
LOGICAL MODELS OF
PROBLEMS AND COMPUTATIONS
Theory and Software

Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

Logical Models of Problems and Computations

What is the purpose of logical modeling?

� Precisely describe the problem to be solved.
� Clarification of mind, resolution of ambiguities.
� Specification of program to be developed.

� Software-supported analysis of the problem and its solution.
� Validation of specification.
� Validation/verification of solution.
� Interactive/automatic provers and model checkers.

� Automatic computation of solution respectively simulation of execution.
� Logical solvers (SMT: Satisfiability Modulo Theories).
� Perhaps: rapid prototyping of a later manually written program.

To profit from software, we need computer-understandable models.

1/46

1. Specifying Problems

2. The RISC Algorithm Language (RISCAL)

3. Modeling Computations

2/46

Specifying Problems

� A (computational) problem:

Input: x1 ∈ T1, . . . , xn ∈ Tn where Ix

Output: y1 ∈ U1, . . . , ym ∈ Um where Ox,y

� Input variables x1, . . . , xn.
� With types T1, . . . ,Tn.

� Input condition (precondition) Ix.
� A formula whose free variables occur in x1, . . . , xn.

� Output variables y1, . . . , ym.
� With types U1, . . . ,Um.

� Output condition (postcondition) Ox,y.
� A formula whose free variables occur in x1, . . . , xn, y1, . . . , ym.

Formulas refer to functions and predicates that characterize the problem domain.

3/46

Example

Extract from a finite sequence s a subsequence of length n starting at position p.

s

t

n
p

Input: s ∈ T∗,n ∈ �, p ∈ � where

n + p ≤ length(s)

Output: t ∈ T∗ where

length(t) = n ∧
∀i ∈ �. i < n⇒ t[i] = s[i + p]

The resulting sequence must have appropriate length and contents.
4/46

Implementing Problem Specifications

� The specification demands a function f : T1 × . . .×Tn → U1 × . . .×Um such that

∀x1 ∈ T1, . . . , xn ∈ Tn. Ix ⇒ let (y1, . . . , ym) = f (x1, . . . , xn) in Ox,y

� For all arguments x1, . . . , xn that satisfy the input condition,
� the result (y1, . . . , ym) of f satisfies the output condition.

� The specification itself already implicitly defines such a function:

f (x1, . . . , xn) := choose y1 ∈ U1, . . . , ym ∈ Um. Ox,y

� An implicit function definition (whose result is arbitrary, if no values satisfy O).
� An actual implementation must provide an explicitly defined function.

� Right-side of definition is a term that describes a constructive computation.

The ultimate goal of computer science/mathematics is to provide explicit
definitions of functions (i.e., programs) that implement problem specifications.

5/46

Function Definitions

� An (explicit) function definition

f : T1 × . . . × Tn → T

f (x1, . . . , xn) := tx

� Special case n = 0: a constant definition c : T, c := t.

� Function constant f of arity n.

� Type signature T1 × . . . × Tn → T .

� Parameters x1, . . . , xn (variables).

� Body tx (a term whose free variables occur in x1, . . . , xn).

We thus know ∀x1 ∈ T1, . . . , xn ∈ Tn. f (x1, . . . , xn) = tx.

6/46

Examples
� Definition: Let x and y be natural numbers. Then the square sum of x and y is

the sum of the squares of x and y.

squaresum: � ×�→ �
squaresum(x, y) := x2 + y2

� Definition: Let x and y be natural numbers. Then the squared sum of x and y

is the square of z where z is the sum of x and y.

sumsquared: � ×�→ �
sumsquared(x, y) := let z = x + y in z2

� Definition: Let n be a natural number. Then the square sum set of n is the set
of the square sums of all numbers x and y from 1 to n.

squaresumset : �→ P(�)
squaresumset(n) := {squaresum(x, y) | x, y ∈ � ∧ 1 ≤ x ≤ n ∧ 1 ≤ y ≤ n}

7/46

Predicate Definitions

� An (explicit) predicate definition

p ⊆ T1 × . . . × Tn

p(x1, . . . , xn) :⇔ Fx

� Predicate constant p of arity n.

