
PARALLEL PROGRAM DESIGN
Course “Parallel Computing”

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at
http://www.risc.jku.at

mailto:Wolfgang.Schreiner@risc.jku.at
http://www.risc.jku.at

Designing Parallel Programs

Ian Foster: “Designing and Building Parallel Programs”.

� First consider machine-independent (algorithmic) issues.
� Concurrency.
� Scalability.

� Later deal with machine-specific (performance) aspects.
� Locality.
� Placement.

A methodological approach in multiple stages.

1/31

The PCAM Approach

� Partitioning.
� Decompose computation and data.
� Exhibit opportunities for parallelism

by creating many small tasks.

� Communication.
� Analyze data dependencies.
� Determine structure of

commmunication and coordination.

� Agglomeration.
� Combine tasks to bigger tasks.
� Improve performance of execution

on real computers.

� Mapping.
� Assign tasks to processors.
� Maximize utilization and minimize

communication.

P R O B L E M

partition

communicate

agglomerate

map

2/31

Partitioning

Expose opportunities for parallelism.

� Construct fine-grained decomposition of problem.
� Domain/data decomposition:

• Partition data, associate computation to data.

� Functional/task decomposition:
• Partition computation, associate data to computation.

� Complementary approaches.
� Should be both considered.
� Can lead to alternative algorithms.
� Can be applied to different parts of problem.

� Avoid replication of computation or data.
� May be introduced later to reduce communication overhead

and to increase the granularity of tasks.

3/31

Domain Decomposition

Focus on the decomposition of the data.

3-D2-D1-D

� Divide data into small pieces and associate computation.
� If computation requires several, associate to “main” piece.
� Communication is required for access to the other pieces.

� Resulting tasks should be of roughly the same size.
� Otherwise load balancing may become difficult.

� Prefer finer decomposition over coarse ones.
� Small tasks may be agglomerated in later stage.

Typical for problems with large central data structures.
4/31

Functional Decomposition

Focus on the decomposition of the computation.

Atmospheric Model

Land Surface Model

Hydrology

 Model Ocean

Model

� Decompose according to the algorithmic structure.
� Independent computational blocks.
� Independent loop iterations.
� Independent (recursive) function invocations.

� Determine data requirements of each task.
� If requirements overlap, communication is required.

Typical for problems without central data structures.
5/31

Partitioning Design Checklist

� Is number of tasks large enough?
� Order of magnitude larger than processor number.
� Keeps flexibility for further stages.

� Does number of tasks scale with problem size?
� Larger problems can be solved with more processors.

� Are the tasks of comparable size?
� Otherwise load balancing may become difficult.

� Are redundant computations and data avoided?
� Otherwise scalability may suffer.

� Have alternative partitions been considered?
� Try both domain and functional decomposition.

Do we have sufficient concurrency?

6/31

Communication

Specify flow of information between tasks.

� Describe communication structure by “channels”.
� Connections between those tasks that produce data and

those that consume them.
� Typically easy to determine for functional decomposition

from data flow between tasks.
� May be complex to determine for domain decomposition

due to data dependencies.

� Analyze the usage of channels.
� Number and sizes of messages flowing through channels.
� Temporal relationship/dependencies between messages

flowing through different channels.

Also a healthy exercise for shared memory programs.

7/31

Types of Communication

� Local versus global:
� Communication with a small set of tasks (“neighbors”) or

with many other tasks.

� Structured versus unstructured:
� Communication forms a regular structure (tree, grid, . . .) or

an arbitrary graph.

� Static versus dynamic:
� Identity of communication partners is known in advance and

does not change or depends on runtime data and may vary.

� Synchronous versus asynchronous:
� Producers and consumers cooperate in data transfer or

consumer may acquire data without producer cooperation.

8/31

Local Communication

Example: Jacobi finite differences method.

Xt+1
i,j = 1

8

(
4Xt

i,j +Xt
i−1,j +Xt

i+1,j +Xt
i,j−1 +Xt

i,j+1

)
for t=0 to T-1 do

send X(i,j) to each neighbor
receive X(i-1,j), X(i+1,j), X(i,j-1), X(i,j+1) from neighbors
update X(i,j)

end

9/31

Global Communication

Example: parallel reduction operation.

S =

n∑
i=0

Xi

1 2 3 4 5 6 7

(0)
(1) (2) (3) (4) (5)

(6)

0

S

(7)

� Centralized algorithm:
� Single task becomes bottleneck of communication and

computation.
� Sequential algorithm:

� Additions are performed one after each other.

