JYU Seeing through Forest Oliver Bimber

autonomous drone equipped with RGB and thermal cameras

LIDAR

Synthetic Aperture Sensing

Synthetic Aperture

Microscopy (ISAM)

Synthetic Aperture Radar (SAR)

synthetic aperture LiDAR (SAL) synthetic aperture imaging laser (SAIL)

Depth of Field

Large Depth of Field

(unstructured Light-Field)

Airborne Optical Sectioning, J. Imaging 2018

Airborne Optical Sectioning, J. Imaging 2018

S

Does the aperture really have to be large and densely sampled?

photometric stereo

AOS

(1) There exists a limit to the baseline (distance) of sample positions. The minimal (optimal) baseline is the one that results in a disparity equal to the projected occluder size. Larger baselines do not improve visibility.

(2) There exists a limit to achievable visibility improvement that depends on the density of the occluder volume. The maximum visibility gain is achieved at a density of 50%.

(3) The (to the possible range normalized) visibility gain is independent of the occlusion density. It is directly correlated to a fixed number of samples.

A Statistical View on Synthetic Aperture Imaging, IEEE Sensors, 2019

Thermal Airborne Optical Sectioning (TAOS)

thermal camera

Thermal Airborne Optical Sectioning, J. Remote Sensing 2019

RGB

camera

Thermal Airborne Optical Sectioning, J. Remote Sensing 2019

Thermal Airborne Optical Sectioning, J. Remote Sensing 2019

takeoff / landing position (48°20'54.9"N 13°22'16.7"E)

2m

scanning area (48°20'58.4"N 13°22'01.0"E)

350m

0

(C)

Airborne Optical Sectioning for Nesting Observation, Nature SciRep, 2020

Airborne Optical Sectioning for Nesting Observation, Nature SciRep, 2020