
Computer Graphics
Lab 6: Advanced Texture Mapping

1

Hosted on GitHub: https://github.com/jku-icg/cg_lab_2021
The repository will be updated during the lab with the new projects.

Dev Environment: Lab Package

2

To get started (now):

1. Download the ZIP

2. Extract the folder

3. Open Visual Studio Code

4. Open cg_lab_2021 folder

(File → Open)

5. Click on Go Live button in

lower right corner

https://github.com/jku-icg/cg_lab_2021

3

Recap: Texturingimages in
main memory textures in graphics memory

upload to GPU (once) ...

texture
unit 0

texture
unit 1 …

bind textures for
current model

texture units (handle
lookup + filtering)

shader: request texture data (e.g. color)
from texture unit at texture coordinates

vertices +
texture
coordinates

Agenda for Today
 Shadow Mapping

 Overview
 Recap: Render to Texture
 Task 1: Setup Camera for Light
 Depth Comparison
 Eye-to-Light Matrix
 Task 2: Shadow Mapping
 Extra Task: Smooth Shadows

 Environment Mapping
 Cube Mapping
 Differences to 2D Textures
 Task 3: Cube Mapping

 Texture Filtering

4

Shadow Mapping

5

Shadow Mapping
Generate shadows using depth textures

Pure image based technique!

2 Render Passes:
1. Render scene from perspective of light source into
texture (we need the depth map!)

2. Render scene from perspective of camera:
For each fragment check if distance to light source
is larger than stored depth in texture

If distance is larger: fragment is behind an object
→ it is in the shadow!

6

Shadow Mapping Example

7

L = Light source
E = Eye / Camera

https://cg2010studio.wordpress.com/2011/08/29/glsl-shadow-map/

https://cg2010studio.wordpress.com/2011/08/29/glsl-shadow-map/

Render Scene From Light Perspective

8

L = Light source
E = Eye / Camera

https://cg2010studio.wordpress.com/2011/08/29/glsl-shadow-map/

Store depths of
closest scene points

https://cg2010studio.wordpress.com/2011/08/29/glsl-shadow-map/

Resulting Depth Map

9https://cg2010studio.wordpress.com/2011/08/29/glsl-shadow-map/

https://cg2010studio.wordpress.com/2011/08/29/glsl-shadow-map/

Render Scene from Camera Perspective

10

L = Light source
E = Eye / Camera
P = Rendered Point
S = Closest Point

https://cg2010studio.wordpress.com/2011/08/29/glsl-shadow-map/

PL > SL → Shadow

https://cg2010studio.wordpress.com/2011/08/29/glsl-shadow-map/

Render Scene from Camera Perspective

11

L = Light source
E = Eye / Camera
P = Rendered Point
S = Closest Point

PL = SL → No Shadow

https://cg2010studio.wordpress.com/2011/08/29/glsl-shadow-map/

https://cg2010studio.wordpress.com/2011/08/29/glsl-shadow-map/

Recap: Render to Texture
Render into framebuffer:

1. Enable framebuffer:

2. Setup viewport + camera + clear buffers + render scene graph
3. Disable framebuffer:

Nothing will be shown on screen!

Framebuffer has attached textures to render into:

See initRenderToTexture for complete initialization! 12

Recap: Render to Texture

13

Render Scene From Light Perspective

14

L = Light source
E = Eye / Camera

https://cg2010studio.wordpress.com/2011/08/29/glsl-shadow-map/

Store depths of
closest scene points

https://cg2010studio.wordpress.com/2011/08/29/glsl-shadow-map/

Task 1: Setup Light View Matrix
Goal:

Render scene to texture from light’s
perspective. Resulting depth map can be
seen in the texture on the floor.

Tasks:
1.1 Adapt viewMatrix in renderToTexture
function according to the light position.

Hint: Use provided light position in world
space and the mat4.lookAt function.

Source code in 06_shadow_mapping folder!
15

Solution: Setup Light View Matrix

16

The solutions will be provided in the final slides uploaded after the last lab session.

Render Scene from Camera Perspective

17

L = Light source
E = Eye / Camera
P = Rendered Point
S = Closest Point

https://cg2010studio.wordpress.com/2011/08/29/glsl-shadow-map/

PL > SL → Shadow

https://cg2010studio.wordpress.com/2011/08/29/glsl-shadow-map/

Recap: Transformation Pipeline

18

Depth Map Lookup For Each P

19

(-1 to 1)

(0 to 1)

“light camera”

P

Depth Comparison

20

compare
Lookup depth of S

[-1 1] → [0 1]

P

“light camera”
x,y of P are the
same as for S

Render Scene from Camera Perspective

21

Unknown for “light camera” when rendering with “real camera” in our framework

?

Eye to Light Matrix

22

Required for lookup
in depth map

Available in vertex
shader

Not provided by
framework

Eye to Light Matrix

23Eye-to-light matrix is constant for all rendered models

Compute Texture Coordinates

24

Do in vertex shader (using eye-to-light matrix + model-view matrix of “real camera”)

Do in fragment shader
(otherwise wrong interpolation
because of perspective division)

Main Render Steps
Main render function:

1. Update light animation first!
2. Render scene from light’s perspective into texture

generate shadow map

save light view and projection matrices (required for computing eye-to-light matrix)

3. Setup camera matrices
4. Compute inverted camera view matrix (required for computing eye-to-light matrix)
5. Render scene graph

ShadowSGNode:
1. Bind depth texture to a texture unit
2. Assign sampler in shader to depth texture unit
3. Compute eye-to-light matrix and pass to shader

25

Task 2: Shadow Mapping
Goal:

C3PO should cast a shadow on the floor

Tasks:
2.1 Compute eye-to-light matrix in
ShadowSGNode
2.2 Compute light clip space coordinates (in
shadow.vs.glsl) using eye-to-light matrix
2.3 Apply perspective division to light clip
space coordinates (in shadow.fs.glsl)
2.4 Lookup depth in texture and compute
shadow coefficient
2.5 Apply shadow coefficient to diffuse and
specular part of phong computation

26

Solution: Shadow Mapping
Task 2.1 - ShadowSGNode:

Task 2.2 - Vertex Shader (shadow.vs.glsl):

27

The solutions will be provided in the final slides uploaded after the last lab session.

