# **PERFORMANCE ANALYSIS**

**Course "Parallel Computing"** 



Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC) Wolfgang.Schreiner@risc.jku.at http://www.risc.jku.at





#### **Evaluating Parallel Programs**

We achieved a speedup of 10.8 on p = 12 processors with problem size n = 100. 1000 Perfect Speedu Algorithm 1 Algorithm 2 Algorithm 3 100 Multiple programs may speedup satisfy this observation: 10 Program 1:  $T = n + n^2/p$ . 10 100 1000 Processors Program 2: N=1000 10000  $T = (n + n^2)/p + 100$ Perfect Speedup Algorithm I Algorithm 2 1000 Algorithm 3 Program 3: peedup  $T = (n + n^2)/p + 0.6p^2$ 100 10 10 100 1000 10000 Processors Figure 3.1. Ian Foster: DBPP

We have to evaluate programs on varying parameters.

# **Speedup and Efficiency**

• (Absolute) speedup  $S_p$  and efficiency  $E_p$ :

$$S_p = \frac{T}{T_p} \qquad \qquad E_p = \frac{S_p}{p} = \frac{T}{p \cdot T_p}$$

 $\Box$  T: execution time of sequential program.

 $\Box$   $T_p$ : execution time of parallel program with p processors.

**Relative speedup**  $\overline{S}_p$  and efficiency  $\overline{E}_p$ :

$$\overline{S}_p = \frac{T_1}{T_p}$$
  $\overline{E}_p = \frac{\overline{S}_p}{p} = \frac{T_1}{p \cdot T_p}$ 

□ Use for comparison the parallel program with 1 processor.

□ Measures "scalability" rather than "performance".

**Typical ranges:**  $S_p \leq \overline{S}_p \leq p$  and  $E_p \leq \overline{E}_p \leq 1$ .

 $\Box$  If  $S_p > p$ , we have a "superlinear speedup".

$$\Box$$
 If  $S_p > \overline{S_p}$ , then  $T > T_1$ .

Speedup denotes the "performance" of parallelism, efficiency relates this performance to the invested "costs". 2/14

## **Diagrams**



Logarithmic scales may yield additional insights.

# **Superlinear Speedups**

Can the speedup be larger than the number of processors?

- Simple theoretical argument: "no".
  - □ We can simulate the execution of a parallel program with p processors on a single processor in time  $p \cdot T_p$ . Thus  $T \leq p \cdot T_p$  and  $S_p = T/T_p \leq p$ .
- However, practical observation: "yes".
  - □ Cache effects: a system with *p* processors has typically also *p* times as much cache which yields more cache hits.
  - Search anomalies: if the computation involves a "search", one processor may be lucky to find the result early.
- These advantages can be "practically" not achieved on a single processor system.

However, often super-linear speedups indicate program errors.

## Amdahl's Law

Assume that a workload contains a sequential fraction f.

Amdahl's law: S<sub>p</sub> ≤ 1/(f+1-f) ≤ 1/f
 □ Speedup has an upper limit determined by f.

Amdahl's Law 20.00 18.00 Parallel portion 16.00 14.00 95% sequential f12.00 fraction peedup 10.00 8.00 1 - fparallelizable fraction 6.00 4.00 2.00 0.00 -2 ė 28 26 i i 024 192 384 2768 5536

Number of processors

Amdahl's law, en.wikipedia.org

Speedup is limited by the sequential fraction of a workload.

#### **Gustafson's Law**

Assume workload can be scaled as much as time permits.

Amdahl:  $S_p \leq \frac{1}{f + \frac{1-f}{f}}$  $\Box$  Fixed work load  $T = f \cdot T + (1 - f) \cdot T$  $\Box S_p \le \frac{T}{f \cdot T + \frac{(1-f) \cdot T}{T}} = \frac{1}{f + \frac{1-f}{T}}$ Gustafson:  $S_p \leq f + p \cdot (1 - f)$  $\Box$  Scalable work load  $T_p = f \cdot T + p \cdot (1 - f) \cdot T$  $\Box \ S_p \leq \frac{f \cdot T + p \cdot (1 - f) \cdot T}{f \cdot T + \frac{p \cdot (1 - f) \cdot T}{T}} = \frac{f \cdot T + p \cdot (1 - f) \cdot T}{T} = f + p \cdot (1 - f)$ Gustafson's Law: S(P) = P-a\*(P-1) If the parallelizable 100 workload grows linearly with the numer of 60 processors, the speedup grows correspondingly such that the efficiency

120

6/14

Number of Processors

Gustafson's law, en.wikipedia.org

remains constant.

# **Scalability Analysis**

We have to scale the workload to keep the efficiency constant.

Assume  $T_{p,n} = \frac{T_n + P_{p,n}}{n}$ .  $\Box$   $T_{p.n}$ : the parallel time with p processors for problem size n.  $\Box$   $T_n$ : the basic work performed by the sequential program.  $\square$   $P_{p,n}$ : the extra work performed by the parallel program. • Then  $E_{p,n} = \frac{T_n}{p \cdot T_n \cdot n} = \frac{T_n}{T_n + P_n \cdot n}$ .  $\Box$   $E_{p,n}$ : the efficiency with p processors for problem size n.  $\Box$  Thus  $T_n = \frac{E_{p,n}}{1-E} \cdot P_{p,n}$ ; for achieving constant efficiency E, we have to ensure  $T_n = \frac{E}{1-E} \cdot P_{n,n} = K_E \cdot P_{n,n}$ . Isoefficiency function:  $I_n^E = K_E \cdot P_{p,n}$  $\hfill\square\hfill\ I^E_n$  describes how much the basic work load has to grow for

growing processor number p to keep efficiency E.