� Type signature T1 × . . . × Tn.

� Parameters x1, . . . , xn (variables).

� Body Fx (a formula whose free variables occur in x1, . . . , xn).

We thus know ∀x1 ∈ T1, . . . , xn ∈ Tn. p(x1, . . . , xn) ⇔ Fx.

8/46

Examples

� Definition: Let x, y be natural numbers. Then x divides y (written as x |y) if
x · z = y for some natural number z.

| ⊆ � ×�

x |y :⇔ ∃z ∈ �. x · z = y

� Definition: Let x be a natural number. Then x is prime if x is at least two and
the only divisors of x are one and x itself.

isprime ⊆ �
isprime(x) :⇔ x ≥ 2 ∧ ∀y ∈ �. y |x ⇒ y = 1 ∨ y = x

� Definition: Let p,n be a natural numbers. Then p is a prime factor of n, if p is
prime and divides n.

isprimefactor ⊆ � ×�
isprimefactor(p,n) :⇔ isprime(p) ∧ p|n

9/46

Implicit Definitions

� An implicit function definition

f : T1 × . . . × Tn → T

f (x1, . . . , xn) := choose y ∈ T . Fx,y

� Function constant f of arity n.

� Type signature T1 × . . . × Tn → T .

� Parameters x1, . . . , xn (variables).

� Result variable y.

� Result condition Fx,y (a formula whose free variables occur in x1, . . . , xn, y).

We thus know ∀x1 ∈ T1, . . . , xn ∈ Tn. (∃y ∈ T . Fx,y) ⇒ let y = f (x1, . . . , xn) in Fx,y.

10/46

Examples
� Definition: A root of x is some y such that y squared is x (if such a y exists).

aRoot : �→ �
aRoot(x) := choose y ∈ �. y2 = x

� Definition: The root of x ≥ 0 is that y such that the square of y is x and y ≥ 0.

theRoot : �≥0 → �≥0
theRoot(x) := choose y ∈ �≥0. y

2 = x ∧ y ≥ 0

� Definition: The quotient q of m and n , 0 is such that m = n · q + r for some r < n.

quotient : � ×�\{0} → �
quotient(m,n) := choose q ∈ �. ∃r ∈ �. m = n · q + r ∧ r < n

� Definition: The gcd(x, y) of x, y (not both 0), is the greatest number dividing x and y.

gcd: (� ×�)\{(0,0)} → �
gcd(x, y) := choose z ∈ �. z |x ∧ z |y ∧ ∀z′ ∈ �. z′ |x ∧ z′ |y ⇒ z′ ≤ z

Function result need not be uniquely defined (may be even arbitrary). 11/46

Predicates versus Functions

A predicate gives rise to functions in two ways.

� A predicate:

isprimefactor ⊆ � ×�
isprimefactor(p,n) :⇔ isprime(p) ∧ p|n

� An implicitly defined function:

someprimefactor : �→ �
someprimefactor(n) := choose p ∈ �. isprimefactor(p,n)

� An explicitly defined function whose result is a set:

allprimefactors : �→ P(�)
allprimefactors(n) := {p | p ∈ � ∧ isprimefactor(p,n)}

The preferred style of definition is a matter of taste and purpose.
12/46

The Adequacy of Specifications

Given a specification
Input: x where Px Output: y where Qx,y

we may ask the following questions:

� Is precondition satisfiable? (∃x. Px)

� Otherwise no input is allowed.
� Is precondition not trivial? (∃x. ¬Px)

� Otherwise every input is allowed, why then the precondition?
� Is postcondition always satisfiable? (∀x. Px ⇒ ∃y.Qx,y)

� Otherwise no implementation is legal.
� Is postcondition not always trivial? (∃x, y. Px ∧ ¬Qx,y)

� Otherwise every implementation is legal.
� Is result unique? (∀x, y1, y2. Px ∧Qx,y1 ∧Qx,y2 ⇒ y1 = y2)

� Whether this is required, depends on our expectations.

