111010112

fwal

frac frbd
frbd

gwbl
gwbl
gwbl
gwbl
gwbl

grbe
grbe
graf

gadd
gadd
madd

madd

graf

frac Qo0

grbe 0o0

18/25

no sequentially consistent scenario with result 2

long a, b;

void * f (void * q) {

a = 1; // fwal fwal gwbl
long ¢ = aj; // frac
long d = b; // frbd £ 1 bel
long u = ¢ + d; // fadd rac gEDe
return (void*) u;
¥ f£rbd0 frafo
void * g (void x p) {
b = 1; // gubl faddl faddl
long e = b; // grbe
long f = a; // graf \\\)///
long v = e + f; // gadd madd2

return (void*) v;

19/25

Linearizability
write (a, 13)

threed A -

write (a, 42) read (a) =13
thread B read (a) = 42

B consistency can be extended to method calls
O method calls take time during a time interval: invocation to response
O example above with read / write on memory

O below with enqueue / dequeue on queue
p.engeue (13) p.degeue () = 13
th dA = O— = — — = — — O————
rea p.degeue () = 42

p.engeue (42) p.degeue () = 42
threadB ----- -

p.degeue () = 13

B execution linearizable iff
there is a linearization point between invocation and response
where the method appears to take effect instantaneously

B at the linearization point the effect of a method becomes visible to other threads

20/25

locally sequentially consistent but globally not (nor linearizable)

queue semantics

T

p.engeue (13) g.engeue (13) p.degeue () = 42
thread A &~ ————— e —— -
queue
semantics queue
semantics
g.engeue (42) p.engeue (42) q.degeue () = 13
threadB -~—~-"-"~"~"-"---- —_—e - — - - P i —_——— o _

\/
W

queue semantics

21/25

Progress Conditions: Wait-Free, Lock-Free

B a total method is defined in any state, otherwise partial
O like “dequeue” is partial and “enqueue” (in an unbounded queue) is total
O same for “read” and “write”
B method is blocking iff response can not be computed immediately
O common scenario in multi-processor systems
B linearizable computations can always be extended with pending responses of total messages
O so in principle pending total method responses never have to be blocking
O but it might be dificult to compute the actual response
® method m wait-free iff every invocation eventually leads to a response
O in the strong liveness sense, e.g., within a finite number of steps
O orinLTL ¥m[G (m.invocation — F m.response)]
B method m lock-free iff infinitely often some method call finishes
O so some threads might “starve”, but the overall system makes progress
O orinLTL (3m[GFm.invocation]) — GF 3m’[m’.response]
B every wait-free method is also lock-free
O wait-free provides stronger correctness guarantee
O usually minimizes “latency” and leads to less efficiency in terms of through put
O and is harder to implement

22/25

Compare-And-Swap (CAS)

// GCC’s builtin function for CAS

bool __sync_bool_compare_and_swap (type *ptr, type oldval, type newval);
// it atomically executes the following function

bool CAS (type * address, type expected, type update) {

if (*address != expected) return false;
*address = update;
return true;

B considered the “mother” of all atomic operations
O many modern architectures support CAS
O alternatives: load-linked / store-conditional (LL/SC)
O see discussion of memory model for RISC-V too
m compiler uses CAS or LL/SC to implement other atomic operations
O if processors does not support corresponding operations
O like atomic increment

O C++11 atomics
23/25

Treiber Stack

Treiber, R.K..
Systems programming: Coping with parallelism.

IBM, Thomas J. Watson Research Center, 1986.

B probably first lock-free data-structure
B implements a parallel stack

m suffers from ABA problem

B see demo

24/25

Others

hazard pointers
false sharing
queues (Michael & Scott Queue)

relaxed data structures (k-stack)

Andreas Haas, Thomas Hiitter, Christoph M. Kirsch, Michael Lippautz, Mario Preishuber, Ana Sokolova:
Scal: A Benchmarking Suite for Concurrent Data Structures.
NETYS 2015: 1-14

http://scal.cs.uni-salzburg.at

Paul E. McKenney
Is Parallel Programming Hard, And, If So, What Can You Do About It?
https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

25/25

http://scal.cs.uni-salzburg.at

