
PARALLEL COMPUTING
Algorithms and Complexity

Armin Biere
2018/03/06



Slow-Down in Parallel SAT

table 2 of

Parallel Multithreaded Satisfiability Solver: Design and Implementation.
Yulik Feldman, Nachum Dershowitz, Ziyad Hanna
http://dx.doi.org/10.1016/j.entcs.2004.10.020

� paper is inconclusive about the reason for slow-down

� probably more threads work on useless sub-tasks

� sharing clauses caching sub-computation increases pressure on memory system

� maybe search space splitting was not a good idea (guiding path)

http://dx.doi.org/10.1016/j.entcs.2004.10.020


Low Speedup in Parallel SAT

slide 4 of (video 3:30)

http://www.birs.ca/events/2014/5-day-workshops/14w5101/videos/watch/

201401221154-Sabharwal.html

� sequential SAT algorithms produce proofs of large depth (= span)

� so need new algorithms which produce low depth proofs

http://www.birs.ca/events/2014/5-day-workshops/14w5101/videos/watch/201401221154-Sabharwal.html
http://www.birs.ca/events/2014/5-day-workshops/14w5101/videos/watch/201401221154-Sabharwal.html


Memory System is Good Enough

Martin Aigner, Armin Biere, Christoph Kirsch, Aina Niemetz, Mathias Preiner.
Analysis of Portfolio-Style Parallel SAT Solving on Current Multi-Core Architectures.
In Proc. Intl. Workshop on Pragmatics of SAT (POS’13),
EPiC Series in Computing, vol. 29, 28-40, EasyChair 2014.
http://fmv.jku.at/papers/AignerBiereKirschNiemetzPreiner-POS13.pdf

� largest speed-up obtained by portfolio approach
� run different search strategies in parallel
� if one terminates stop all
� in practice share some important learned clauses caching sub-computations

� slow-down due to memory system?
� since memory system (memory / caches / bus) are shared in multi-core systems
� slow-down not too bad (particularly for solvers with small working set)
� even though considered memory-bound (but random access)
� waiting time for memory to arrive overlaps

http://fmv.jku.at/papers/AignerBiereKirschNiemetzPreiner-POS13.pdf


Clever Splitting

Marijn Heule, Oliver Kullmann, Siert Wieringa, Armin Biere.
Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads.
Haifa Verification Conference 2011: 50-65, Springer 2012
http://dx.doi.org/10.1007/978-3-642-34188-5_8

Marijn J.H. Heule, Oliver Kullmann, and Victor Marek
Solving and Verifying the boolean Pythagorean Triples problem via Cube-and-Conquer.
SAT 2016, 196-211, Springer 2016
http://dx.doi.org/10.1007/978-3-319-40970-2_15

Everything is Bigger in Texas
https://www.cs.utexas.edu/~marijn/ptn/

JKU CS Colloquium 22. June 2016

http://dx.doi.org/10.1007/978-3-642-34188-5_8
http://dx.doi.org/10.1007/978-3-319-40970-2_15
https://www.cs.utexas.edu/~marijn/ptn/


Work and Span

spanwork

12 7



Amdahls Law with Work and Span

T = work = sequential time Tp = wall-clock time p CPUs T∞ = wall-clock time∞ CPUs

Speedup SP = T/TP

span critical path (also called “makespan” in the context of scheduling)

f fraction of sequential work, thus f = span/work

simplified Amdahl’s law in terms of work and span: Sp ≤ 1/f = work/span

Reduce span as much as possible:

� keep sequential blocks short! ⇒ fine grained locking is evil

� keep sequential dependencies short! ⇒ (non-logarithmic) loops are evil



Pebble Games

Given a directed acyclic graph with one sink.

Nodes of the graph have a pebble or not.

One step can either . . .
. . . remove a pebble from a node . . .

. . . or add a new pebble to a node without one, . . .

1

2

3

4 5

5−

6

3−

6−

8−

8−

B−

9−

B−

C−C−

A− 7

8
9

A B

C

. . . but only if all its predecessor have a pebble.

Goal is to only have a pebble on the sink node.

