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General motivations

Motivations
Past Present Future
Model-based algorithms Data-driven blackbox DNNs Model-driven DNNs possibly
originated by humans take the lead in many fields dominate in signal processing

dominate

Conventional _/
| . Algorithms o

4/48



The Whys and The Hows @ @

Motivations

Why to combine model-based algorithms with DNN?

® Improve the performance: incorporate domain knowledge.

m Open the blackbox: interpret DNN predictions.
B Temper DNN's data-hunger: reduce the training data.

How to do that?

m Traditional approach: feature engineering.

- Pros: dimensionality reduction, interpretability.
— Cons: usually suboptimal.
m Architectures based on existing algorithms: deep unfolding,
Wiener-Hammerstein type NNs, spline adaptive filtering,
tensor-based learning.

m Representation learning: convolutional nerual networks,
autoencoders, etc.

<
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In this talk... AN [
n IS ta )\!5’] @

Motivations

Linear models Nonlinear models VPNet
| D I - [ D(0)x ] = [ ®(0)x + DNN ]
Case studies

m Thermographic image regression

— Linear models + DNN
— Domain knowledge included via physical models
m ECG classification

— Nonlinear models + DNN

— Domain knowledge included via model-driven representation

learning
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Thermographic imaging &

B Thermographic imaging
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Problem description
Thermographic imaging

Analysis, detection of structural imperfections of materials.

Surface measurement Temperature data sparse 20
of the temperature defect
distribution in each
| cross-section using: 0

- numerical methods
- machine leaming

Bl L]

a) defests inside the specimen b) suirface tem perature ©) reconstructed cross-section
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Problem description
Thermographic imaging

Linear model

B d: noisy surface temperature measurements after heating.
B u: initial temperature distribution inside the material.
B ®: forward mapping that models the heat conduction.

B The corresponding discrete linear inverse problem:
Pu =d.

A,

Heuristics

B Nonnegativity: entries of u represents temperature data.

B Sparsity: locations of nonzeros in u are either defects or noise.

B Group sparsity: nonzero groups in u are most probably defects.

Challenges in thermographic imaging

B Numerical: it is a discrete ill-posed inverse problem.

B Computational: it is a large-scale problem.

B Modeling: how to derive ®7
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Model based approach -

m Model based approach

9/48



Virtual wave concept

Model based approach

Two-stage reconstruction process [1]

1) Transformation of the thermographic imaging problem:
v = argmin{||d — Kv||5 + A2 - Q(v)}.
v
2) Applying ultrasonic imaging techniques to the new problem:

u= argm&n{”? — Mul)3 + 42 - Q(u)}.

| A\

One-stage reconstruction process

By @ = KM, the full reconstruction can be written as follows:

i = argmin{||d — ®ul|; + - Q(u)}.
u

[1] P. Burgholzer, M. Thor, J. Gruber, and G. Mayr. Three-dimensional
thermographic imaging using a virtual wave concept. Journal of Applied
Physics, 121(10):105102 1-11, 2017. 10/48



Two-stage reconstruction process

Model based approach

@
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Two-stage reconstruction process
Model based approach

a) Tyire by Abel-ADMM b) Ty by tsaft ¢) Ty by reg tsaft d) Tp by group sparse tsaft
50 - 50 50 50
> 100 ( 100 - 100 - 100 -
-
150 . solve 150 . 150 - 150 ™~
=
200 - v=Mu 200 200 200
250 250 250 250
300 300 300 300
20 60 100 20 60 100 20 60 100 20 60 100
time t depth z depth z depth z

Figure: Second stage of the reconstruction process. a) Virtual wave reconstruction by
ADMM with Abel trf.; initial temperature distribution by b) tsaft, ¢) reg tsaft, and d)
group sparse grp. tsaft, where groups of size 10 x 10 were used as indicated by the

black grid.
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ML based approach

m ML based approach

12/48



ML based sparse estimation
ML based approach

B Existing iterative algorithms can converge to bad solutions.

B The convergence can be slow, and the solution have to be
recalculated for every new image.

B Incorporating problem-specific information into an algorithm.

v

Sparse estimation via ML techniques

We want to learn an algorithm for solving

G = argmin fo(u) = argmin{|d - Sul} + 72 Jull,}.

V.

Parameter class of interests

6={d,®}, Q={d &|deR", &RV}

® and d are not arbitrary, they are prescribed by physical models.

v
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surface y

ML approches for thermography 5 @

ML based approach
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Hybrid approach &

m Hybrid approach
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Hybrid approach
Hybrid approach

Reconstruction in 2D

1) Extract the virtual waves v from the measurements d.

— utilize the sparse and non-negative nature of v;
2) Estimate the temperature distribution u by machine learning:

— input: thermal diffusivity invariant virtual waves v

— output: approximation of u

| A\

Reconstruction in 3D [2]

m Estimate the temperature distribution in each 2D cross-section.

m 3D reconstruction from the sequence of 2D images.