10/31

Global Communication

Example: parallel reduction operation.

n∑
i=j

Xi = Xj +

n∑
i=j+1

Xi

0 1 2 3 4 5 6 7
(6) (5) (4) (3) (2) (1) (0)

X7
∑

6

7∑
5

7∑
4

7∑
3

7∑
2

7∑
1

7

� Decentralized algorithm:
� Communication/computation are distributed among tasks.

� But still a sequential algorithm.

11/31

Global Communication

Example: parallel reduction operation.

j+k∑
i=j

Xi =
(j+bk/2c∑

i=j

Xi

)
+
(j+k∑
i=j+bk/2c+1

Xi

)

0 1 2 3 4 5 6 7

∑ 0

1
∑ 2

3
∑ 4

5
∑ 6

7

∑ 0

3

∑ 0

7

∑ 4

7

� Decentralized and parallel algorithm:
� Up to k/2 additions can be performed in parallel.

12/31

Unstructured/Dynamic Communication

Example: finite element method.

� Mesh of points representing a physical object.
� Simulation of, e.g., the impact of force on the object.
� Shape of the mesh is modified by the impact.

� Domain decomposition.
� Unstructured communication: mesh is irregular.
� Dynamic communication: mesh changes.

13/31

Asynchronous Communication

Example: management of a shared data structure.

C C C C

D D D D

read(1)1 read(3)
3

write(5)

0 1 2 3 4 5 6 7

� A set of “data tasks” manages a shared data structure.
� Data structure is distributed among tasks.

� A set of “computing tasks” produce and consume data.
� Exchange of messages between computing tasks and data

tasks for reading and writing the data structure.

Consumption of data decoupled from their production.

14/31

Communication Design Checklist

� Do all tasks perform the same amount of communication?

� Does each task communicate only with a few neighbors?

� Can the communication operations proceed concurrently?

� Can the computation operations proceed concurrently?

Do we have the potential for scalability?

15/31

Agglomeration

In the previous phases we have developed a parallel algorithm.

� Algorithm not efficiently executable.
� Large number of small tasks.
� Large amount of communication.

� Combine tasks to larger tasks.
� Increase the granularity of tasks.

• Granularity: the ratio of
computation to communication.

� Still retain design flexibility.
• Sufficiently many tasks for

scalability and mapping flexibility.

� Reduce engineering costs.
• Avoid effort of parallelization

where it does not pay off.

(a)

(c)

(b)

(d)

16/31

Increasing Granularity: Surface to Volume

� Before: granularity 1/4 = 0.25.
� 1 local computation operation.
� 4 data items sent.

� After: granularity 16/16 = 1.
� 16 local computation operations.
� 16 data items sent.

� Surface to Volume Effect
� Typical for domain decomposition.
� Communication proportional to

“surface” of subdomain.
� Computation proportional to

“volume” of subdomain.
� Surface grows slower than volume.

• Square: S/V = 4a/a2 = 4/a.

(a)

(b)

Decreasing surface-to-volume ratio increases granularity. 17/31

Increasing Granularity:
Replicating Computation

Communication may be decreased by replicating computation.

Example: two algorithms computing a global sum in N tasks.

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3
s s s b b b

s s s s

s s
b b

b b b b

Time 2(N − 1) resp. 2 log2N for performing N − 1 additions.

18/31

Increasing Granularity:
Replicating Computation

A replicating algorithm computing a global sum in N tasks.

∑ 0

1
∑ 2

3
∑ 4

5
∑ 6

7

∑ 0

3

∑ 0

7

∑ 4

7

∑ 0

1
∑ 2

3
∑ 4

5
∑ 6

7

1 2 3 4 5 6 70

∑ 0

7
∑ 0

7
∑ 0

7
∑ 0

7
∑ 0

7
∑ 0

7
∑ 0

7

∑ 0

3
∑ 0

3
∑ 0

3
∑ 4

7
∑ 4

7
∑ 4

7

Time log2N for performing N logN additions.

19/31

Increasing Granularity:
Avoiding Communication

Agglomerate tasks that cannot execute concurrently.

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3
s s s b b b

s s s s

s s
b b

b b b b

∑ 0

1
∑ 2

3
∑ 4

5
∑ 6

7

∑ 0

3

∑ 0

7

∑ 4

7

∑ 0

1
∑ 2

3
∑ 4

5
∑ 6

7

1 2 3 4 5 6 70

∑ 0

7
∑ 0

7
∑ 0

7
∑ 0

7
∑ 0

7
∑ 0

7
∑ 0

7

∑ 0

3
∑ 0

3
∑ 0

3
∑ 4

7
∑ 4

7
∑ 4

7

Only N agglomerated tasks are needed.
20/31

Retaining Design Flexibility

Do not “over-agglomerate”.