What is the smallest maximum number of pebbles needed?

common concept in complexity theory
assuming intermediate results have to be stored
relates to smallest p needed to reach maximum speed-up
this version (black pebble game) actually only gives space bounds



Sum

compute sum
∑n

1 xi for n numbers xi in parallel

� sequential
x3 x4 x5 x6 x7 x8x2

2

1
3

1
4

1
5

1
6

1
7

1
8

1

Σ

Σ

Σ

Σ

Σ

Σ

Σ

x1

� y0 = 0, yi+1 = yi + xi for i = 1 . . . n− 1

� work = T = O(n) (n− 1 additions)
� span = O(n) too
� since yi+1 depends on all previous yj with j ≤ i

� thus no speed-up Sp = O(1)

� parallel

x3 x4 x6 x7 x8x5

8

7Σ

x2x1

Σ

8

1

Σ

Σ

Σ
2

1 3

4

4

1

5

6

8

5Σ

Σ

� associativity allows to regroup computation
� work = O(n) remains the same
� span = O(logn) reduces exponentially
� speed-up not ideal but Sn = O(n/ logn)
� note p > n does not make sense



Prefix / Scan

compute all sums sj =
∑j

1 xi for all j = 1 . . . n and again n numbers xi in parallel

sequential version as in previous slide

parallel version needs a second depth O(log n) pass

x3 x4 x6 x7 x8x5

8

7ΣΣ
2

1

Σ 1

3
Σ 1

5

Σ 1

6

Σ 1

7

x2x1

8

1

Σ

Σ

Σ3

4

4

1

5

6

8

5Σ

Σ
works even “in place” (first pass overwrites original xi)

but actual “wiring” complicated

still span = O(log n)

basic algorithmic idea for many “parallel” algorithms
(propagate and generate adders with prefix trees instead of ripple carry adders)



List Ranking / Pointer Jumping

0 0 0 000 000:

01: 111 1 1 1 1

012 2 2 2 2 22:

0123: 34444

012344: 567

determine distance to head of list:
as long there is i with next [i] 6= ⊥:

val [i] += val [next [i]]

next [i] = next [next [i]]



Sorting Networks

� circuits for sorting fixed number n of inputs
� basic “gate” compare-and-swap:

cmpswap(x, y) := (min(x, y),max(x, y))

x

y

min(x, y)

max(x,y)

� interesting challenge to get smallest sorting network
for n = 11 size only known to be between 33 and 35 compare-and-swap operations

� zero-one principle
� correctness of sorting network (it sorts!) . . .
� . . . only requires sorting 0 and 1 inputs (bits) . . .
� . . . as long only compare-and-swap is used.

� asymptotic complexity of algorithms
� examples: Bitonic Sorting, Batcher Odd-Even Mergesort
� with span = O(log2 n)
� with work = O(n · log2 n) = T1

� but sequential time T = O(n · logn)
� maximum absolute speed-up Sn = O(n/ logn)



Bubble Sort Example

� top-most i sorted after i phases

� lowest value only sorted after n− 1

compare-and-swaps

� work = O(n2)

� span = O(n)

� looks like perfect speedup Sn = O(n)
w.r.t. (bad) sequential algorithm

� however, if we compare against Quicksort
T = O(n · logn)
we only get
Sn = O(n·logn

n
) = O(logn) < O(n/ logn)



Batcher Odd-Even Mergesort

� basically as mergesort
� split input into two parts . . .

� . . . sort parts recursively . . .

� . . . merge sorted sequence.

� example: recursion for n = 8

� outer block takes two sorted sequences of
size 4 each

� each inner block takes two sorted sequences
of size 2 each

� outer input sequences need to be sorted too



Batcher Odd-Even Mergesort



NC – Nick’s Class

f(n) polylogarithmic iff exists constant c such that f(n) = O(logc n)

NC is set of decision problems . . .

. . . which can be decided in polylogarithmic time . . .

. . . on a parallel computer with polynomial many processors, e.g., . . .

. . . exists constant c such that p = O(nk).

NCc requires (parallel) computation time (span) in O(logc n)

NC =
⋃

NCc



L, NL, AC

L is set of decision problems solvable in logarithmic space determistically

NL is set of decision problems with logarithmic space non-determistically

NC = AC is the set of decision problems with logarithmic circuit complexity, i.e., . . .
. . . each input of size n can be decided by polynomial circuit with logarithmic depth in n, . . .
. . . made of gates with bounded (NC) or unbounded (AC) number of inputs

as before define NCc and ACc requiring O(logc n) depth (layers)



P Completeness

NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ NC2 ⊆ AC2 ⊆ NC3 ⊆ · · · ⊆ NC = AC ⊆ P

using “logarithmic” reductions

it is commonly believed that NC 6= P

accordingly P-hard problems are supposed to be NOT “parallelizable”

similar to the common belief that P 6= NP



Circuit Evaluation Problem

Given a boolean circuit with one output, and an evaluation to its inputs.

Evaluate the circuit and determine its output value for that input assignment.

This problem (deciding whether output yields one) is P-complete . . .

. . . and thus considered not to be parallelizable.

Thus evaluating a function can not be done “effectively” in parallel.

One step of simulation or constraint propagation are not parallelizable! (?)


