
Computer Graphics
Lab 3: Scene Graphs

1

Lab Schedule

2

Lab 1 Introduction to WebGL Week from March 8

Lab 2 Transformations and Projections Week from March 15

Lab 3 Scene Graphs Week from March 22

Lab 4 Illumination and Shading Week from April 12

Lab 5 Texturing Week from April 19

Lab 6 Advanced Texture Mapping Week from April 26

Lab 7a Project Q&A 1.6. 15:30-17:00, 11.6. 08:30-10:00

Lab 7b Introduction to CUDA 11.6. 10:00-11:30 & 12:15-13:45

CG Lab Project: Create a Movie
 Group project in teams of 2 students

 Mandatory Submissions via Github:

 26.03.2021 23:59: Movie concept submission (incl. team announcement)
 23.04.2021 23:59: Intermediate submission

22.06.2021 23:59: Hand-in final package

 Individual interviews (alone): 24.-30.06.2021

Hosted on GitHub: https://github.com/jku-icg/cg_lab_2021
The repository will be updated during the lab with the new projects.

Dev Environment: Lab Package

4

To get started (now):

1. Download the ZIP

2. Extract the folder

3. Open Visual Studio Code

4. Open cg_lab_2021 folder

(File → Open)

5. Click on Go Live button in

lower right corner

https://github.com/jku-icg/cg_lab_2021

Dev Environment: Developer Tools
 Know the Web Developer Tools of your favorite browser

 Chrome, Firefox, Edge, Safara, … → usually F12

 Great for debugging JavaScript code, manipulating CSS & DOM, …

5

 Transformation pipeline
 Model-view transformations

 Translate, scale, rotate

 Creating geometry using the index buffer
 Projective transformations

 Orthographic and perspective projection

 Camera transformations
 Animations

Solution on GitHub:

Recap

6

glMatrix Helper Library
 Library for vector and matrix manipulation: http://glmatrix.net/
 Library supports:

 Identity matrix, multiplication, inverse, clone, translation, rotation, scale, lookAt,
orthographic & perspective projection, etc.

 Already part of framework: libs/gl-matrix.js
 Documentation: http://glmatrix.net/docs/

 Use it from now on!

7

http://glmatrix.net/
http://glmatrix.net/docs/

glMatrix Usage
 Classes vec2, vec3, vec4, mat2, mat3, mat4, etc.

 var identity = mat4.create();
 var out = mat4.scale(mat4.create(),identity,[x, y, z]);

For convenience in our framework:
var out = glm.scale(x,y,z)

8

Recap: Structure of a WebGL Program
 At initialization time init()

 Create all shaders and programs
 Create buffers and upload vertex data

 At render time render()
 Set global states (enable depth testing, etc.)
 For each object you want to draw

 Call gl.useProgram for the program needed to draw

 Setup attributes for the object you want to draw

 For each attribute call gl.bindBuffer , gl.vertexAttribPointer ,

gl.enableVertexAttribArray
 Setup uniforms for the object you want to draw by calling gl.uniformXXX
 Call gl.drawArrays or gl.drawElements

9http://webglfundamentals.org/webgl/lessons/webgl-drawing-multiple-things.html

Recap: Programmable Pipeline
Buffer Objects

Vertex Shader

Primitive Assembly

Rasterization

Fragment Shader

Per-Fragment Operation

Framebuffer

gl_FragColor

varyings

gl_Position
varyings

attributes

uniforms

uniforms

10

Summary
vertex: point in 2D/3D space
fragment: pixel + additional properties
shader: tiny program on the GPU
shader program: vertex + fragment shader
buffer: array on GPU
attribute: accessing the current buffer element in shader
uniform: parameter from program to shader
varying: parameter between shader
gl_Position, gl_FragColor: magic variables
rasterization: 3 vertices → N fragments

Computer Graphics
Lab 3: Per-Fragment Operations

11

Agenda for This Week
 Per-Fragment Operations

 Depth Handling
 Blending

Tutorial (coding)

