
Pthreads Introduction

Parallel Computing

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

Programmiersprache C++ Winter 2005 Operator overloading (2)Parallel Computing SS 2017 Pthreads Introduction (2)

Threads vs. Processes

Process can have multiple
threads

Thread: “lightweight” process
Threads share address space, file

descriptors, sockets,...
Per-thread stack, program

counter, registers: thread's
context

Switching threads more efficient
than switching processes
“lightweight” context

Programmiersprache C++ Winter 2005 Operator overloading (3)Parallel Computing SS 2017 Pthreads Introduction (3)

Benefits of Threading
Parallelism

computing independent tasks at the same time
speed-up (Amdahl's Law!)

need multiprocessor HW for “true” parallelism
exploiting capabilities of modern multi-core processors

Concurrency
progress despite of blocking (overlapping) operations
no multiprocessor HW needed
“illusion” of parallelism

analogy: multiple running processes in multi-tasking operating systems

Threaded programming model
shared-memory (no message passing)
sequential program: implicit, strong synchronization via ordering of operations
threaded program: explicit code constructs for synchronizing threads
synchronization clearly designates dependencies
better understanding of “real” dependencies

Programmiersprache C++ Winter 2005 Operator overloading (4)Parallel Computing SS 2017 Pthreads Introduction (4)

Costs of Threading
Overhead (Synchronization, Computation)

directly: more synchronization → less parallelism, higher costs
indirectly: scheduling, memory architecture (cache coherence),

operating system, calling C library,...

Programming discipline
“thinking in parallel”
careful planning
avoidance of

deadlocks: circular waiting for resources
races: threads' speed (scheduling) determines outcome of operation

Debugging and Testing
nondeterminism: timing of events depends on threads' speed (scheduling)
bugs difficult to reproduce

e.g. what thread is responsible for invalid memory access?

probe effect: adding debugging information can influence behaviour
how to test possible interleavings of threads?

Programmiersprache C++ Winter 2005 Operator overloading (5)Parallel Computing SS 2017 Pthreads Introduction (5)

When (not) to Use Threads?
Pro threads

independent computations on decomposable data
Example: arraysum

frequently blocking operations, e.g. waiting for I/O requests
server applications

Contra threads
highly sequential programs: every operation depends on the previous one
massive synchronization requirements

Challenges in Threaded Programming
(applies to parallel computation in general)
Amdahl's Law is optimistic (ignores underlying HW, operating system,...)
keeping the sequential part small: less synchronization
increasing the parallel part: data decomposition

Pthreads Basics

Parallel Computing

Institute for Formal Models and Verification

Johannes Kepler University, Linz, Austria

Programmiersprache C++ Winter 2005 Operator overloading (2)Parallel Computing SS 2017 Pthreads Basics (2)

POSIX Threads
POSIX: Portable Operating System Interface

IEEE standards defining API of software for UNIX-like operating systems

POSIX threads (Pthreads)
standard approved 1995, amendments
functions for

creating threads
synchronizing threads
thread interaction

opaque data types for
thread identifiers
synchronization constructs
attributes
...

header file pthread.h

compilation: gcc ­pthread ­o prog prog.c

References:
D. R. Butenhof, Programming with POSIX Threads, Addison-Wesley, 1997
http://opengroup.org/onlinepubs/007908799/xsh/pthread.h.html

Programmiersprache C++ Winter 2005 Operator overloading (3)Parallel Computing SS 2017 Pthreads Basics (3)

(P)Threads in Linux
How can a thread-library be implemented?
Abstraction levels:

threads: created by a user program
kernel entity: “process”, scheduled by operating system
processor: physical device, gets assigned kernel entities by scheduler

Design decision: how to map threads to kernel entities?
M-to-1:

all threads of process mapped to one kernel entity
fast scheduling (in library), but no parallelism

M-to-N:
threads of process mapped to different kernel entities
two-level scheduling (library and kernel) incurs overhead, but allows parallelism

