
Computer Graphics
Lab 2: Transformations and Projections

1

CG Lab Project: Create a Movie
 30 seconds WebGL movie
 Use our framework

 Implementation tasks

 Requirements & basic effects (e.g. scenegraph, lighting, …)
 Special effects of your choice

 Detailed specification will soon be available in Moodle

CG Lab Project: Create a Movie
 Group project in teams of 2 students

 Submissions via Github

 26.03.2021 23:59: Movie concept submission (incl. team announcement)
 23.04.2021 23:59: Intermediate submission

22.06.2021 23:59: Hand-in final package

 Individual interviews (alone): 24.-30.06.2021

Hosted on GitHub: https://github.com/jku-icg/cg_lab_2021
The repository will be updated during the lab with the new projects.

Dev Environment: Lab Package

4

To get started (now):

1. Download the ZIP

2. Extract the folder

3. Open Visual Studio Code

4. Open cg_lab_2021 folder

(File → Open)

5. Click on Go Live button in

lower right corner

https://github.com/jku-icg/cg_lab_2021

Dev Environment: HTML5, JS, CSS
 WebGL → OpenGL in the web-browser based on OpenGL ES 2.0
 Basic project structure:

5

index.html

6

main.js

← 2. Initialize OpenGL

← 1. Load external resources

← 3. Render frame

Dev Environment: Developer Tools
 Know the Web Developer Tools of your favorite browser

 Chrome, Firefox, Edge, Safara, … → usually F12

 Great for debugging JavaScript code, manipulating CSS & DOM, …

7

Rendering Pipeline

8
https://open.gl/drawing (adapted)

Vertex

Fragment

Rasterization

https://open.gl/drawing

Programmable Pipeline
Buffer Objects

Vertex Shader

Primitive Assembly

Rasterization

Fragment Shader

Per-Fragment Operation

Framebuffer

gl_FragColor

varyings

gl_Position
varyings

attributes

uniforms

uniforms

9

Summary
● vertex: point in 2D/3D space
● fragment: pixel + additional properties
● shader: tiny program on the GPU
● shader program: vertex + fragment shader
● buffer: array on GPU
● attribute: accessing the current buffer element in

shader
● uniform: parameter from program to shader
● varying: parameter between shader
● gl_Position, gl_FragColor: magic variables
● rasterization: 3 vertices → N fragments

Recap: Colored Triangle

10

First Application: Colored rectangle
a. initialize context
b. define buffer, compile shader
c. draw rectangle using two triangles
d. specify uniforms
e. specify color per vertex

 Transformation pipeline
 Model-view transformations

 Translate, scale, rotate, animations

 Camera transformations
 Projective transformations

 Orthographic and perspective projection

 Creating geometry using the index buffer
 Animations

Agenda for Today

11

OpenGL’s Coordinate System
 OpenGL provides a right-handed coordinate system
 By default OpenGL’s virtual camera is placed at the origin of this

coordinate system looking in negative z-direction

12

Transformation Pipeline

13

Transformation Pipeline

14

Transformation Pipeline
 OpenGL follows a camera analogy
 Think of

 the view transformation as placing a camera
 the scene transformation as placing an object
 the projection transformation as adjusting the

camera lens and focus
 the viewport transformation as choosing the

photograph size

15

Matrices
 All transformations are stored as 4x4 matrices

 Why use a 4x4 matrix for 3D?
 Remember homogeneous coordinates?

https://www.tomdalling.com/blog/modern-opengl/explaining-homogenous-coordinates-and-projective-geometry/

 Combine matrices and vectors by multiplying them
 Identity matrix

 All 1 along diagonal, rest 0
 Neutral operation when multiplied with existing matrix or vector

16

https://www.tomdalling.com/blog/modern-opengl/explaining-homogenous-coordinates-and-projective-geometry/