 Scene Graphs
 Abstraction into Nodes
 Scene graph traversal
 Base node class
 Render nodes
 Transformation nodes
 Implement robot using a scene graph

 Tutorial (coding)

12

Programmable Pipeline
Buffer Objects

Vertex Shader

Primitive Assembly

Rasterization

Fragment Shader

Per-Fragment Operation

Framebuffer

gl_FragColor

varyings

gl_Position
varyings

attributes

uniforms

uniforms

Per-Fragment Operation
● additional tests/operations per fragment
● decides if (and how) fragments are written

into the framebuffer
● examples:

○ depth test
the closer fragment should be drawn

○ blending
in case of semi transparent fragments

○ ...

13

Depth Handling
 Allows OpenGL to decide which object is in front
 Depth testing has to be enabled to tell OpenGL to perform a

depth test and use the depth buffer.

14Depth testing enabled Depth testing disabled

Depth Buffer (Z-Buffer)
 Contains normalized depth values (0-1) for all fragments

 OpenGL tests depth value of a fragment against the content of the depth buffer
 If test passes, the depth buffer is updated with the new depth value.

If depth test fails, the fragment is discarded.

Depth test functions (various options)
 default: gl.depthFunc(gl.LESS);(the smaller value wins)

 Demo: https://jku-icg.github.io/cg_demo/00_zbuffer/
15

Sample scene Corresponding depth buffer
see https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDepthFunc.xhtml

https://jku-icg.github.io/cg_demo/00_zbuffer/
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDepthFunc.xhtml

Z-Fighting
 OpenGL can’t decide which face is in front
 Happens when primitives are too close together
 We can force it to happen

 By changing the near and far clipping planes’ values of the projection
 The closer to the near clipping plane, the denser the values get and therefore the

further away, the coarser.

16

Blending: Alpha Values
 The alpha value defines an object's opacity

 0 … transparent
 1 … opaque
 (depending on blend function)

 A common blend function is:
 gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA);

 (will use that in the upcoming labs)

17
https://learnopengl.com/Advanced-OpenGL/Blending

DST
(framebuffer)

SRC
(new fragment)

https://learnopengl.com/Advanced-OpenGL/Blending

Blending: Order
 Demo: https://jku-icg.github.io/cg_demo/00_blending/

 Rendering order is important (ignore it in your CG project!)
 the depth test discards fragments that would be needed

(thus, sometimes it makes sense to disable depth testing; e.g., particles)

 In practice: sort objects by depth and render from back to front

18

back to front front to back

https://jku-icg.github.io/cg_demo/00_blending/

Blending: Blend Functions
 OpenGL offers various blend functions

 Defining how pixels are blended, see learnopengl.com or
https://www.andersriggelsen.dk/glblendfunc.php

 Defines a way of blending an incoming pixel (the source) with the currently
stored one (the destination):

 gl.blendFunc(source, destination) .

Furthermore, the blend equation can be changed
e.g., addition (very common): gl.blendEquation(gl.FUNC_ADD);
Additionally, subtraction, min, max, is supported.

19

http://learnopengl.com/#!Advanced-OpenGL/Blending
https://www.andersriggelsen.dk/glblendfunc.php

Computer Graphics
Lab 3: Per-Fragment Operations

Tutorial

20

Agenda for This Week
 Per-Fragment Operations

 Depth Handling
 Blending

Tutorial (coding)

 Scene Graphs
 Abstraction into Nodes
 Scene graph traversal
 Base node class
 Render nodes
 Transformation nodes
 Implement robot using a scene graph

 Tutorial (coding)

21

Per-Fragment Operation
Buffer Objects

Vertex Shader

Primitive Assembly

Rasterization

Fragment Shader

Per-Fragment Operation

Framebuffer

gl_FragColor

varyings

gl_Position
varyings

attributes

uniforms

uniforms

● additional tests/operations per fragment
● decides if (and how) fragments are written

into the framebuffer
● examples:

○ depth test
the closer fragment should be drawn

○ blending
in case of semi transparent fragments

○ ...