1-to-1:
each thread mapped to one kernel entity
scheduling in kernel, less overhead than in M-to-N case, allows parallelism
used in most modern Linux systems: Native POSIX Threads Library (NPTL)

Programmiersprache C++ Winter 2005 Operator overloading (4)Parallel Computing SS 2017 Pthreads Basics (4)

Pthread Lifecycle: States
Ready

able to run, waiting for processor

Running
on multiprocessor possibly more than one at a time

Blocked
thread is waiting for a shared resource

Terminated
system resources partially released
but not yet fully cleaned up

thread's own memory is obsolete
can still return value

(Recycled)
all system resources fully cleaned up
controlled by the operating system

Programmiersprache C++ Winter 2005 Operator overloading (5)Parallel Computing SS 2017 Pthreads Basics (5)

Pthread Creation
int pthread_create(arg0, arg1, arg2, arg3)

arg0: pthread_t *tid_ptr
where to store thread ID of type pthread_t

arg1: const pthread_att_t *attr
may set certain attributes at startup
ignored for the moment: always pass NULL → set default attributes

arg2: void *(*start)(void *)
pointer to thread's startup function
takes exactly one void* as argument

arg3: void *arg
actual parameter of thread's startup function

returns zero on success, else error code

thread ID is stored in *tid_ptr
pthread_t pthread_self() returns ID of current thread

int pthread_equal(pthread_t tid1, pthread_t tid2) compares IDs

Example: helloworld

Programmiersprache C++ Winter 2005 Operator overloading (6)Parallel Computing SS 2017 Pthreads Basics (6)

main-Thread

Process creates thread which executes main-function ➙ “main-thread”

main-thread behaves slightly differently from ordinary threads:
termination of main-thread by returning from main causes process to terminate

all threads of process terminate
Example: helloworld

calling pthread_exit(...) in main-thread causes process to continue
all created threads continue
recall lifecycle: main-thread terminates ➙ resources partially released

Attention: stack may be released!

memory errors: dereferencing pointers into main-thread's (released) stack

Example: helloworld_buggy

Programmiersprache C++ Winter 2005 Operator overloading (7)Parallel Computing SS 2017 Pthreads Basics (7)

Pthread Termination
generally: thread terminates if startup function returns
int pthread_exit(void *value_ptr)

causes thread to terminate (special semantics in main-thread)

implicitly called if thread's startup function returns (except in main-thread)

value_ptr is the thread's return value (see pthread_join(...))

int pthread_detach(pthread_t tid)
resources of tid can be reclaimed after tid has terminated

default: not detached
any thread can detach any thread (including itself)

int pthread_join(pthread_t tid, void **value)
returns when tid has terminated (or already terminated), caller blocks

optionally stores tid's return value in *value
return value from calling pthread_exit(...) or returning from startup function

joined thread will be implicitly detached
detached threads can not be joined

Programmiersprache C++ Winter 2005 Operator overloading (8)Parallel Computing SS 2017 Pthreads Basics (8)

Pthread Termination - Examples
Example: helloworld_join

Returning values from threads
returning values from threads via pthread_join(...)

example: returnval

but: waiting for termination often not needed
good practice to release system resources as early as possible

alternative to pthread_join(...): custom return mechanism
threads store their return values on the heap
Example: returnval_heap

problem: need to notify main-thread somehow that all threads have written results

error: joining a detached thread
resources are (may be or not) already released
join should fail
Example: returnval_buggy

error: returning pointer to local variable
Example: returnval_buggy

Programmiersprache C++ Winter 2005 Operator overloading (9)Parallel Computing SS 2017 Pthreads Basics (9)

Pthread Lifecycle Revisited (1/2)
Creation

process creation ➙ main-thread creation

pthread_create(...): new threads are ready
no synchronization between pthread_create(...) and new thread's execution

Startup
main-thread's main function called after process creation

newly created threads execute startup function

Running
ready threads are eligible to acquire processor ➙ will be running

scheduler assigns timeslice to ready thread ➙ threads will be preempted

switching threads ➙ context (registers, stack, pc) must be saved

Blocking
running threads may block, e.g. to wait for shared resource
blocking threads become ready (not running) again

Programmiersprache C++ Winter 2005 Operator overloading (10)Parallel Computing SS 2017 Pthreads Basics (10)

Pthread Lifecycle Revisited (2/2)
Termination

generally: when thread returns from startup function
pthread_exit

can also explicitly be cancelled by pthread_cancel(...)