13/46

Example: The Problem of Integer Division
Input: m ∈ �,n ∈ � Output: q ∈ �,r ∈ � where m = n · q + r

� The postcondition is always satisfiable but not trivial.
� For m = 13,n = 5, e.g., q = 2,r = 3 is legal but q = 2,r = 4 is not.

� But the result is not unique.
� For m = 13,n = 5, both q = 2,r = 3 and q = 1,r = 8 are legal.

Input: m ∈ �,n ∈ � Output: q ∈ �,r ∈ � where m = n · q + r ∧ r < n

� Now the postcondition is not always satisfiable.
� For m = 13,n = 0, no output is legal.

Input: m ∈ �,n ∈ � where n , 0 Output: q ∈ �,r ∈ � where m = n · q + r ∧ r < n

� The precondition is not trival but satisfiable.
� m = 13,n = 0 is not legal but m = 13,n = 5 is.

� The postcondition is always satisfiable and result is unique.
� For m = 13,n = 5, only q = 2,r = 3 is legal. 14/46

Example: The Problem of Linear Search

Given a finite integer sequence a and an integer x, determine the smallest
position p at which x occurs in a (p = −1, if x does not occur in a).

Example: a = [2,3,5,7,5,11], x = 5 { p = 2

Input: a ∈ �∗, x ∈ �

Output: p ∈ � ∪ {−1} where

let n = length(a) in
if ∃p ∈ �. p < n ∧ a[p] = x

then p < n ∧ a[p] = x ∧
(
∀q ∈ �. q < n ∧ a[q] = x ⇒ p ≤ q

)
else p = −1

All inputs are legal; a result with the specified property always exists and is
uniquely determined.

15/46

Example: The Problem of Binary Search

Given a finite integer sequence a sorted in ascending order and an integer x,
determine some position p at which x occurs in a (p = −1, if x does not occur in a).

Example: a = [2,3,5,5,5,7,11], x = 5 { p ∈ {2,3,4}

Input: a ∈ �∗, x ∈ � where

let n = length(a) in ∀k ∈ �. k < n − 1⇒ a[k] ≤ a[k + 1]
Output: p ∈ � ∪ {−1} where

if ∃p ∈ �. p < n ∧ a[p] = x

then p < n ∧ a[p] = x

else p = −1

Not all inputs are legal; for every legal input, a result with the specified property
exists but may not be unique.

16/46

Example: The Problem of Sorting

Given a finite integer sequence a, determine that permutation b of a that is sorted
in ascending order.

Example: a = [5,3,7,2,3] { b = [2,3,3,5,7]

Input: a ∈ �∗

Output: b ∈ �∗where

let n = length(a) in
length(b) = n ∧ (∀k ∈ �. k < n − 1⇒ b[k] ≤ b[k + 1]) ∧
∃p ∈ �∗. length(p) = n ∧
(∀k ∈ �. k < n⇒ p[k] < n) ∧
(∀k1 ∈ �, k2 ∈ �. k1 < n ∧ k2 < n ∧ k1 , k2⇒ p[k1] , p[k2]) ∧
(∀k ∈ �.k < n⇒ a[k] = b[p[k]])

All inputs are legal; the specified result exists and is uniquely determined. 17/46

1. Specifying Problems

2. The RISC Algorithm Language (RISCAL)

3. Modeling Computations

18/46

The RISC Algorithm Language (RISCAL)
� A system for formally modeling mathematical theories and algorithms.

� Research Institute for Symbolic Computation (RISC), 2016–.
• http://www.risc.jku.at/research/formal/software/RISCAL

� Implemented in Java with SWT library for the GUI.
• Tested under Linux only; freely available as open source (GPL3).

� A language for the defining mathematical theories and algorithms.
� A static type system with only finite types (of parameterized sizes).
� Predicates, explicitly (also recursively) and implicitly def.d functions.
� Theorems (universally quantified predicates expected to be true).
� Procedures (also recursively defined).
� Pre- and post-conditions, invariants, termination measures.

� A framework for evaluating/executing all definitions.
� Model checking: predicates, functions, theorems, procedures, annotations may

be evaluated/executed for all possible inputs.
� All paths of a non-deterministic execution may be elaborated.
� The execution/evaluation may be visualized.