22

Task 0: Depth Handling
 Depth testing has to be enabled to tell OpenGL to perform a

depth test and use the depth buffer: gl.enable(gl.DEPTH_TEST);
 Try to turn it by: gl.disable(gl.DEPTH_TEST);
 Then revert it, again.

23Depth testing enabled Depth testing disabled

Task 0: Solution

main.js

Task 1: Blending
 Goal: Make the robot semi-transparent (50%)

 Step 1: Enable blending by calling gl.enable(gl.BLEND);
 Step 2: Set blend function:

 gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA);

 Step 3: Provide alpha value as uniform to fragment shader
 Use gl.uniform1f to set u_alpha to 0.5 for robot
 Use gl.uniform1f to set u_alpha to 1.0 for quad
 Usage: gl.uniform1f(location, alpha)

 Step 4: Incorporate u_alpha in fragment shader
 Variable is already defined in fragment shader
 Transparency is fourth component of the color vector (RGBA)

 25

Task 1: Solution

26

main.js

simple.fs.glsl

Computer Graphics
Lab 3: Scene Graphs

27

Agenda for This Week
 Per-Fragment Operations

 Depth Handling
 Blending

Tutorial (coding)

 Scene Graphs
 Abstraction into Nodes
 Scene graph traversal
 Base node class
 Render nodes
 Transformation nodes
 Implement robot using a scene graph

 Tutorial (coding)

28

Scene Graphs
 Tree-like structure (hierarchical

structure) for organizing scene
 Objects in the scene will be added to

the graph
 During rendering, the graph will be

traversed recursively
 Advantages:

 Propagation of properties
 Unique point of access
 Reusable components
 Abstraction

 29http://webglfundamentals.org/webgl/lessons/webgl-scene-graph.html

http://webglfundamentals.org/webgl/lessons/webgl-scene-graph.html

Scene Graphs: Abstraction into Nodes
 Entities in graph are called nodes

 Parent-child relationship of nodes

 Properties of a node are applied to all children
 e.g., rotating the root node will make all sub nodes rotate too
 In the case of transformations, each node holds a matrix and all matrices of all sub

nodes are multiplied by this matrix

 Different types of nodes
 Geometry nodes (sphere, models, etc.)
 Transformation nodes
 Shader nodes (for lighting, materials, etc.)
 We will implement all three!

30

Scene Graph Traversal
 Traversal works recursively
 worldMatrix = parent(worldMatrix) * self(localMatrix)

 Matrices are multiplied from top to bottom
 worldMatrix = greatGrandParent * grandParent * parent *

self(localMatrix)

 Solar system example:
 worldMatrixForMoon = galaxyMatrix * starMatrix *

planetMatrix * moonMatrix;

31

A Scene Graph for our Robot

32

 Root

Quad
Transformation

Quad
Render

Robot
Transformation

Body
Render Cube

Head
Transformation

Head
Render Cube

Left Leg
Transformation

Left Leg
Render Cube

Right Leg
Transformation

Right Leg
Render Cube

A Basic Node
 Needs the functionality to:

 Append a child node
 Remove a child node
 Render node and all its children (recursively)

 Also: a Render context

 Stores scene matrix, view matrix, projection matrix and shader
 Gives us access to shader and matrices from inside nodes

33

Computer Graphics
Lab 3: Scene Graphs

Tutorial

34

Agenda for This Week
 Per-Fragment Operations

 Depth Handling
 Blending

Tutorial (coding)

 Scene Graphs
 Abstraction into Nodes
 Scene graph traversal
 Base node class
 Render nodes
 Transformation nodes
 Implement robot using a scene graph

 Tutorial (coding)

35

Scene Graphs
 Tree-like structure (hierarchical structure)

 Advantages:

 Propagation of properties
 Unique point of access
 Reusable components
 Abstraction

36

Creating a Node
 We need the functionality to:

 Append a child node
 Remove a child node
 Render node and all its children (recursively)