� Goal is not a fixed number of tasks.
� Task number should grow with problem and machine size.
� Algorithm should remain scalable.

� Goal is not one task per processor.
� There shold be still multiple tasks per processor.
� If one task is blocked, another one may execute and keep

the processor busy.

Agglomeration should not “hardwire” the algorithm to a fixed
problem and machine size.

21/31

Reducing Engineering Costs

� Try to avoid extensive code changes.
� One partitioning/agglomeration may be much more difficult

to implement than another.

� Try to avoid extensive data structure changes.
� Conversions from/to data structures given by the context of

the parallel application may be cumbersome.

Consider also the costs of development in relation to the
expected performance gains.

22/31

Agglomeration Design Checklist

� Has communication been reduced (granularity increased)?

� Does computation replication outweigh its costs?

� Does data replication not limit scalability?

� Have tasks still similiar sizes?

� Is there still sufficient concurrency?

� Does the number of tasks still scale with problem size?

� Can task number be reduced without limiting flexibility?

� Are the engineering costs reasonable?

Do we have sufficient execution efficiency?

23/31

Mapping

We need a strategy for mapping tasks to processors (cores).

� Only a problem for systems with distributed memory or
shared memory with non-uniform memory access.
� On multi-core processors and SMP systems, the automatic

placement of tasks to cores by the OS suffices.

� Conflicting goals:
� Place tasks that are able to execute concurrently on

different processors.
� Place tasks that communicate frequently on the same

processor.

The mapping problem is NP-complete, so we can in general
only hope for good heuristics.

24/31

Types of Mapping

� Static mappings:
� A fixed number of permanent tasks is mapped at program

start to processors; this mapping does not change.

� Load balancing algorithms:
� The assignment of permanent tasks to processors is

adapted at runtime to keep processors equally busy.
� Task scheduling algorithms:

� Many short-living tasks are created at runtime; a scheduler
maps tasks to processors where they run until termination.

Static mapping is usually only sufficent for domain
decomposition with structured communication. 25/31

Load Balancing: Recursive Bisection

Recursively divide domain into partitions with equal costs.

� Recursive coordinate bisection:
� Recursively cut multi-dimensional grid at longest dimension.

� Unbalanced recursive bisection:
� Choose among partitions the one with lowest aspect ratio.

� Recursive graph bisection:
� Decompose graph according to distance from extremities.

26/31

Load Balancing: Local Algorithms

Compare load with that neighbor processors; transfer load if
difference gets too big.

Use only local information and that of neighbor processors.

27/31

Load Balancing:
Probabilistic/Cyclic Mapping

� Probabilistic mapping:
� Map tasks to randomly selected processors.
� If task number is much larger than processor number, every

processor receives about the same amount of computation.
� Generally leads to high communication.

� Cyclic mapping:
� Map tasks to processors in a cyclic (scattered) mapping.
� Each of P processors receives every P -th task in turn.
� Similar to probabilistic mapping but more regular structure.

28/31

Task Scheduling

Maintain pool of tasks to which all new tasks are added.

manager

p
p

p
p

p
pW

W

W
W

W

W

W

� Manager/worker scheme:
� Manager controls pool; idle workers ask manager for tasks.

� Hierarchical manager/worker scheme:
� Subsets of workers with own submanagers and subpools.
� Submanagers interact with manager (and each other).

� Decentralized schemes:
� Each worker maintains its own task pool.
� Idle workers request tasks from other workers.

Termination detection may become an issue. 29/31

Mapping Design Checklist

� If considering a program where tasks are only created at
startup, have you also considered task scheduling?

� If considering task scheduling, have you also considered a
program where tasks are only created at startup?

� If considering load-balancing, have you evaluated simpler
alternatives such as probabilistic or cyclic mappings?

� If considering probabilistic or cyclic mappings, have you
verified that task number is large enough to balance load?

� If considering task scheduling, have you verified that the
manager does not become a bottleneck?

Do we have sufficient processor utilization?

30/31

General Recommendations

� Be sure to parallelize the actual hotspots of a program.
� First you must understand where computation time is spent.

� Consider alternatives.
� Do not just implement the first scheme that comes to mind.

� Remember scalability.
� You may get more cores available than originally thought.

� But also consider the coding effort.
� A simple solution may be sufficient as a starting point.

� And do not forget the application context.
� The parallel code must be integrated into a bigger system.

Ultimately, determining the most efficient parallelization
strategy for a given problem may require multiple iterations of
performance debugging and optimizing/rewriting the code.

31/31