 $\square$  *n*: problem size such that  $T_n = K_E \cdot P_{p,n}$ .

The less  $I_p^E$  grows, the more scalable the program is.

# **Example: Matrix Multiplication**

Multiplication of two square matrices A, B of dimension n.



Row-oriented parallelization.  
A is scattered, *B* is broadcast, *C* is gathered.  

$$T_n = n^3 \text{ and } T_{p,n} = \frac{n^3}{p} + 3n^2$$

$$T_{p,n} = \frac{T_n + P_{p,n}}{p}$$

$$P_{p,n} = T_{p,n} \cdot p - T_n = (\frac{n^3}{p} + 3n^2) \cdot p - n^3 = 3pn^2$$

$$T_n = K_E \cdot P_{p,n}$$

$$n^3 = K_E \cdot 3pn^2$$

$$n = K_E \cdot 3p$$

$$I_p^E = K_E \cdot P_{p,n}$$

$$I_p^E = K_E \cdot p_{p,n}$$

$$I_p^E = K_E \cdot 3pn^2 = K_E \cdot 3p \cdot (K_E \cdot 3p)^2 = (K_E)^3 \cdot 27p^3$$

The matrix dimension n must grow with  $\Omega(p)$ , the basic work load thus grows with  $\Omega(p^3)$ .

#### **Example: Matrix Multiplication**

Often only asymptotic estimations are possible/needed.

$$\begin{array}{l} \blacksquare \quad T_n = \Theta(n^3) \text{ and } P_{p,n} = \Theta(p \log p + n^2 \sqrt{p}) \\ \square \quad \text{Fox-Otto-Hey algorithm on } \sqrt{p} \times \sqrt{p} \text{ torus.} \end{array} \\ \blacksquare \quad T_n = \Omega(P_{p,n}) \\ \square \quad n^3 = \Omega(p \log p + n^2 \sqrt{p}) \\ \square \quad n^3 = \Omega(n^2 \sqrt{p}) \Rightarrow n = \Omega(\sqrt{p}) \\ \square \quad n = \Omega(\sqrt{p}) \Rightarrow n^3 = \Omega(\sqrt{p}^3) = \Omega(p \sqrt{p}) = \Omega(p \log p) \\ \square \quad n^3 = \Omega(n^2 \sqrt{p}) \wedge n^3 = \Omega(p \log p) \Rightarrow n^3 = \Omega(p \log p + n^2 \sqrt{p}) \checkmark \\ \square \quad n = \Omega(\sqrt{p}) \\ \blacksquare \quad I_p^E = \Omega(P_{p,n}) \\ \square \quad I_p^E = \Omega(p \log p + n^2 \sqrt{p}) = \Omega(p \log p + p \sqrt{p}) = \Omega(p \sqrt{p}) \end{aligned}$$

The matrix dimension n must grow with  $\Omega(\sqrt{p})$ , the basic work load thus grows with  $\Omega(p\sqrt{p})$ .

# **Modeling Program Performance**

$$T = \frac{1}{p} (T_{\rm comp} + T_{\rm comm} + T_{\rm idle})$$

- T<sub>comp</sub>: computation time.
   T<sub>comm</sub>: communication time.
- $\blacksquare$   $T_{idle}$ : idle time.



Figure 3.2, Ian Foster: DBPP

The parallel program overhead mainly stems from communicating and idling.

# **Communication Time**

$$T_L = t_s + t_w \cdot L$$

- T<sub>L</sub>: the time for sending a message of size L.
- t<sub>s</sub>: the fixed message startup time.
- t<sub>w</sub>: the transfer time per word of the message.



Figures 3.3 and 3.4, Ian Foster: DBPP

Typically  $t_s \gg t_w$ , thus it is better to send a single big message rather than many small messages.

## **Idle Time**

- Apply load-balancing techniques.
- Overlap computation and communication.
  - Have multiple threads per processor.
  - Let process interleave computation and communication.





Structure the program to minimize idling.

#### **Execution Profiles**

Poor performance may have multiple reasons.

- Replicated computation.
- Idle times due to load imbalances.
- Number of messages transmitted.
- Size of messages transmitted.



Figure 3.8, Ian Foster: DBPP

Modeling/measuring execution profiles may help to improve the design of a program.

# **Experimental Studies**

- Design experiment.
  - Identify data to be obtained.
  - Determine parameter ranges.
  - Ensure adequacy of measurements.
- Perform experiment.
  - Repeat runs to verify reproducability.
  - Drop outliers, average the others.
  - Fit observed data o(i) to model m(i):
    - Least square fitting: minimize

$$\sum_{i} (o(i) - m(i))^2$$

Scaled least square fitting: minimize

$$\sum_{i} (\frac{o(i) - m(i)}{o(i)})^2$$

(giving more weight to smaller values).



Otal Time

Figure 3.9, Ian Foster: DBPP