PARALLEL PROGRAM DESIGN

Course "Parallel Computing"

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC) Wolfgang.Schreiner@risc.jku.at http://www.risc.jku.at

Designing Parallel Programs

Ian Foster: "Designing and Building Parallel Programs".

First consider machine-independent (algorithmic) issues.

Concurrency.

Scalability.

Later deal with machine-specific (performance) aspects.

Locality.

Placement.

A methodological approach in multiple stages.

The PCAM Approach

Partitioning.

- Decompose computation and data.
- Exhibit opportunities for parallelism by creating many small tasks.

Communication.

- Analyze data dependencies.
- Determine structure of communication and coordination.

Agglomeration.

- Combine tasks to bigger tasks.
- Improve performance of execution on real computers.

Mapping.

- Assign tasks to processors.
- Maximize utilization and minimize communication.

Partitioning

Expose opportunities for parallelism.

Construct fine-grained decomposition of problem.

Domain/data decomposition:

• Partition data, associate computation to data.

□ Functional/task decomposition:

- Partition computation, associate data to computation.
- Complementary approaches.
 - □ Should be both considered.
 - □ Can lead to alternative algorithms.
 - □ Can be applied to different parts of problem.
- Avoid replication of computation or data.
 - May be introduced later to reduce communication overhead and to increase the granularity of tasks.

Domain Decomposition

Focus on the decomposition of the data.

Divide data into small pieces and associate computation.

- □ If computation requires several, associate to "main" piece.
- Communication is required for access to the other pieces.
- Resulting tasks should be of roughly the same size.
 - □ Otherwise load balancing may become difficult.
- Prefer finer decomposition over coarse ones.
 - □ Small tasks may be agglomerated in later stage.

Typical for problems with large central data structures.

Functional Decomposition

Focus on the decomposition of the computation.

Decompose according to the algorithmic structure.

- Independent computational blocks.
- □ Independent loop iterations.
- □ Independent (recursive) function invocations.
- Determine data requirements of each task.

☐ If requirements overlap, communication is required.

Typical for problems without central data structures.

Partitioning Design Checklist

Is number of tasks large enough?

- □ Order of magnitude larger than processor number.
- □ Keeps flexibility for further stages.
- Does number of tasks scale with problem size?
 - □ Larger problems can be solved with more processors.
- Are the tasks of comparable size?
 - Otherwise load balancing may become difficult.
- Are redundant computations and data avoided?

□ Otherwise scalability may suffer.

- Have alternative partitions been considered?
 - □ Try both domain and functional decomposition.

Do we have sufficient concurrency?

Communication

Specify flow of information between tasks.

Describe communication structure by "channels".

- Connections between those tasks that produce data and those that consume them.
- Typically easy to determine for functional decomposition from data flow between tasks.
- May be complex to determine for domain decomposition due to data dependencies.
- Analyze the usage of channels.
 - □ Number and sizes of messages flowing through channels.
 - Temporal relationship/dependencies between messages flowing through different channels.

Also a healthy exercise for shared memory programs.

Types of Communication

Local versus global:

Communication with a small set of tasks ("neighbors") or with many other tasks.

Structured versus unstructured:

Communication forms a regular structure (tree, grid, ...) or an arbitrary graph.

- Static versus dynamic:
 - Identity of communication partners is known in advance and does not change or depends on runtime data and may vary.

Synchronous versus asynchronous:

Producers and consumers cooperate in data transfer or consumer may acquire data without producer cooperation.

Local Communication

Example: Jacobi finite differences method.

$$X_{i,j}^{t+1} = \frac{1}{8} \left(4X_{i,j}^t + X_{i-1,j}^t + X_{i+1,j}^t + X_{i,j-1}^t + X_{i,j+1}^t \right)$$

for t=0 to T-1 do
 send X(i,j) to each neighbor
 receive X(i-1,j), X(i+1,j), X(i,j-1), X(i,j+1) from neighbors
 update X(i,j)
end

Global Communication

Example: parallel reduction operation.

