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Evaluating Parallel Programs

We achieved a speedup of 10.8 on p = 12 processors

with problem size n = 100.

B Multiple programs may
satisfy this observation:

J Program 1:

T =n+n?/p.
0 Program 2:

T = (n+n?)/p+ 100
J Program 3:

T = (n+n?)/p+0.6p
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Figure 3.1, lan Foster: DBPP

We have to evaluate programs on varying parameters.
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Speedup and Efficiency

B (Absolute) speedup S, and efficiency E,:

T S, T
Sp = — E = —p =
1, p pTp
[0 T': execution time of sequential program.
O T,: execution time of parallel program with p processors.

B Relative speedup S, and efficiency E,:

- T - S T
- E,="2—=_~1
p p1Ip
[J Use for comparison the parallel program with 1 processor.
[J Measures “scalability” rather than “performance”.
B Typical ranges: S, < S, <pand E, < E, < 1.
O If S, > p, we have a “superlinear speedup”.
O IfS, > S,, thenT > T.

Speedup denotes the “performance” of parallelism, efficiency
relates this performance to the invested “costs”. 24



Diagrams
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Logarithmic scales may yield additional insights.
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Superlinear Speedups

Can the speedup be larger than the number of processors?

B Simple theoretical argument: “no”.

[J We can simulate the execution of a parallel program with p
processors on a single processor in time p - T;,. Thus
T<p-T,and S, =T/T, < p.

B However, practical observation: “yes”.

0 Cache effects: a system with p processors has typically
also p times as much cache which yields more cache hits.

[J Search anomalies: if the computation involves a “search”,
one processor may be lucky to find the result early.

B These advantages can be “practically” not achieved on a

single processor system.

However, often super-linear speedups indicate program errors.
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Amdahl’s Law

Assume that a workload contains a sequential fraction f.

B Amdahl’s law: S, < —1— < 1
f+— !

[J Speedup has an upper limit determined by f.

Amdahl's Law
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Amdahl’s law, en.wikipedia.org

Speedup is limited by the sequential fraction of a workload.
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Gustafson’s Law

Assume workload can be scaled as much as time permits.

B Amdahl: S, < ——
L

O leedwork IoadT f T+(1-f)-T

0 s,

p— fT-'r(l f)T

B Gustafson: S, < f +p (1-—

:f+p

)

[J Scalable work load T}, = f - T +p (1

fT+p-(1 ‘T+p-(1—
0 Spf fT+Pp((1 ){))T f P( )T

T

=f+p-(1

Gustafson's Law

- /)

S(P)=Pas(p)

If the parallelizable
workload grows linearly
with the numer of
processors, the speedup
grows correspondingly
such that the efficiency
remains constant.

Gustafson’s law, en.wikipedia.org
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Scalability Analysis

We have to scale the workload to keep the efficiency constant.

W Assume T, = 2tlen,

O T,.,: the paraIIeI time with p processors for problem size n.
[ T,: the basic work performed by the sequential program.
O P,,: the extra work performed by the parallel program.
B Then B, = ;7 = 75—
O E, »: the efficiency with p processors for problem size n.
0O Thus T, = % P, ,; for achieving constant efficiency E,
we have toensure T,, = -Z- - P,,, = Kg - P,
W Isoefficiency function: I = K - P, »,
O n,: a function that maps processor number p to problem
size n, such that T;,, = Kg - Py,
O If describes how much the basic work load has to grow for
growing processor number p to keep efficiency E.

The less IPE grows, the more scalable the program is. 7/14



Example: Matrix Multiplication

Multiplication of two square matrices A, B of dimension n.

B Row-oriented parallelization.

O Ai |s scattered, B is broadcast, C |s gathered
B 7, =n%and Ppn = 3pn?

O Ty = + 30>

U Ppn=Tpn-p—"T,= 3pn?
BT, =Kg P, i

O np’ = Kg - 3pn

0 n,=Kg-3p
W IP=Kg P,

D IE Kg - 3]9 (KE-3]9)2=(KE)2'27P3

The matrix dimension n must grow with Q(p), the basic work
load thus grows with Q(p?).
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Example: Matrix Multiplication
Often only asymptotic estimations are possible/needed.

B 7,=06(n%and P,,, = O(plogp + n?/p)
[0 Fox-Otto-Hey algorithm on /p x /p torus.
i, = Q(Ppynp)
0 ny® = Q(plogp + n2\/p)
0 np® = Q(ng/p) = np = U p)
0 = Q(p°) = Qpy/p) = Qplogp) v
0 n, = QD)
=P,
O 1F = Q(plogp+ p/p) = 2py/p)

The matrix dimension n must grow with Q(,/p), the basic work
load thus grows with Q(p,/p).
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Modeling Program Performance
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B T.omm: COMmunication time. 0
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B Tiq.: idle time.

Figure 3.2, lan Foster: DBPP

The parallel program overhead mainly stems from
communicating and idling.

10/14



Communication Time

T, =ts+ty - L

T = time
t,, = cost/word

B 7 : the time for senting a gl S et
. L = message length
message of size L.
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Figures 3.3 and 3.4, lan Foster: DBPP

Typically t; > t,, thus it is better to send a single big message

rather than many small messages. 11114



Idle Time

B Apply load-balancing
techniques.
B Overlap computation and
communication.
[0 Have multiple threads
per processor.
[J Let process interleave
computation and
communication.

Structure the program to minimize idling.
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Figure 3.5, lan Foster: DBPP
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Execution Profiles

Poor performance may have multiple reasons.
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Figure 3.8, lan Foster: DBPP

Modeling/measuring execution profiles may help to improve the
design of a program.
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Experimental Studies

B Design experiment.
0 Identify data to be obtained.
[J Determine parameter ranges.
J Ensure adequacy of measurements.

Total Time

B Perform experiment.
[ Repeat runs to verify reproducability.
[J Drop outliers, average the others.

B Fit observed data o(i) to model m(i):
[J Least square fitting: minimize

> (0(d) — m(i))?
[0 Scaled least square fitting: minimize

o(i) —m(i) o
;( o(1) )

(giving more weight to smaller values).
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Figure 3.9, lan Foster: DBPP
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