Validating algorithms by automatically verifying finite approximations.

19/46

http://www.risc.jku.at/research/formal/software/RISCAL

The RISC Algorithm Language (RISCAL)

RISCAL divide.txt &

20/46

Using RISCAL
See also the (printed/online) “Tutorial and Reference Manual”.

� Press button (or <Ctrl>-s) to save specification.
� Automatically processes (parses and type-checks) specification.
� Press button to re-process specification.

� Choose values for undefined constants in specification.
� Natural number for val const: N.
� Default Value: used if no other value is specified.
� Other Values: specific values for individual constants.

� Select Operation from menu and then press button .
� Executes operation for chosen constant values and all possible inputs.
� Option Silent: result of operation is not printed.
� Option Nondeterminism: all execution paths are taken.
� Option Multi-threaded: multiple threads execute different inputs.
� Press buttton to abort execution.

During evaluation all annotations (pre/postconditions, etc.) are checked. 21/46

Typing Mathematical Symbols
ASCII String Unicode Character
Int �

Nat �

:= :=

true >

false ⊥

~ ¬

/\ ∧

\/ ∨

=> ⇒

<=> ⇔

forall ∀

exists ∃

sum
∑

product
∏

ASCII String Unicode Character
~= ,

<= ≤

>= ≥

* ·

times Ö

{} ∅

intersect ∩

union ∪

Intersect
⋂

Union
⋃

isin ∈

subseteq ⊆

<< 〈

>> 〉

Type the ASCII string and press <Ctrl>-# to get the Unicode character.
22/46

Example: Quotient and Remainder
Given naturals n and m, compute the quotient q and remainder r of n divided by m.

// the type of natural numbers less than equal N

val N: �;

type Num = �[N];

// the precondition of the computation

pred pre(n:Num, m:Num) ⇔ m , 0;

// the postcondition, first formulation

pred post1(n:Num, m:Num, q:Num, r:Num) ⇔

n = m·q + r ∧

∀q0:Num, r0:Num.

n = m·q0 + r0 ⇒ r ≤ r0;

// the postcondition, second formulation

pred post2(n:Num, m:Num, q:Num, r:Num) ⇔

n = m·q + r ∧ r < m;

We will investigate this specification. 23/46

Example: Quotient and Remainder

// for all inputs that satisfy the precondition

// both formulations are equivalent:

// ∀n:Num, m:Num, q:Num, r:Num.

// pre(n, m) ⇒ (post1(n, m, q, r) ⇔ post2(n, m, q, r));

theorem postEquiv(n:Num, m:Num, q:Num, r:Num)

requires pre(n, m);

⇔ post1(n, m, q, r) ⇔ post2(n, m, q, r);

// we will thus use the simpler formulation from now on

pred post(n:Num, m:Num, q:Num, r:Num) ⇔ post2(n, m, q, r);

Check equivalence for all values that satisfy the precondition.

24/46

Example: Quotient and Remainder
Choose e.g. N = 5.

� Switch option Silent off:
Executing postEquiv(�,�,�,�) with all 1296 inputs.

Ignoring inadmissible inputs...

Run 6 of deterministic function postEquiv(0,1,0,0):

Result (0 ms): true

Run 7 of deterministic function postEquiv(1,1,0,0):

Result (0 ms): true

...

Run 1295 of deterministic function postEquiv(5,5,5,5):

Result (0 ms): true

Execution completed for ALL inputs (6314 ms, 1080 checked, 216 inadmissible).

� Switch option Silent on:
Executing postEquiv(�,�,�,�) with all 1296 inputs.

Execution completed for ALL inputs (244 ms, 1080 checked, 216 inadmissible).

If theorem is false for some input, an error message is displayed.
25/46

Example: Quotient and Remainder

Drop precondition from theorem.

theorem postEquiv(n:Num, m:Num, q:Num, r:Num) ⇔

// requires pre(n, m);

post1(n, m, q, r) ⇔ post2(n, m, q, r);

Executing postEquiv(�,�,�,�) with all 1296 inputs.