Centralized algorithm:

- Single task becomes bottleneck of communication and computation.
- Sequential algorithm:
 - Additions are performed one after each other.

Global Communication

Example: parallel reduction operation.

$$\sum_{i=j}^{n} X_i = X_j + \sum_{i=j+1}^{n} X_i$$

$$\underbrace{\mathbb{O}}_{(6)}^{\Sigma_1^7}\underbrace{\Sigma_2^7}_{(5)}\underbrace{\Sigma_3^7}_{(4)}\underbrace{\Sigma_4^7}_{(3)}\underbrace{\Sigma_5^7}_{(2)}\underbrace{\Sigma_6^7}_{(6)}\underbrace{\Sigma_7^7$$

Decentralized algorithm:

□ Communication/computation are distributed among tasks.

But still a sequential algorithm.

Global Communication

Example: parallel reduction operation.

Decentralized and parallel algorithm:
 Up to k/2 additions can be performed in parallel.

Unstructured/Dynamic Communication

Example: finite element method.

Mesh of points representing a physical object.

□ Simulation of, e.g., the impact of force on the object.

□ Shape of the mesh is modified by the impact.

Domain decomposition.

Unstructured communication: mesh is irregular.

Dynamic communication: mesh changes.

Asynchronous Communication

Example: management of a shared data structure.

- A set of "data tasks" manages a shared data structure.
 - Data structure is distributed among tasks.
- A set of "computing tasks" produce and consume data.
 - Exchange of messages between computing tasks and data tasks for reading and writing the data structure.

Consumption of data decoupled from their production.

Communication Design Checklist

- Do all tasks perform the same amount of communication?
- Does each task communicate only with a few neighbors?
- Can the communication operations proceed concurrently?
- Can the computation operations proceed concurrently?

Do we have the potential for scalability?

Agglomeration

In the previous phases we have developed a parallel algorithm.

Algorithm not efficiently executable.

- □ Large number of small tasks.
- □ Large amount of communication.
- Combine tasks to larger tasks.
 - □ Increase the granularity of tasks.
 - Granularity: the ratio of computation to communication.
 - □ Still retain design flexibility.
 - Sufficiently many tasks for scalability and mapping flexibility.
 - □ Reduce engineering costs.
 - Avoid effort of parallelization where it does not pay off.

Increasing Granularity: Surface to Volume

- Before: granularity 1/4 = 0.25.
 - □ 1 local computation operation.
 - 4 data items sent.
- After: granularity 16/16 = 1.
 - □ 16 local computation operations.
 - 16 data items sent.

Surface to Volume Effect

- □ Typical for domain decomposition.
- Communication proportional to "surface" of subdomain.
- Computation proportional to "volume" of subdomain.
- □ Surface grows slower than volume.
 - Square: $S/V = 4a/a^2 = 4/a$.

Increasing Granularity: Replicating Computation

Communication may be decreased by replicating computation.

Example: two algorithms computing a global sum in N tasks.

Time 2(N-1) resp. $2 \log_2 N$ for performing N-1 additions.

Increasing Granularity: Replicating Computation

A replicating algorithm computing a global sum in N tasks.

Time $\log_2 N$ for performing $N \log N$ additions.

Increasing Granularity: Avoiding Communication

Agglomerate tasks that cannot execute concurrently.

Only N agglomerated tasks are needed.

Retaining Design Flexibility

Do not "over-agglomerate".

- Goal is not a fixed number of tasks.
 - □ Task number should grow with problem and machine size.
 - □ Algorithm should remain scalable.
- Goal is not one task per processor.
 - □ There shold be still multiple tasks per processor.
 - If one task is blocked, another one may execute and keep the processor busy.

Agglomeration should not "hardwire" the algorithm to a fixed problem and machine size.

Reducing Engineering Costs

Try to avoid extensive code changes.

