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Evaluating Parallel Programs

We achieved a speedup of 10.8 onp = 12 processors
with problem size n = 100.

B Multiple programs may
satisfy this observation:

J Program 1:

T =n+n?/p.
0 Program 2:

T = (n+n?)/p+ 100
[J Program 3:

T = (n+n?)/p+0.6p
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Figure 3.1, lan Foster: DBPP

We have to evaluate programs on varying parameters.
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Speedup and Efficiency

B (Absolute) speedup S, and efficiency E,:

T S T
1, p pIp
[J T: execution time of sequential program.

O T,: execution time of parallel program with p processors.
B Relative speedup S, and efficiency E,:

- T - S T
Tp p p- Tp
[J Use for comparison the parallel program with 1 processor.
O Measures “scalability” rather than “performance”.
B Typical ranges: S, < S, <pand E, < E, < 1.
O If S, > p, we have a “superlinear speedup”.
0 If S, > S, then T > Ty.

Speedup denotes the “performance” of parallelism, efficiency
relates this performance to the invested “costs”. 2/14



Diagrams
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Logarithmic scales may yield additional insights.
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Superlinear Speedups

Can the speedup be larger than the number of processors?

B Simple theoretical argument: “no”.

[J We can simulate the execution of a parallel program with p
processors on a single processor in time p - T;,. Thus
T<p-T,and S, =T/T, < p.

B However, practical observation: “yes”.

[J Cache effects: a system with p processors has typically
also p times as much cache which yields more cache hits.

[0 Search anomalies: if the computation involves a “search”,
one processor may be lucky to find the result early.

B These advantages can be “practically” not achieved on a
single processor system.

However, often super-linear speedups indicate program errors.
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Amdahl’s Law

Assume that a workload contains a sequential fraction f.

1
B Amdahl’s law: S, < f+1 ——F < 7

[J Speedup has an upper limit determined by f.

Amdahl's Law
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Amdahl’s law, en.wikipedia.org

Speedup is limited by the sequential fraction of a workload.
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Gustafson’s Law

Assume workload can be scaled as much as time permits.

B Amdahl: S, < ——
L

O leedwork IoadT f T+(1-f)-T

0 s,

p— fT-'r(l f)T

B Gustafson: S, < f +p (1-—

:f+p

)

[J Scalable work load T}, = f - T +p (1

fT+p-(1 ‘T+p-(1—
0 Spf fT+Pp((1 ){))T f P( )T

T

=f+p-(1

Gustafson's Law

- /)

S(P)=Pas(p)

If the parallelizable
workload grows linearly
with the numer of
processors, the speedup
grows correspondingly
such that the efficiency
remains constant.

Gustafson’s law, en.wikipedia.org
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Scalability Analysis

We have to scale the workload to keep the efficiency constant.

W Assume T, = ntfen

O Tp.,: the parallellotime with p processors for problem size n.
0 T,: the basic work performed by the sequential program.
O P, ,: the extra work performed by the parallel program.
B Then By = i~ = 71—
O E,.: the efficiency with p processors for problem size n.
O Thus T, = fg:ﬂ - P, ,; for achieving constant efficiency FE,
we have to ensure T, = L= Py =Kg Py,
B Isoefficiency function: If =Kg-Ppp
O If describes how much the basic work load has to grow for
growing processor number p to keep efficiency E.

O n: problem size such that T, = Kg - P, .

The less IPE grows, the more scalable the program is.
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Example: Matrix Multiplication

A B C

Multiplication of two square
matrices A, B of dimension n.

B Row-oriented parallelization. |
[0 Ais scattered, B is broadcast, C is gathered.
3
BT, =n’and T, = % +3n°

_ TutPyn
0 T = T2tlen

0 Py, = p’n-p—Tnz("?f+3n2)-p—n3:3pn2
BT, =Kg Py
O nd = Kg - 3pn?
On=Kg-3p
B IP=Kg Py,
0O IF =Kg-3pn®> = Kg - 3p- (Kg - 3p)? = (Kg)* - 27p?

The matrix dimension n must grow with (p), the basic work

load thus grows with Q(p?).
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Example: Matrix Multiplication

Often only asymptotic estimations are possible/needed.

B 7,=0(n3and P,, = O(plogp + n2\/i))
[0 Fox-Otto-Hey algorithm on /p x /p torus.
BT, =P
O n?® = Q(plogp + n\/p)
0 nd = Q(nz\/f)) =n = Q(/p)
0 n=9(yp) = n® = Q/p’) = Apyp) = Qplogp)
0 n® = Q(n?/p) An® = Q(plogp) = n® = Q(plogp+n?/p) v
0 n=Q(yp)
. = Q(Pp,n)
O 17 = Q(plogp +n?/p) = Qplogp + py/p) = Apy/D)

The matrix dimension » must grow with Q(,/p), the basic work
load thus grows with Q(p,/p).

m
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Modeling Program Performance
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Figure 3.2, lan Foster: DBPP

The parallel program overhead mainly stems from
communicating and idling.

10/14



Communication Time

T, =ts+ty - L

T = time
t,, = cost/word
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Figures 3.3 and 3.4, lan Foster: DBPP

Typically t; > t,, thus it is better to send a single big message

rather than many small messages. 11114



Idle Time

B Apply load-balancing
techniques.
B Overlap computation and
communication.
[J Have multiple threads
per processor.
[ Let process interleave
computation and
communication.

Structure the program to minimize idling.
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Figure 3.5, lan Foster: DBPP
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Execution Profiles

Poor performance may have multiple reasons.
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Figure 3.8, lan Foster: DBPP
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B Idle times due to load imbalances.

Time

B Size of messages transmitted.

Modeling/measuring execution profiles may help to improve the
design of a program.
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Experimental Studies

B Design experiment.
[J Identify data to be obtained.
[J Determine parameter ranges.
[J Ensure adequacy of measurements.

Total Time

B Perform experiment.

0 Repeat runs to verify reproducability.
[ Drop outliers, average the others.

B Fit observed data o(¢) to model m(7):
[0 Least square fitting: minimize

> _(o(i) = m(i)?

i

[J Scaled least square fitting: minimize

o(i) = m(i) .,
ST

(giving more weight to smaller values).
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Figure 3.9, lan Foster: DBPP
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