Run 0 of deterministic function postEquiv(0,0,0,0):

ERROR in execution of postEquiv(0,0,0,0): evaluation of

postEquiv

at line 25 in file divide.txt:

theorem is not true

ERROR encountered in execution.

For n = 0,m = 0,q = 0,r = 0, the modified theorem is not true.

26/46

Visualizing the Formula Evaluation
Select N = 1 and visualization option “Tree”.

Investigate the (pruned) evaluation tree to determine how the truth value of a
formula was derived (double click to zoom into/out of predicates). 27/46

Example: Quotient and Remainder
Switch option “Nondeterminism” on.

// 1. investigate whether the specified input/output combinations are as desired

fun quotremFun(n:Num, m:Num): Tuple[Num,Num]

requires pre(n, m);

ensures post(n, m, result.1, result.2);

= choose q:Num, r:Num with post(n, m, q, r);

Executing quotremFun(�,�) with all 36 inputs.

Ignoring inadmissible inputs...

Branch 0:6 of nondeterministic function quotremFun(0,1):

Result (0 ms): [0,0]

...

Branch 1:35 of nondeterministic function quotremFun(5,5):

No more results (14 ms).

Execution completed for ALL inputs (413 ms, 30 checked, 6 inadmissible).

First validation by inspecting the values determined by output condition
(nondeterminism may produce for some inputs multiple outputs). 28/46

Example: Quotient and Remainder

// 2. check that some but not all inputs are allowed

theorem someInput() ⇔ ∃n:Num, m:Num. pre(n, m);

theorem notEveryInput() ⇔ ∃n:Num, m:Num. ¬pre(n, m);

Executing someInput().

Execution completed (0 ms).

Executing notEveryInput().

Execution completed (0 ms).

A very rough validation of the input condition.

29/46

Example: Quotient and Remainder
// 3. check whether for all inputs that satisfy the precondition

// there are some outputs that satisfy the postcondition

theorem someOutput(n:Num, m:Num)

requires pre(n, m);

⇔ ∃q:Num, r:Num. post(n, m, q, r);

// 4. check that not every output satisfies the postcondition

theorem notEveryOutput(n:Num, m:Num)

requires pre(n, m);

⇔ ∃q:Num, r:Num. ¬post(n, m, q, r);

Executing someOutput(�,�) with all 36 inputs.

Execution completed for ALL inputs (5 ms, 30 checked, 6 inadmissible).

Executing notEveryOutput(�,�) with all 36 inputs.

Execution completed for ALL inputs (5 ms, 30 checked, 6 inadmissible).

A very rough validation of the output condition.

30/46

Example: Quotient and Remainder

// 5. check that the output is uniquely defined

// (optional, need not generally be the case)

theorem uniqueOutput(n:Num, m:Num)

requires pre(n, m);

⇔

∀q:Num, r:Num. post(n, m, q, r) ⇒

∀q0:Num, r0:Num. post(n, m, q0, r0) ⇒

q = q0 ∧ r = r0;

Executing uniqueOutput(�,�) with all 36 inputs.

Execution completed for ALL inputs (18 ms, 30 checked, 6 inadmissible).

The output condition indeed determines the outputs uniquely.

31/46

Validating the Specification of an Operation

Select operation quotRemFun and press the button “Show/Hide Tasks”.

Automatic generation of those formulas that validate a specification. 32/46

Example: Quotient and Remainder

Right-click to print definition of a formula, double-click to check it.

For every input, is postcondition true for only one output?

theorem _quotremFun_5_PostUnique(n:Num, m:Num)

requires pre(n, m);

⇔ ∀result:Tuple[Num,Num] with post(n, m, result.1, result.2).

(∀_result:Tuple[Num,Num] with let result = _result in

post(n, m, result.1, result.2). (result = _result));

Using N=5.

Type checking and translation completed.

Executing _quotremFun_5_PostUnique(�,�) with all 36 inputs.

Execution completed for ALL inputs (7 ms, 30 checked, 6 inadmissible).

The output is indeed uniquely defined by the output condition.

