
OPENMP
Course “Parallel Computing”

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at
http://www.risc.jku.at

mailto:Wolfgang.Schreiner@risc.jku.at
http://www.risc.jku.at


OpenMP (OMP)

� An API for portable shared memory parallel programming.
� Compiler directives (pragmas), library routines,

environment variables.

� Targets are C, C++, Fortran.
� Often used in combination with MPI (Message Passing

Interface) for hybrid MPP/SMP programs.

� Widely supported.
� Commercial compilers: Intel, IBM, Oracle, . . .
� Free compilers: GCC, Clang.

� Maintained by the OpenMP ARB.
� Architecture Review Board.
� Current Version: OpenMP 4.5 (November 2015).

See http://openmp.org for the official specification.

1/15

http://openmp.org


Programming Model

en.wikipedia.org, OpenMP

� Master thread executes program in sequential mode.
� Reaches code section marked with OMP directive:

� Execution of section is distributed among multiple threads.
� Main thread waits for completion of all threads.
� Execution is continued by main thread only.

A fork-join model of parallel execution.

2/15



Shared versus Private Variables

The default context of a variable is determined by some rules.

� Static variables and heap-allocated data are shared.
� Automatically allocated variables are

� Shared, when declared autside a parallel region.
� Private, when declared inside a parallel region.

� Loop iteration variables are private within their loops.
� After the loop, the variable has the same value as if the loop

would have been executed sequentially.

� . . .

OpenMP clauses may specify the context of variables directly.

3/15



Controlling the Number of Threads

� Default set by environment variables:
export OMP_DYNAMIC=FALSE
export OMP_NUM_THREADS=4

� May be overridden for all subsequent code sections:
omp_set_dynamic(0);
omp_set_num_threads(4);

� May be overridden for specific sections:
#pragma omp parallel ... num_threads(4)

If dynamic adjustement is switched on, the actual number of
threads executing a section may be smaller than specified.

4/15



Controlling the Affinity of Threads to Cores

� Pin threads to cores:
export OMP_PROC_BIND=TRUE

� Specify the cores (GCC, Intel Compilers):
export GOMP_CPU_AFFINITY="64-127:2"

� More flexible alternative for Intel compilers:
export KMP_AFFINITY=
"verbose,granularity=core,explicit,proclist=[64-127:2]"

5/15



Compiling and Executing OpenMP

� Source
#include <omp.h>

� Intel Compiler:
module load intelcompiler
icc -Wall -O3 -openmp -openmp-report2 matmult.c -o matmult

� GCC:
module load GnuCC
gcc -Wall -O3 -fopenmp matmult.c -o matmult

� Execution:
export OMP_DYNAMIC=FALSE
export OMP_NUM_THREADS=32
export GOMP_CPU_AFFINITY="64-127:2"
./matmult

6/15



Parallel Loops

#pragma omp parallel for private(j,k)
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
for (k=0; k<N; k++) {

a[i,j] += b[i,k]*c[k,j];
}

}
}

� Iterations of i-loop are executed by parallel threads.

� Matrix a is shared by all threads.

� Every thread maintains private instances of i, j, k.

Most important source of scalable parallelism.

7/15



Load Balancing

#pragma omp parallel for ... schedule(kind [, chunk size])

� Various kinds of loop scheduling:
static Loop is divided into equally sized chunks which are

interleaved among threads; default chunk size is N/T .
• Number of loop iterations N and number of threads T .

dynamic Threads retrieve chunks from a shared work queue; default
chunk size is 1.

guided Like “dynamic” but chunk size starts large and is
continuously decremented to specified minimum (default 1).

auto One of the above policies is automatically selected (same
as if no schedule is given).

runtime Schedule taken from environment variable OMP_SCHEDULE.
export OMP_SCHEDULE="static,1"

8/15



Example: Matrix Multiplication

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

#define N 2000
double A[N][N], B[N][N], C[N][N];

int main(int argc, char *argv[]) {
int i, j, k;
double s;

for (i=0; i<N; i++)
{

for (j=0; j<N; j++)
{
A[i][j] = rand();
B[i][j] = rand();

}
}

printf("%f %f\n", A[0][0], B[0][0]);
double t1 = omp_get_wtime();

#pragma omp parallel for private(j,k,s) schedule(runtime)
for (i=0; i<N; i++)
{

for (j=0; j<N; j++)
{
s = 0;
for (k=0; k<N; k++)
{

s += A[i][k]*B[k][j];
}
C[i][j] = s;

}
}

double t2 = omp_get_wtime();
printf("%f (%f s)\n", C[0][0], t2-t1);
return 0;

}

9/15



Parallel Sections
int found1, found2, found3;

#pragma omp parallel sections
{

#pragma omp section
found1 = search1();
#pragma omp section
found2 = search2();
#pragma omp section
found3 = search3();

}

if (found1) printf(“found by method 1\n”);
if (found2) printf(“found by method 2\n”);
if (found3) printf(“found by method 3\n”);

� Each code section is executed by a thread in parallel.

Parallel sections and loops may be also nested.
10/15



Parallel Blocks

int n, a[n], t, i;

#pragma omp parallel private(t, i)
{
t = omp_get_num_threads(); // number of threads
i = omp_get_thread_num(); // 0 <= i < t
compute(a, i*(n/t), min(n, (i+1)*(n/t)));

}

� Every thread executes the annotated block.

� Array a and length n are shared by all threads.

� Every thread maintains private instances of t and i.

Parallelism on the lowest level.

11/15



Critical Sections

int n, a[n], t = 0, i;

#pragma omp parallel private(i)
{
#pragma omp critical(mutex_i)
{
i = t; t++;

}
if (i < n) compute(a, i);

}

� No two threads can simultaneously execute a critical
section with the same name.

High-level but restricted synchronization.

12/15



Example: Manual Task Scheduling
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

#define N 2000
double A[N][N], B[N][N], C[N][N];

int main(int argc, char *argv[])
{

int i, j, k, row;
double s;

for (i=0; i<N; i++)
{

for (j=0; j<N; j++)
{
A[i][j] = rand();
B[i][j] = rand();

}
}

printf("%f %f\n", A[0][0], B[0][0]);
double t1 = omp_get_wtime();

row = 0;
#pragma omp parallel private(i,j,k,s)
{

while (1)
{
#pragma omp critical(getrow)
{

i = row;
row++;

}
if (i>=N) break;
for (j=0; j<N; j++)
{

s = 0;
for (k=0; k<N; k++)
{

s += A[i][k]*B[k][j];
}
C[i][j] = s;

}
}

}
double t2 = omp_get_wtime();
printf("%f (%f s)\n", C[0][0], t2-t1);
return 0;

}

13/15



Lock Variables

int n, a[n], t = 0, i;
omp_lock_t lock;
omp_init_lock(lock);

#pragma omp parallel private(i)
{
omp_set_lock(lock);
i = t; t++;
omp_unset_lock(lock);
if (i < n) compute(a, i);

}

� Only one thread can set a lock at a time.

Flexible but low-level synchronization.

14/15



Tasks
#include <omp.h>

int compute(int*a, int begin, int end)
{
int n = end-begin;
if (n < 0) return;
if (n == 1) return f(begin);
int mid = (begin+end)/2;
#pragma omp task shared(r1)
int r1 = compute(a, begin, mid);
#pragma omp task shared(r2)
int r2 = compute(a, mid, end);
#pragma omp taskwait
return r1+r2;

}

� Create two tasks and wait for their completion.

Task parallelism possible, but may become cumbersome.
15/15