(optional cleanup handlers are called)
only thread's ID and return value remain valid, other resources might be released
terminated threads can still be joined or detached

joined threads will be implicitly detached, i.e. all its system resources will be released

Recycling
occurs immediately for terminated, detached threads ➙ all resources released

Programmiersprache C++ Winter 2005 Operator overloading (11)Parallel Computing SS 2017 Pthreads Basics (11)

Creating and Using Threads: Pitfalls
Sharing pointers into stack memory of threads

perfectly alright, but handle with care
passing arguments
returning values

Resources of terminated, non-detached threads can not fully be released
large number of threads ➙ performance problems?
should join or detach threads

Relying on the speed/order of individual threads
do not make any assumptions!
need mechanism to notify threads that certain conditions are true

example: returnval_heap

must prevent threads from modifying shared data concurrently
example: sum

➙ Synchronization

Pthreads Synchronization

Parallel Computing

Institute for Formal Models and Verification

Johannes Kepler University, Linz, Austria

Programmiersprache C++ Winter 2005 Operator overloading (2)Parallel Computing SS 2017 Pthreads Synchronization (2)

The Need for Synchronization
Threads operating on shared data concurrently:

scheduling determines outcome of operations → race conditions
can lead to violations of data invariants

integrity of data structures: queues, buffers,...

Classical example: concurrent transactions on bank account

Thread notification
inform one or more threads that certain condition has become true
example: returnval_heap

Thread 1 Thread 2 Balance
read balance: €1000 €1000

read balance: €1000 €1000
set balance: €(1000 – 200) €800

set balance: €(1000 – 100) €900
give out cash: €100 €900

give out cash: €200 €900

Programmiersprache C++ Winter 2005 Operator overloading (3)Parallel Computing SS 2017 Pthreads Synchronization (3)

Basic Pthread Synchronization Mechanisms
Controlling access to shared data

mutex: mutual exclusion
special kind of semaphore
locking a mutex allows mutually exclusive access to shared data
A mutex can be locked (“owned”) by exactly one thread at a time

lock attempt on already locked mutex will block calling thread until mutex unlocked

Thread notification
pthread_join(...): very limited, no notification

condition variables: threads block until notified that condition has become true
always combined with a mutex protecting the condition's data

testing and setting the condition must be performed under locked mutex

multiple threads can block on a condition variable or be notified at a time
e.g. multiple consumers waiting at an empty queue of items
e.g. producer inserts items and notifies waiting consumers

Synchronization in Java:
synchronized blocks and methods, wait() and notify(),notifyAll()

Programmiersprache C++ Winter 2005 Operator overloading (4)Parallel Computing SS 2017 Pthreads Synchronization (4)

Pthread Mutexes (1/2)
Represented as variables of type pthread_mutex_t

never copy mutexes!
share mutexes by passing pointers

Static or dynamic allocation and/or initialization
static initialization

macro PTHREAD_MUTEX_INITIALIZER

set default attributes
e.g. process/system-wide mutexes, real-time scheduling, priority-aware mutexes,...
attributes are beyond our scope

dynamic initialization
pthread_mutex_attr_t for setting mutex's attributes

int pthread_mutex_init(pthread_mutex_t *mutex, ... *attr)
pass NULL for attr to get default attributes

int pthread_mutex_destroy(pthread_mutex_attr_t *attr)
mutex becomes invalid, but can be re-initialized

dynamic allocation and initialization
allocate mutexes on heap and initialize dynamically

Programmiersprache C++ Winter 2005 Operator overloading (5)Parallel Computing SS 2017 Pthreads Synchronization (5)