33/46

Example: Quotient and Remainder

// 6. check whether the algorithm satisfies the specification

proc quotRemProc(n:Num, m:Num): Tuple[Num,Num]

requires pre(n, m);

ensures let q=result.1, r=result.2 in post(n, m, q, r);

{

var q: Num = 0;

var r: Num = n;

while r ≥ m do

{

r := r-m;

q := q+1;

}

return 〈q,r〉;

}

Check whether the algorithm satisfies the specification.

34/46

Example: Quotient and Remainder
Executing quotRemProc(�,�) with all 36 inputs.

Ignoring inadmissible inputs...

Run 6 of deterministic function quotRemProc(0,1):

Result (0 ms): [0,0]

Run 7 of deterministic function quotRemProc(1,1):

Result (0 ms): [1,0]

...

Run 32 of deterministic function quotRemProc(2,5):

Result (0 ms): [0,2]

Run 33 of deterministic function quotRemProc(3,5):

Result (0 ms): [0,3]

Run 34 of deterministic function quotRemProc(4,5):

Result (0 ms): [0,4]

Run 35 of deterministic function quotRemProc(5,5):

Result (1 ms): [1,0]

Execution completed for ALL inputs (161 ms, 30 checked, 6 inadmissible).

A verification of the algorithm by checking all possible executions.
35/46

Example: Quotient and Remainder
proc quotRemProc(n:Num, m:Num): Tuple[Num,Num]

requires pre(n, m);

ensures post(n, m, result.1, result.2);

{

var q: Num = 0; var r: Num = n;

while r > m do // error!

{

r := r-m; q := q+1;

}

return 〈q,r〉;

}

Executing quotRemProc(�,�) with all 36 inputs.

ERROR in execution of quotRemProc(1,1): evaluation of

ensures let q = result.1, r = result.2 in post(n, m, q, r);

at line 65 in file divide.txt:

postcondition is violated by result [0,1]

ERROR encountered in execution.

A falsificaton of an incorrect algorithm. 36/46

Example: Sorting an Array
val N:Nat; val M:Nat;

type nat = Nat[M]; type array = Array[N,nat]; type index = Nat[N-1];

proc sort(a:array): array

ensures ∀i:nat. i < N-1 ⇒ result[i] ≤ result[i+1];

ensures ∃p:Array[N,index]. (∀i:index,j:index. i , j ⇒ p[i] , p[j]) ∧

(∀i:index. a[i] = result[p[i]]);

{

var b:array = a;

for var i:Nat[N]:=1; i<N; i:=i+1 do {

var x:nat := b[i];

var j:Int[-1,N] := i-1;

while j ≥ 0 ∧ b[j] > x do {

b[j+1] := b[j];

j := j-1;

}

b[j+1] := x;

}

return b;

} 37/46

Example: Sorting an Array
Using N=5.

Using M=5.

Type checking and translation completed.

Executing sort(Array[�]) with all 7776 inputs.

1223 inputs (1223 checked, 0 inadmissible, 0 ignored)...

2026 inputs (2026 checked, 0 inadmissible, 0 ignored)...

...

5792 inputs (5792 checked, 0 inadmissible, 0 ignored)...

6118 inputs (6118 checked, 0 inadmissible, 0 ignored)...

6500 inputs (6500 checked, 0 inadmissible, 0 ignored)...

6788 inputs (6788 checked, 0 inadmissible, 0 ignored)...

7070 inputs (7070 checked, 0 inadmissible, 0 ignored)...

7354 inputs (7354 checked, 0 inadmissible, 0 ignored)...

7634 inputs (7634 checked, 0 inadmissible, 0 ignored)...

Execution completed for ALL inputs (32606 ms, 7776 checked, 0 inadmissible).

Not all nondeterministic branches may have been considered.

Also this algorithm can be automatically checked.
38/46

Model Checking versus Proving
Two fundamental techniques for validation/verification.

� Model checking: processing a semantic model.
� Fully automatic, no human interaction is required.
� Completely possible only if the model is finite.
� State space explosion: “finite” actually means “not too big”.

� Proving: constructing a logical deduction.
� Assumes a sound deduction calculus.
� Also possible if the model is infinite.
� Complexity of deduction is independent of size of model.
� Many properties can be automatically proved (automated reasoners); in general,

however, interaction with a human is required (proof assistants).