Solution: Shadow Mapping
Task 2.3,2.4,2.5 - Fragment Shader (shadow.fs.glsl):

28

Self Shadowing
Try to disable subtraction of self shadowing bias in shader

29

http://www.opengl-tutorial.org/intermediate-tutorials
/tutorial-16-shadow-mapping/

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/

EXTRA TASK: Smooth Shadows
Goal:

Smooth shadow by sampling and
averaging shadow coefficient over a
3x3 neighborhood in depth texture.

Hints:
You can use “for loops” in a shader!
(E.g. loop x,y offsets from -1 to 1)

Texture coordinates are normalized
(0 to 1) → Use texture size
(u_shadowMapWidth, ...) to
compute 1 step in x,y direction.

30

Solution: Smooth Shadows

31

Environment Mapping

32

Environment Mapping
Cube Mapping

OpenGL supports cube maps

Lookup with 3D texture coordinates

We will set up a cube map
containing six images forming an
environment

33

Scene Description
First a space ship is rendered

Use reflected camera ray for lookup → mirror like surface

Second a sphere is rendered around the viewer
Use non-reflected camera ray for lookup to directly display the environment (i.e. the
stars)

34

Reminder: Coordinates Systems
The environment map represents the world around us
For our space scenario it defines the stars

35

Cube Map Texture Coordinates
We need the (reflected) camera ray for lookups in the cube map

in eye space of our camera (model-view transformation):

camera ray direction = vertex position

The environment map represents our world:
→ we have to transform camera ray direction from eye space to world space

use inverse view matrix to get from eye space to world space coordinates

since we deal with direction vectors, 3x3 matrix is sufficient (translation is ignored)

36

Difference to 2D texture
Texture coordinates are 3D

Sampler in shader has type samplerCube

Texture lookup in shader is done with textureCube(...)

Texture target (texture type) is gl.TEXTURE_CUBE_MAP instead of
gl.TEXTURE_2D

Texture is initialized with 6 images (one for each side of the cube)
37

Cube Map Texture Initialization
Upload an image for each side of the cube:

38

Cube Map Texture
Texture we’ll use:

39

env_pos_z env_neg_zenv_neg_x env_pos_x

env_neg_y

env_pos_y

Task 3: Cube Mapping
Goal:

Show stars and their reflection on
spaceship.

Tasks:
3.1 Compute camera ray in vertex shader
3.2 Reflect camera ray in fragment shader
3.3 Do texture lookup in cube map

Source code now in 06_environment_mapping
folder!

40

Solution: Cube Mapping
Task 3.1 - Vertex Shader:

Task 3.2,3.3 - Fragment Shader:

41

Texture Filtering

42

Aliasing

use texture filtering to
reduce aliasing

Demo: https://jku-icg.github.io/cg_demo/00_texturing/
43

https://jku-icg.github.io/cg_demo/00_texturing/

Mipmapping
Low Resolution Versions of Texture

Mipmapping chooses the best texture size depending
on the distance the texture is viewed from

Press “m“ to enable mipmapping in our example
Avoids flickering stars, but adds blur to reflections

Generate Mipmaps:
gl.generateMipmap(gl.TEXTURE_CUBE_MAP); during
texture definition (built by iterative downsampling)

Enable Mipmaps:
set gl.TEXTURE_MIN_FILTER parameter to
gl.LINEAR_MIPMAP_LINEAR

44

Anisotropic Filtering
Improves texture filter quality for oblique
viewing angles by non-isotropic filtering:

45

mipmapping mipmapping + AF

Anisotropic Filtering
Improves texture filter
quality for oblique
viewing angles

press “i”-key

This restores some
details of the reflections
but still avoids aliasing
effects.

46

no mipmapping mipmapping mipmapping + AF

Recap

47

 Shadow Mapping
 Overview
 Recap: Render to Texture
 Depth Comparison
 Eye-to-Light Matrix
 Smooth Shadows

 Environment Mapping
 Cube Mapping
 Differences to 2D Textures

Texture Filtering
 Mipmapping, Anisotropic Filtering

CG Project: Multiple Shaders in Scene
Remember:

Uniforms set for one ShaderSGNode are not transfered to another ShaderSGNode!
E.g. LightSGNode only affects one ShaderSGNode!

Important:
Make sure ShaderSGNode is added to scene graph before nodes which set any uniform
parameters of the shader

E.g. LightSGNode should be child of ShaderSGNode!

Make sure to set all required uniform parameters before adding first RenderSGNode

Workaround for duplicate light specification:
MaterialSGNode allows to add light sources to .lights variable
Instead of adding lights + transformations again to other ShaderSGNode do:
 - Add LightSGNode + light transformations to first ShaderSGNode

 - Add same LightSGNode to first material in second ShaderSGNode (sets again light uniform params)

48

Thanks!
Have fun with your CG-Projects.

Questions / Feedback: cg-lab@jku.at

Final Submission Deadline:
22.06.2021

49