Pthread Mutexes (2/2)
int pthread_mutex_lock(pthread_mutex_t *mutex)

mutex is currently unlocked: caller will own mutex
mutex is currently locked: caller blocks until mutex is unlocked

deadlock: recursively locking a mutex (unless mutex is set to be recursive)

int pthread_mutex_trylock(pthread_mutex_t *mutex)
mutex is currently unlocked: caller will own the mutex
mutex is currently locked: caller does not block

caller can e.g. enter alternative branch

int pthread_mutex_timedlock(...*mutex, ...*expire)
mutex is currently unlocked: caller will own mutex
struct timespec *expire: absolute timeout for blocking

int pthread_mutex_unlock(pthread_mutex_t *mutex)
among multiple blocking threads, exactly one is selected to own mutex
error: caller does not own mutex
error: mutex is unlocked already

Example: sum, prodcons

Programmiersprache C++ Winter 2005 Operator overloading (6)Parallel Computing SS 2017 Pthreads Synchronization (6)

Pthread Condition Variables (1/2)
Represented as variables of type pthread_cond_t

like for mutexes: analogous functions for initialization, attributes,...
PTHREAD_COND_INITIALIZER, int pthread_cond_init(...),...

Always associated with exactly one mutex
but: different condition variables may use same mutex
condition must be tested and set under protection of mutex
mutex must be properly locked and unlocked
suggested usage pattern:

Managed by Pthread condition variables (similar to Java):
set of waiting threads, (un)locking the mutex, notification of waiting threads

mutex_lock();
while (!condition) {
 mutex_unlock();
 non_busy_wait_until_notified();
 mutex_lock();
}
/* critical region: do some work... */
mutex_unlock();

Programmiersprache C++ Winter 2005 Operator overloading (7)Parallel Computing SS 2017 Pthreads Synchronization (7)

Pthread Condition Variables (2/2)
Waiting on a condition variable

int pthread_cond_wait(pthread_cond_t *cond, ... *mutex)
caller must own mutex, will then block until notified
mutex is automatically unlocked before waiting and locked again if call returns

Notifying waiting threads
int pthread_cond_signal(pthread_cond_t *cond)

caller notifies one arbitrary thread waiting on cond

notified thread wakes up and locks mutex (its call of pthread_cond_wait returns)

int pthread_cond_broadcast(pthread_cond_t *cond)
caller notifies all threads waiting on cond

notified threads wake up (in arbitrary order) and contend for mutex

notifying threads need not own mutex (but recommended)
pthread_cond_timedwait(... *cond, ... *mutex, ... *expire)

struct timespec *expire: absolute timeout for waiting

if timed out or notified: call will return with mutex locked again

Examples: prodcons_cond, returnval_heapcond

Programmiersprache C++ Winter 2005 Operator overloading (8)Parallel Computing SS 2017 Pthreads Synchronization (8)

Pthread Barriers
Represented as variables of type pthread_barrier_t

Synchronizing pool of threads at a specific point
int pthread_barrier_init(...,unsigned int cnt)

must be called before using barrier
cnt: number of threads waiting (calls of ..._wait(...)) before all can continue

int pthread_barrier_destroy(pthread_barrier_t *b)
reset barrier to invalid state
must call pthread_barrier_init(...) before using again

int pthread_barrier_wait(pthread_barrier_t *b)
Calling thread will wait (i.e. block) until cnt threads have called ..._wait(...)

Waiting threads are then released in arbitrary order
Returns non-zero to exactly one arbitrary thread and 0 otherwise

Example: simple­barrier

In Java 1.5 or higher: CyclicBarrier

Programmiersprache C++ Winter 2005 Operator overloading (9)Parallel Computing SS 2017 Pthreads Synchronization (9)

Memory Visibility
When will changes of shared data be visible to other threads?
Pthreads standard guarantees basic memory visibility rules

thread creation
memory state before calling pthread_create(...) is visible to created thread

mutex unlocking (also combined with condition variables)
memory state before unlocking a mutex is visible to thread which locks same mutex

thread termination (i.e. entering state “terminated”)
memory state before termination is visible to thread which joins with terminated thread

condition variables
memory state before notifying waiting threads is visible to woke up threads

Memory barriers:
instructions issued implicitly to ensure memory visibility rules for pthreads
impose order on memory accesses
all memory accesses issued before barrier must complete before any access issued

after the barrier can complete

volatile variables do not guarantee memory consistency!