While verifying the validity of a conjecture generally requires deduction, its
invalidity can be often quickly established by checking.

39/46

1. Specifying Problems

2. The RISC Algorithm Language (RISCAL)

3. Modeling Computations

40/46

Computational Systems

Programs are just special cases of “(computational) systems”.

� Computational System
� One or more active components.
� Deterministic or nondeterministic behavior.
� May or may not terminate.

� Safety
� “Nothing bad will ever happen.”
� Partial correctness of programs: for every admissible input, if the program

terminates, its output does not violate the output condition.
� Liveness

� “Something good will eventually happen.”
� Termination of programs: for every input, the program eventually terminates.

General goal is to establish the safety and liveness of computational systems.
41/46

Transition Systems

Any computational system can be modelled as a transition system T = (S, I,R).

� State space S = S1 × . . . × Sn: the set of all possible system states.
� Determined by the possible values of system variables x1, . . . , xn with values

from (finite or infinite) domains S1, . . . ,Sn.

� Initial states I ⊆ S: the possible starts of the execution of the system.
� Typically defined by an a predicate Ix on the system variables x1, . . . , xn.

� Transition relation R ⊆ S × S: the possible execution steps.
� Typically defined by a predicate Rx,x′ between the prestate values x and the

poststate values x ′ of the program variables.

Nondeterminism: for some prestate x there may be multiple poststates x ′.

42/46

Example
System C = (S, I,R) with counters x und y which may be independently incremented.

yx

+1 +1

S := Z × Z

I(x, y) :⇔ x = y ∧ y ≥ 0

R(〈x, y〉, 〈x ′, y′〉) :⇔

(x ′ = x + 1 ∧ y′ = y) ∨

(x ′ = x ∧ y′ = y + 1)

� Infinitely many starting states.

[x = 0, y = 0], [x = 1, y = 1], [x = 2, y = 2], . . .

� In each state two possibilities.

[x = 2, y = 3] → [x = 3, y = 3]

→ [x = 2, y = 4]

A nondeterministic system.
43/46

System Runs
Transition system T = (S, I,R).

� System run: (finite or infinite) sequence s0 → s1 → s2 → . . . of states in S.
� s0 is initial: I(s0).
� si → si+1 ist a transition: R(s0, s1).
� If run stops in sn, then sn has no successor: ¬R(sn, s′), for all s′ ∈ S.

System run

s0

Successors of s1s2

s1 Successors of s0

System runs can be understood as paths in a directed graph.
44/46

Example
System C = (S, I,R).

S := Z × Z

I(x, y) :⇔ x = y ∧ y ≥ 0

R(〈x, y〉, 〈x ′, y′〉) :⇔

(x ′ = x + 1 ∧ y′ = y) ∨

(x ′ = x ∧ y′ = y + 1)

� Safety: �(x ≥ 0 ∧ y ≥ 0)

� Both x als y never become negative.
� True, because every system run has this property.

� Liveness: ^x ≥ 1.
� Variable x eventually becomes greater equal 1.
� False, because this system run does not have this property.

[x = 0, y = 0] → [x = 0, y = 1] → [x = 0, y = 2] → [x = 0, y = 3] → . . .

45/46

Verifying Safety

We only consider the verification of a safety property.

� M |= �F.
� Verify that formula F is an invariant of system M.

� M = (S, I,R).
� I(s) :⇔ . . .
� R(s, s′) :⇔ R0(s, s′) ∨ R1(s, s′) ∨ . . . ∨ Rn−1(s, s′).

� Proof by induction.
� ∀s. I(s) ⇒ F(s).

• F holds in every initial state.
� ∀s, s′. F(s) ∧ R(s, s′) ⇒ F(s′).

• Each transition preserves F.
• Reduces to a number of subproofs:

F(s) ∧ R0(s, s′) ⇒ F(s′)
. . .

F(s) ∧ Rn−1(s, s′) ⇒ F(s′) 46/46

	Specifying Problems
	The RISC Algorithm Language (RISCAL)
	Modeling Computations

