
Computer Graphics
Lab 5: Texturing

1

Hosted on GitHub: https://github.com/jku-icg/cg_lab_2021
The repository will be updated during the lab with the new projects.

Dev Environment: Lab Package

2

To get started (now):

1. Download the ZIP

2. Extract the folder

3. Open Visual Studio Code

4. Open cg_lab_2021 folder

(File → Open)

5. Click on Go Live button in

lower right corner

https://github.com/jku-icg/cg_lab_2021

Recap
Lab Project Specification

Illumination
0. Interaction
1. Static Phong Shader
2. New SG Node: Material
3. New SG Node: Light
4. Animated Light
5. Multiple Lights

Solution is on GitHub. 3

Agenda for Today
 Texturing Basics

 Overview
 Setup Textures
 Texture Coordinates
 Textures in Shader
 Binding Textures
 Task: Simple Texturing
 Task: Integrate Texturing into Phong Shader
 Tasks: Texture Wrapping and Repeating

 Rendering to Textures
 Multiple Render Passes
 Setup Framebuffer
 Task: Render to Texture

 Extra Task: Animate Texture Coordinates

4

5

Texturing Overviewimages in
main memory textures in graphics memory

upload to GPU (once) ...

texture
unit 0

texture
unit 1 …

bind textures for
current model

texture units (handle
lookup + filtering)

shader: request texture data (e.g. color)
from texture unit at texture coordinates

vertices +
texture
coordinates

What Are Texture Units?
 You can think of them as a piece of GPU hardware which performs

fast image sampling. (not 100% correct!)

 Main jobs

Addressing, e.g. compute pixel index (132,12) from texture coordinate (0.342,0.012)
Filtering, e.g. combine neighboring pixels if pixel index is not an integer

 Limited number of texture units!
 Hardware and OpenGL version dependent
 Per shader stage, e.g. 4
 Total, e.g. 4*2=8 (vertex + fragment shader stage)
 Limits number of textures which can be used simultaneously in shader

BUT (almost) unlimited number of textures
 Limited only by graphics memory size

6

Loading Images
 Done in framework during resource loading!

Basic steps:

 Allocate JavaScript “Image” object:

 Set image URL:

 Wait until image is loaded:

 See framework for more details.

 7

Recap: Loading Resources
Loading images with our framework is simple:

Access: resources.floortexture

8

lava.jpg

Code: Initialize Textures
1. create texture object

2. choose any texture unit

3. bind to texture unit

4. set sampling parameters

5. upload data to GPU

6. unbind texture

9

Texture Coordinates
Mapping a texture onto a shape will be done by providing texture
coordinates for every vertex.

Texture coordinates for a simple quad:

10(0.0, 0.0) (1.0, 0.0)

(0.0, 1.0) (1.0, 1.0)

Vertices

(-1.0, -1.0, 0.0) (1.0, -1.0, 0.0)

(-1.0, 1.0, 0.0) (1.0, 1.0, 0.0)

Texture
Coordinates

Mapping a Texture

11
https://www.slideshare.net/SyedZaidIrshad/opengl-texture-mapping

Texture Object

https://www.slideshare.net/SyedZaidIrshad/opengl-texture-mapping

Recap: Buffers and Attributes
Texture coordinates are defined per vertex via a buffer

Same as vertex position, color, normal, …
Define coordinates + buffer:

Pass buffer to shader attribute (a_texCoord):

See framework for more details

12

remember? 2 == 2D vectors

Code: Texture Coordinates for Floor
Define texture coordinates using our framework:

Assign to render node:

13

Texture Coordinates in Shader
Texture coordinates are bound to shader attributes:

Note: Our framework assigns texture coordinates to the attribute
named a_texCoord.

Remember: Attributes are only available in vertex shader.
Have to be passed on via “varying” variables to fragment shader
if required!

14

Texture Unit in Shader
Access to texture units via sampler variables

They don’t change per vertex → uniform
Different sampler type for each texture type: 2D → sampler2D

Define sampler for 2D textures:

15

Texture Lookup in Shader
Texture Lookup:

Get color of texture bound to sampler at defined coordinates.

Function:
texture2D(sampler,texture coordinates)

Input:
sampler (type: sampler2D)

texture coordinates (type: vec2)

Returns:
color (type: vec4)

16

Bind Texture to Texture Unit
Before rendering a textured object we have to:

1. Select/activate a texture unit:

Hint: Add texture unit number to gl.TEXTURE0 to select a different unit!

2. Bind desired texture to selected texture unit:

Note: gl.TEXTURE_2D specifies the texture target = texture type

3. Assign texture unit number to sampler variable in shader.

Use gl.uniform1i(...) to set an integer to a uniform shader variable.
Hint: Do NOT use the texture unit constant (e.g. gl.TEXTURE0) in this case.