- One partitioning/agglomeration may be much more difficult to implement than another.
- Try to avoid extensive data structure changes.
 - Conversions from/to data structures given by the context of the parallel application may be cumbersome.

Consider also the costs of development in relation to the expected performance gains.

Agglomeration Design Checklist

- Has communication been reduced (granularity increased)?
- Does computation replication outweigh its costs?
- Does data replication not limit scalability?
- Have tasks still similiar sizes?
- Is there still sufficient concurrency?
- Does the number of tasks still scale with problem size?
- Can task number be reduced without limiting flexibility?
- Are the engineering costs reasonable?

Do we have sufficient execution efficiency?

Mapping

We need a strategy for mapping tasks to processors (cores).

- Only a problem for systems with distributed memory or shared memory with non-uniform memory access.
 - On multi-core processors and SMP systems, the automatic placement of tasks to cores by the OS suffices.
- Conflicting goals:
 - Place tasks that are able to execute concurrently on different processors.
 - Place tasks that communicate frequently on the same processor.

The mapping problem is NP-complete, so we can in general only hope for good heuristics.

Types of Mapping

Static mappings:

A fixed number of permanent tasks is mapped at program start to processors; this mapping does not change.

Load balancing algorithms:

The assignment of permanent tasks to processors is adapted at runtime to keep processors equally busy.

Task scheduling algorithms:

Many short-living tasks are created at runtime; a scheduler maps tasks to processors where they run until termination.

Static mapping is usually only sufficent for domain decomposition with structured communication.

Load Balancing: Recursive Bisection

Recursively divide domain into partitions with equal costs.

Recursive coordinate bisection:

□ Recursively cut multi-dimensional grid at longest dimension.

Unbalanced recursive bisection:

□ Choose among partitions the one with lowest aspect ratio.

Recursive graph bisection:

Decompose graph according to distance from extremities.

Load Balancing: Local Algorithms

Compare load with that neighbor processors; transfer load if difference gets too big.

Use only local information and that of neighbor processors.

Load Balancing: Probabilistic/Cyclic Mapping

Probabilistic mapping:

- Map tasks to randomly selected processors.
- If task number is much larger than processor number, every processor receives about the same amount of computation.

□ Generally leads to high communication.

Cyclic mapping:

- \Box Map tasks to processors in a cyclic (scattered) mapping.
- \Box Each of *P* processors receives every *P*-th task in turn.
- Similar to probabilistic mapping but more regular structure.

Task Scheduling

Maintain pool of tasks to which all new tasks are added.

- Manager/worker scheme:
 - □ Manager controls pool; idle workers ask manager for tasks.
- Hierarchical manager/worker scheme:
 - □ Subsets of workers with own submanagers and subpools.
 - □ Submanagers interact with manager (and each other).
- Decentralized schemes:
 - Each worker maintains its own task pool.
 - □ Idle workers request tasks from other workers.

Termination detection may become an issue.

Mapping Design Checklist

- If considering a program where tasks are only created at startup, have you also considered task scheduling?
- If considering task scheduling, have you also considered a program where tasks are only created at startup?
- If considering load-balancing, have you evaluated simpler alternatives such as probabilistic or cyclic mappings?
- If considering probabilistic or cyclic mappings, have you verified that task number is large enough to balance load?
- If considering task scheduling, have you verified that the manager does not become a bottleneck?

Do we have sufficient processor utilization?

General Recommendations

Be sure to parallelize the actual hotspots of a program.

□ First you must understand where computation time is spent.

Consider alternatives.

□ Do not just implement the first scheme that comes to mind.

Remember scalability.

□ You may get more cores available than originally thought.

- But also consider the coding effort.
 - □ A simple solution may be sufficient as a starting point.
- And do not forget the application context.

□ The parallel code must be integrated into a bigger system.

Ultimately, determining the most efficient parallelization strategy for a given problem may require multiple iterations of performance debugging and optimizing/rewriting the code.