 What we also need: Render context

 Stores scene matrix, view matrix,
projection matrix, and shader

 Access to shader and matrices inside nodes

37

Base Node

38main.js

 Root

Render Context

39main.js

Let’s Make a Scene Graph for our Robot

40

 Root

Quad
Transformation

Quad
Render

Robot
Transformation

Body
Render Cube

Head
Transformation

Head
Render Cube

Left Leg
Transformation

Left Leg
Render Cube

Right Leg
Transformation

Right Leg
Render Cube

Task 2: Create a Quad Render Node
 Goal: Implement empty QuadRenderNode template
 Step 0: Comment out renderQuad and renderRobot calls
 Step 1: Move quad render code to QuadRenderNode class

 Note: Take sceneMatrix and viewMatrix from render context (context)
 Note: Without transformations!

 Step 2: Create node and add it to the scene graph
 Note: Quad looks distorted because of perspective projection and camera

41

 Root

Quad
Render

Task 2: Solution

42

 Root

Quad
Render

main.js

main.js

Transformation Node
 Stores transformation matrix

During rendering:
 1. Backup current sceneMatrix from context
 2. Multiply sceneMatrix with local matrix
 3. Render children
 4. Restore previous sceneMatrix

43main.js

Task 3: Create a Transformation Node
 Goal: Apply quad transformations

Step 0: Take a look at TransformationSceneGraphNode
 Step 1: Create local transformation matrix

 Move transformation code from renderQuad

 Step 2: Create transformation node and add to scene graph
 Hint: Don’t forget to update existing scene graph parent-child relationships!

44

 Root

Quad
Transformation

Quad
Render

Task 3: Solution

45

main.js

 Root

Quad
Transformation

Quad
Render

Task 4: Create a Cube Render Node
 Goal: Render a cube
 Step 1: Implement CubeRenderNode

 Take QuadRenderNode as template
 Use cube render code from renderRobot

 Step 2: Create cube node and add as child of root node

46

 Root

Quad
Transformation

Quad
Render

Cube
Render

Task 4: Solution

47

 Root

Quad
Transformation

Quad
Render

Cube
Render

main.js

Shader Node
 Holds shader program as variable
 Allows us to use multiple shaders
 During rendering:

 1. Backup current shader from context
 2. Use program (and set projection)
 3. Render children
 4. Restore previous shader

48main.js

Task 5: Adding a Shader Node
 Goal: Assign yellow color to floor quad
 Step 1: Duplicate simple.vs.glsl shader and rename it
 Step 2: Modify shader to apply static yellow color (R:1, G:1, B:0)
 Step 3: Load new vertex shader as resource in loadResources
 Step 4: Create new shader node and add it before the quad node

● Note: create new shader program and pass it to constructor of shader node

49

 Root

Quad
Transformation

Quad
Render

Shader

Cube
Render

50

Task 5-1 and 5-2: Solution

static_color.vs.glsl

Task 5-3 and 5-4: Solution

51main.js

 Root

Quad
Transformation

Quad
Render

Shader

Cube
Render

main.js

Reference Scene Graph Implementation
 Frameworks typically provide a scene graph implementation
 Example: Three.js
 Our framework provides the following (and more) nodes:

 SGNode (base class)
 TransformationSGNode
 ShaderSGNode
 RenderSGNode

 In upcoming labs, we will use the framework’s scene graph
implementation

Use framework nodes in your CG project!

52

Task 6: Create Robot (At Home)
 Goal: Rebuild robot from last lab as a scene graph
 Step 1: Construct a robot scene graph in createRobot function
 Step 2: Update rotation in render function

53

Task 6-1: Solution

54main.js

Task 6-2: Solution

55

main.js - in render function

Recap
 Per-Fragment Operations

 Depth Handling
 Blending

Tutorial (coding)

 Scene Graphs
 Abstraction into Nodes
 Scene graph traversal
 Base node class
 Render nodes
 Transformation nodes
 Implement robot using a scene graph

 Tutorial (coding)

56

Next Time
 Illumination and shading

 Light

 Material

57