These are the duties of our TextureSGNode scene graph node! 17

Task 1: Simple Texturing
Goal:

Put texture on floor

Given:
Floor scenegraph node (floor)
Partially implemented texture node (TextureSGNode)
Partially implemented shaders (texture.vs.glsl, texture.fs.glsl)
Texture coordinates in vertex shader (a_texCoord)
Loaded and initialized texture (floorTexture)

Have a look at those code parts! Ask if you don’t understand them.

18

Task 1: Simple Texturing
Tasks in shaders:

Pass texture coordinates as varying to fragment shader
Define sampler variable
Do texture lookup in fragment shader (main)

Assign result to gl_FragColor

Tasks in main.js:
Finish TextureSGNode implementation

Pass texture unit number to shader
Bind texture to texture unit
Clean up texture unit assignment

Apply TextureSGNode to floor in scene graph
Use texture floorTexture
Use texture unit number 2

19

Task 1: main.js Solution
In main.js:

20

Task 1: Shader Solution
vertex shader:

fragment shader:

21

Task 2: Phong Shader Integration
Goal:

The light should influence our textured object.

Tasks:
Pass texture color to
calculateSimplePointLight function
(instead of setting gl_FragColor)
Hint: use textureColor variable

Replace diffuse and ambient material color with
texture color

22

Task 2: Phong Shader Solution
main shader function:

calculateSimplePointLight function:

23

Task 3: Modify Texture Coordinates
Goal:

The texture should only be visible on ⅕
of the floor.
(Any corner is fine)

Task:
Modify the texture coordinates of the
floor to achieve this.

24

Task 3: main.js Solution

25

Task 4: Modify Sampling Parameters
Goal:

The texture should be visible 5x5 times
on the floor.

Task:
Modify the texture wrapping
parameters to achieve this.

Look up alternative wrapping
parameters on the Internet.

26

Task 4: main.js Solution

27
https://open.gl/textures

https://open.gl/textures

Render to Texture
Multiple render passes
First render pass: render into framebuffer/texture

Enable framebuffer:

Setup viewport + camera + clear buffers + render scene graph
Disable framebuffer:

Framebuffer has attached textures to render into.
Nothing will be shown on screen!

Second render pass:
Render scene normally
Texture objects with textures of framebuffer

28

Setup Framebuffer
Create framebuffer object:

Bind framebuffer to use it (and for setup):

Create empty textures to render into (setup similar as learned before)
Color texture: format: gl.RGBA, image data type: gl.UNSIGNED_BYTE

Depth texture: format: gl.DEPTH_COMPONENT , image data type: gl.UNSIGNED_SHORT
Depth texture required to allow doing depth test!

Attach textures to framebuffer

Unbind framebuffer
29

specify texture usage

Same as for previous tasks but extended texImage2D:

Texture width and height define framebuffer size
Border can be disabled in our case (0)
Image data is empty (null)

Setup Empty Textures

30

new

Task 5: Render to Texture
Goal:

Render C3PO into texture and put result on floor.

Given:
Partial framebuffer initialization (initRenderToTexture)

Scene graph without floor and simple shader (rootnofloor)

Tasks:
Initialize textures for color and depth (initRenderToTexture)

Use framebufferWidth , framebufferHeight and texture types as in comments
Attach those textures to framebuffer and call initRenderToTexture function

Render scene without floor to the texture/framebuffer (renderToTexture)
Setup projection and view matrix as in normal scene but without mouse rotation

Put color texture of framebuffer on the floor (createSceneGraph)
31

Task 5: main.js Solution
initRenderToTexture function

32

Task 5: main.js Solution

33

Don’t forget to change the texture that you
provide as parameter to the texture node!

Extra Task: Animate Texture Coordinates
Goal:

Achieve wobble effect by animating the texture coordinates in the
shader.

No task numbers! Think by yourself ;-)

Hints:
Pass time to shader
Use sin() function (e.g. x = x+sin(y+time))
Copy texture coordinates to local variable before modification

34

Extra Task: Solution
main.js render functions:

main.js TextureSGNode:

fragment shader:

fragment shader main function:

35

Recap
 Texturing Basics

 Setup Textures
 Texture Coordinates
 Textures in Shader
 Binding Textures
 Integrate Texturing into Phong Shader
 Texture Wrapping and Repeating

 Rendering to Textures
 Framebuffer
 Multiple Render Passes

36

Next Time
Advanced Texture Mapping

Environment Mapping

Shadow Mapping

37

Thanks!
Have fun with your CG-Projects.

Questions / Feedback: cg-lab@jku.at

38

