
Lace: Non-Blocking Split Deque for Work-Stealing
Tom van Dijk & Jaco van de Pol
FMV/Parallel Computing, a sunny morning in 2017



Background

Background

I PhD at Formal Methods & Tools, University of Twente
I PhD Research: Parallel Binary Decision Diagrams

I Using work-stealing...
I ...and lock-free hash tables
I to implement Sylvan and Lace.

I Current research interests
I Parallel Satisfiability
I Using ZBDDs to store clause sets for Satisfiability
I Solving Parity Games via Priority Promotion

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Guide

What to do as a good student?

I I want you to understand each slide.
I Ask me why I made certain choices.
I Ask me how to find performance problems.
I Ask me how to fine-tune the implementation.
I Ask me about the relation between shared-memory and

message passing.
I Ask me why I think we cannot go much faster than this.

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Task parallelism

1 def fib(k):
2 if k < 2 : return k
3 spawn fib(k − 2)
4 spawn fib(k − 1)
5 n ← sync
6 m ← sync
7 return n + m

7

6

5

4

3

2 1

2

3

2 1

4

3

2 1

2

5

4

3

2 1

2

3

2 1

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Example: calculate fib(11)

Task graph:
11

10 9

8 7

6 5

4 3

2 1

Task deque (of first worker):

10 8 6 4 2
t h

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Work-stealing related to its deque

Work-stealing operations Deque operations

spawn(task) push(task)
sync peek, pop
steal-and-run(victim) steal

I Each worker has 1 deque.
I Worker uses push/peek/pop on its own deque.
I Worker uses steal on other deques.
I Policy: steal from the thief.

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Deques for work-stealing

Implementations (blue = non-blocking)

I Fully shared deque: Frigo ea (’Cilk’ 1998), ABP (1998),
Chase and Lev (2005), Hendler ea (2006)

I Private deque: Acar ea (2013)
I Split deque: Faxén (’Wool’ 2008, 2010), Dinan ea (2009)
I Non-blocking split deque: Van Dijk & Van de Pol (2013)

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Deques for work-stealing

Challenges

I Avoid hidden and unnecessary communication
I false sharing (variables accessed by thieves / owner)
I unnecessary memory writes and reads

I Avoid using locks/mutexes
I (solved using lock-free operations)

I Avoid expensive memory fences, e.g., Cilk-THE
I (mostly solved using split principle)

I Avoid overhead, especially since most tasks are never stolen
I (solved with “direct task stack”)

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Deque in Lace

Deque is described by variables tail (t), split (s), head (h).

• • • • • • • •
t s h

I Tasks are shared or private.
I The first t tasks are stolen.
I Tasks steal by atomic cas on t and s together.
I Owner modifies h and s with normal memory operations.
I Extra flag: movesplit.

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Deque in Lace

Deque is described by variables tail (t), split (s), head (h).

• • • • • • • •
t s h

Communication is key!!
Cacheline Contents Thief access Owner access

Shared 1 tail, split Often Sometimes
Shared 2 flag movesplit Sometimes Often
Private head, osplit – Often

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Deque in Lace

Moving the split point back

• • • • • • •
t s, h

• • • • • • •
t s, h

• • • • • • •
ts h

• • • • • • •
t s h

owner reads t,s

thieves steal

owner sets s

owner repairs s

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Experimental results

Benchmarks

I fib(50) – 20,365,011,073 tasks
I uts(T3L) – Unbalanced Tree Search, 111,345,630 tasks
I queens(15) – 171,129,071 tasks
I matmul(4096) – 3,595,117 tasks
I No cut-off point, fine-grained, very small tasks.

Measurements

I 48-core AMD machine (4 sockets, 12 cores per socket)
I Wallclock time around parallel part, 1, 48 workers.

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Experimental results

Benchmark time Speedup
Results TS T1 T48 TS/T48 T1/T48

fib 50 149.2 144 4.13 34.5 34.9
uts T2L 84.5 86.0 1.81 46.1 47.4
uts T3L 43.11 44.2 2.23 18.7 19.9
uts T3L * 43.11 44.26 1.154 37.4 38.3
queens 15 533 602 12.63 42.2 47.7
matmul 4096 773 781 16.46 47.0 47.5

* = with extension to fix issues with leapfrogging (next slides)

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Leapfrogging

Leapfrogging

I Waiting for stolen work? Steal from thief!
I Advantage: gives nice upper bound on deque size!
I Disadvantage: steal chaining...

w0 w1 w2 w3 w4 w5

w6w7w8w9w10w11

I Work does not trickle down fast enough!

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Conclusions

Conclusions

I Non-blocking split deque has low overhead and good speedup
I Leapfrogging plus random stealing solves steal chaining
I Only require memory fence to shrink the shared portion
I Lace can be found at:

I http://github.com/trolando/lace
I Feel free to reproduce results (bench.py)

I Lace is used in our parallel BDD implementation Sylvan

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Algorithm outline

1 def steal():
2 if allstolen : return None
3 t, s ← (tail, split)
4 if t < s :
5 if cas ((tail,split), (t,s), (t+1,s)) : return Task(t)
6 else: return None
7 elif ¬ movesplit : movesplit ← true
8 return None

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Algorithm outline

9 def push(task):
10 if head = size : raise QueueFull
11 write task data at head
12 head ← head + 1
13 if oallstolen :
14 (tail,split) ← (head-1,head)
15 osplit ← head
16 allstolen ← false
17 oallstolen ← false
18 if movesplit : movesplit ← false
19 elif movesplit :

// Grow shared portion
20 new_split ← (osplit + head + 1) / 2
21 split ← new_split
22 osplit ← new_split
23 movesplit ← false

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Algorithm outline

24 def pop():
25 head ← head - 1
26 def pop-stolen():
27 head ← head - 1
28 if ¬ oallstolen :
29 allstolen ← true
30 oallstolen ← true

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Algorithm outline

31 def peek():
32 if head=0 : raise QueueEmpty
33 if oallstolen : return Stolen(head-1)
34 if osplit = head :
35 if ¬ shrink-shared() :
36 allstolen ← true
37 oallstolen ← true
38 return Stolen(head-1)
39 if movesplit :

// Grow public section (excluding head-1)
40 new_split ← (osplit + head) / 2
41 split ← new_split
42 osplit ← new_split
43 movesplit ← false
44 return Work(head-1)

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Algorithm outline

45 def shrink-shared():
46 t, s ← (tail, split)
47 if t = s : return false
48 new_s ← (t + s) / 2
49 split ← new_s
50 osplit ← new_s
51 memory fence
52 t ← tail
53 if t = s : return false
54 if t > new_s :
55 new_s ← (t + s) / 2
56 split ← new_s
57 osplit ← new_s
58 return true

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing



Informal proof

stolen
(allstolen)

private
not stolen

shared
not stolen

private
stolen

shared
stolen

12

12

1414,21,41,56

49 5 (cas)

14,21,41,56

49

Work

25

Stolen

27

Tom van Dijk & Jaco van de Pol Lace: non-blocking split deque for work-stealing


	Background
	Task Parallelism and Work-Stealing
	Lace: Non-Blocking Split Deque
	Experimental Evaluation
	Leapfrogging and Steal Chaining
	Conclusions
	Appendix