Model vs. World Space

17

Multiply model coordinates by scene matrix to get to world space

Transformation Pipeline
Scene and view transformations are considered the same in OpenGL
modelViewMatrix = viewMatrix * sceneMatrix

projectionMatrix multiplied in shader

All matrices in our framework are
initialized with identity matrix

18

main.js

simple.vs.glsl

Transformations
 Translation

 Moves a point by a vector in x,y,z
 See makeTranslationMatrix(tx,ty,tz)

 Scaling
 Scales a point by a factor in x,y,z
 See makeScaleMatrix(sx,sy,sz)

 Rotation
 Rotates a point by degrees around x,y,z
 See makeX/Y/ZRotationMatrix(rad)

19

Transformation Order
 Order matters!
 Different result: scale(translate(v)) vs. translate(scale(v))

 Read from right to left
 Operations closest to the object definition are applied first

 Read code from bottom to top
 In OpenGL transformation commands are always issued in reverse order if multiple

transforms are applied to a vertex

20

Task 1: Translation in Shader
 Goal: Move quad by -0.5 units in y-direction (down)

 Step 1: Define 3D vector as local variable in vertex shader

 vec3 translation = vec3(trans_x, trans_y, trans_z);

 Step 2: Add translation vector to a_position

21

Task 1: Solution

22

simple.vs.glsl

 Goal: Achieve same translation by manipulating the scene matrix
 Scene matrix already given as input to the renderQuad function

 Step 1: Remove translation in shader from last step
 Step 2: Use makeTranslationMatrix(x,y,z) and set translation factors
 Step 3: Multiply translation matrix with scene matrix using
matrixMultiply(...) function

 Attention: Multiplication order!

Task 2: Translation Using Matrix

23

Task 2: Solution

24

main.js

Task 3: Add Scaling to Matrix
 Goal: Shrink quad by 50% in x and y direction
 Step 1: Use makeScaleMatrix(x,y,z) function and set scale factors
 Step 2: Multiply scale matrix with scene matrix
 Important: Do not scale translation (order!)

25

S*T*vT*S*v

Task 3: Solution

26

main.js

OR

 Goal: Rotate quad around x-axis by 45 degrees
 Step 1: Use makeXRotationMatrix(rad) and set rotation factors
 (use convertDegreeToRadians(angle) helper function)
 Step 2: Multiply rotation matrix with scene matrix
 Important: Think about order!

Task 4: Add Rotation

27

Rotations
around x-axis

Task 4: Solution

28

main.js

OR

View Transformations (Camera)
 Recalling the camera analogy, viewing transformations position

and point the camera towards our scene
 Scene and view transformation considered the same in OpenGL

 Think of moving the camera or the whole scene → same effect

29

View Transformations (Camera)
 There are different ways to change viewing direction
 and vantage point
 Option 1:

 Use translate and rotate operations to change viewpoint (i.e., moving all objects)

 Option 2:
 Create and use lookAt matrix
 It specifies the viewpoint, viewing direction and up-vector (i.e., camera’s rotation)

 Note that you can have only one view transformation!

30

lookAt-Matrix Example
Bob is hanging upside down from a branch, looking at Alice, lying on
the grass with a book.

lookAt(Bob_x, Bob_y, Bob_z, Alice_x, Alice_y, Alice_z,
UpVector_x, UpVector_y, UpVector_z);

Bob‘s branch is at (20,80,15) (it‘s a tall tree)
Alice is at (15,0,12) (near the foot of the tree)
Upside-down means your up-vector is (0,-1,0)

lookAt(20, 80, 15, 15, 0, 12, 0, -1, 0);

31

Task 5: Setup lookAt Camera
Goal: Let camera look at the origin from position (0,3,5)

Step 1: Call lookAt(...) function in calculateViewMatrix(...)