Programmiersprache C++ Winter 2005 Operator overloading (10)Parallel Computing SS 2017 Pthreads Synchronization (10)

Hints and Pitfalls (1/4)
Always wait in a loop on a condition variable (applies to any thread library)

condition should be re-evaluated after waking up → why?
intercepted wakeups

another thread might acquire mutex before the woke up thread and reset condition

notification on weak predicates (programmer's responsibility)
e.g. notify if n <= value, but “tight” condition is n < value → unnecessary notifications

spurious wakeups
library: more efficient to notify multiple threads at pthread_cond_signal(...)

programming errors: notification although the condition is false
pthread standard does not prevent wakeups without any notifying thread [Butenhof'97]

Beware of deadlocks
threads wait for mutexes in circular fashion
fixed locking hierachy: always lock mutexes in fixed order
try and back off: unlock all mutexes in a set if one lock fails, then start again later

can lead to starvation: thread “polls” for mutex and never waits

Example: deadlock_backoff

Programmiersprache C++ Winter 2005 Operator overloading (11)Parallel Computing SS 2017 Pthreads Synchronization (11)

Hints and Pitfalls (2/4)
Beware of “badly optimizing” the use of condition variables

lost wakeups: thread waits although condition is true
like prodcons_cond: producer signals only if buffer becomes non-empty → error

do not share condition variables between predicates
do not know which predicate a notified thread was waiting for

Speed/order of threads
do not assume anything!
adding sleep(...) is not a bug fix (but can “hide” synchronization problems)

Programmiersprache C++ Winter 2005 Operator overloading (12)Parallel Computing SS 2017 Pthreads Synchronization (12)

Hints and Pitfalls (3/4): Performance Concerns
Number of threads:

cost of thread creation and context switches is system-dependent

Synchronization prevents concurrency and parallelism
best solution: do not share too much (Example: arraysum)

Own mutexes for shortest possible time → reduces waiting time
Massive (un)locking of mutexes is expensive

Example: freq­locking

Mutexes and condition variables consume memory
Mutex: 40 (24) bytes in 64-bit (32-bit) environment
Condition variables: 48 bytes in 32- and 64-bit environment

Programmiersprache C++ Winter 2005 Operator overloading (13)Parallel Computing SS 2017 Pthreads Synchronization (13)

Hints and Pitfalls (4/4): Performance Concerns
Fine-grain locking

using many “small” mutexes increases concurrency and locking overhead
Example: locked­array/many­locks

Coarse-grain locking
using few “big” mutexes decreases concurrency and locking overhead
Example: locked­array/big­lock

Lock chaining
e.g. lock(m1), lock(m2), unlock(m1), lock(m3), unlock(m2),...
e.g. concurrent linked list: locking entire list or single nodes

Read/write locks: allow concurrent reads
multiple readers may concurrently read if no writer is active
one writer prevents any other writer or reader from accessing

Programmiersprache C++ Winter 2005 Operator overloading (14)Parallel Computing SS 2017 Pthreads Synchronization (14)

Advanced Topics
Thread-specific data

static data where each thread has a private value associated with a key

Attributes
for threads, mutexes and condition variables

Cancellation
cancel threads either immediately or at special cancellation points
held resources need to be cleaned up properly (cleanup handlers)

Realtime scheduling
setting scheduling policy and priorities, priority-aware mutexes

Thread-safe libraries
how to make libraries thread-safe?
must interfaces be changed?
often inefficient: one “big” internal mutex protecting entire functions
problem: functions which maintain internal state across calls

Spinlocks vs. mutexes
busy waiting vs. non-busy waiting