32

Task 5: Solution

33

main.js

viewer, origin, up-vector

Projective Transformations

34

Projective Transformations
Projection transf. are like choosing our camera lens or field of view
Used to describe a viewing volume and how objects are projected
Projections may be either orthographic or perspective

35

Projective Transformations

http://blog.db-in.com/cameras-on-opengl-es-2-x/

http://blog.db-in.com/cameras-on-opengl-es-2-x/

Orthographic Projection
Orthographic projections require a box shaped viewing volume
makeOrthographicProjectionMatrix(left,right,bottom,top,near,far)

37

Perspective Projection
 Perspective projections require a frustum shaped viewing volume

 Truncated section of a pyramid

 Two options to define a frustum:
 Specify left, right, bottom, top, distance of near and far clipping plane

 OR

 Specify field of view (angle), aspect ratio (width/height),
distance of near and far clipping plane

 We will use the second option.

38

TASK 6: Orthographic Projection
Goal: Set up orthographic projection

Step 1: Call makeOrthographicProjectionMatrix(left,right,bottom,top,near,far)
With settings: left=-0.5, right=0.5, bottom=-0.5, top=0.5, near=0, far=10

39

Task 6: Solution

40

main.js

TASK 7: Perspective Projection
Goal: Set up perspective projection
Step 1: makePerspectiveProjectionMatrix(fieldOfViewInRadians,aspect,near,far)
With settings: fieldOfViewInRadians=30 degree,
aspectRatio=canvasWidth/canvasHeight, near=1, far=10

You’ll notice perspective foreshortening

41

Task 7: Solution

42

main.js

Perspective Division & Viewport

43

Perspective Division & Viewport
This step is independent from the user, it cannot be affected.
Vertex coordinates are being divided by the w-coordinate and we
obtain normalized device coordinates (NDC) ranging from -1 to 1 in x, y.
The z-coordinate (depth) is treated as always ranging from 0.0 to 1.0.
There’s more on depth handling in our next exercise!

44

Reusing Vertices via Index Buffer
 Quad from lab 1 consists of 2 triangles
 Drawback: Some vertices need to be send to GPU multiple times
 Instead of defining vertices multiple times indexing can be used

45

(-1, -1)

(1, 1)(-1, 1)

(1, -1)

const arr = new Float32Array([
 -1.0, -1.0,
 1.0, -1.0,
 -1.0, 1.0,
 -1.0, 1.0,
 1.0, -1.0,
 1.0, 1.0
]);

Reusing Vertices via Index Buffer

46https://www.youtube.com/watch?v=A2gXyEyy_2U

https://www.youtube.com/watch?v=A2gXyEyy_2U

 Cube geometry defined at top
 cubeVertices, cubeColors, cubeIndices

 Step 1: Initialize buffers by calling initCubeBuffer()
 Step 2: Call renderRobot(...)
 Step 3: Render cube by calling renderCube() in renderRobot(...)

Task 8: Add Cube

47

Task 8: Solution

48

main.js

Task 9: Create Animation
 Goal: Rotate cube

Principle: Apply small transformations in every render call
Independent of the frame rate:

 Step 1: add rotation around y-axis of cube by using variable:
animatedAngle

49

Task 9: Solution

50

main.js

At Home: Create a Robot
Robot should stand on ground plane (our quad)
Build robot from 4 cubes
Transform (translate,scale,rotate) cubes

51

head

body

left leg

right leg

Task 10:
Complex Transformations

 Goal: Create robot with rotating head that walks circles on ground
 Step 0: Make ground plane (rotate quad by 90°)
 Step 1: Create robot by adding cube multiple times

 Body, head, left leg, right leg
 rotating cube is the robot’s head

 Step 2: Let robot walk circles (without moving the legs)

52

Task 10-1: Solution

53
main.js

Task 10-2: Solution

54

main.js

 Transformation pipeline
 Model-view transformations

 Translate, scale, rotate

 Camera transformations
 Projective transformations

 Orthographic and perspective projection

 Creating geometry using the index buffer
 Animations

Recap

55

Next Time
 Rendering multiple objects
 Blending and depth handling
 Scene graph nodes and traversal
 glMatrix JavaScript library

 Replaces matrix specific functions at the end of main.js from Lab 2
(e.g., multiply, lookAt, inverse …)

56

Practice at Home!

 Play around with the framework

 Add rotating arms, more objects, …

 Integrate transformations and projection into your projects

57