&

[2] P. Kovacs, B. Lehner, G. Thummerer, G. Mayr, P. Burgholzer, M. Huemer,
Deep learning approaches for thermographic imaging, Journal of Applied
Physics, 2020, vol. 128, no. 15, pp. 155103-1-16. 16/48



Deep learning by u-net 7 @
Hybrid approach

256 756

Figure: Architecture of the compact u-net.
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Data sets @
Hybrid approach

Mathematical model of the heat diffusion

(v2 _ 13) T(r,t) = —éTo(r)(S(t),

a0t
where
B « stands for the thermal diffusivity,

B T is the temperature as a function of space r and time ¢,

B Tj denotes the initial temperature profile at ¢ = 0.

Data generation in 2D assuming adiabatic boundary conditions

T(ky, k=, t) = To(ky, k=) - exp(— (k2 + k2) - at),
where
] f TO are the cosine transforms of T" and T} in the yz-plane,

B k, and k, are the corresponding spatial frequencies.

< 18/48



Data sets

®

Hybrid approach

Training data

m 8,000 simulated noise free samples with adiabatic boundary conditions.
B 2-5 square-shaped defects with side lengths between 2 and 6 pixels.
B The resolution of each image is 256 x 64.

m 10 different versions of each sample were used, representing SNRs
from -20 dB to 70 dB in 10 dB steps.

m Overall number of training images: 10 x 8000

| A\

Testing data

B 1,000 simulated samples similar to the training images.
m Overall number of test images: 10 x 1000

B Real measurement data containing 256 images of size 256 x 64.
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Experiments
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State-of-the-art model based approaches
Experiments

Numerical solvers for sparse approximation

m SPGL1 is for large-scale one-norm regularized least squares.

®m YALL1 is a solver for basic/group sparse reconstruction.
B ASP is for solving several variations of the sparse optimization.
|

ADMM (alternating direction method of multipliers) is a very
general algorithm for solving sparse approximation problems.

SALSA is a fast ADMM type algorithm for image reconstruction.

m IRfista is a recent numerical solver for large-scale problems.

.

Tested model based approaches

m fkmig: Stolt’s f-k migration without sparse regularization.

B tsaft: Snythetic Aperture Focusing Technique in the time domain.

B reg tsaft: same as tsaft, but with sparse regularization.

4 20/48




Simulation results
Experiments

fkmig (0.0315)

- ™

end-to-end cmp (0.0177)

hybrid cmp (0.0148)

end-to-end Irg (0.0128)

hybrid Irg (0.0105)

Figure: Reconstructions of a 0 dB SNR example from the test set.




Simulation results
Experiments

—i— fkmig --@- e2elrg
--@ - eZlecmp —i— Irg
—&— cmp

.
R ®---@---@--—0--
"‘-'

10 20 30 40 50 60 70
SNR [dB]

Figure: The MSE of the baselines and the proposed method.
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Real measurement data
Experiments

a) b)
Epoxy resin

Insulation

Q
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<

Figure: Parameters of the phantom.
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Real measurement data S
. & &)
Experiments
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Figure: Using the model-based fkmig approach for 3D reconstruction of
the specimen without rotation.
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Real measurement data
Experiments
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Figure: Using the model-based fkmig approach for 3D reconstruction of
the specimen a rotation of 25°.
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Real measurement data
Experiments
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Figure: Using the large end-to-end e2e Irg approach for 3D
reconstruction of the specimen without rotation.
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Real measurement data
Experiments
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Figure: Using the large end-to-end e2e Irg approach for 3D
reconstruction of the specimen with a rotation of 25°.
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Real measurement data
Experiments
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Figure: Using the large hybrid Irg approach for 3D reconstruction of the

specimen without rotation.
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Real measurement data

& (
Experiments o @
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Figure: Using the large hybrid Irg approach for 3D reconstruction of the
specimen with a rotation of 25°.
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How can we do better?

Experiments

Reformulate the fist step

r(v,a) == ||d — K(a)v||? = min
v,

where
m d is the surface temperature data,
m K physics-based forward modeling of the first step,
B v virtual wave vector.

B « stands for the thermal diffusivity of the material.

4

Can we define a network to learn o7

m Search the solution to (v, «) by Variable Projection (VP).

m Wrap the least-squares estimate K (a)d into a (VP)layer.

m Define the gradient through « by the theory of VP.

23/48
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m VPNet
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General motivations @ @
VPNet

Inspirations

— CNNs, Wiener-Hammerstein based NNs.
- Biomedical signal processing (ECG, EEG, EMG, etc.)
- 1D signal processing with machine learning (neural networks)

m Traditional approach

Feature extraction + machine learning

— Time- or frequency domain decomposition

Fourier transform, Hermite functions, wavelets, statistical
descriptors, variable projection (VP), etc.

Domain knowledge, model-based methods

Explainability

m Deep Learning
- Deep NN, convolutional NN, recurrent NN, etc.
- Representation learning

m ldea
- Combination: model-based (deep) NN with VP
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Orthogonal transformations @

VPNet

B Linear modeling problem:

n—1
TRT = E qu)k:q)c
k=0

B Best approximation problem in Hilbert spaces:

S :=span{®g, P1,...,Pn_1} C R™ generated subspace

dist(z, S) = mm lz —yll2 = |z — 2|2

B Solution to the discrete case (Iinear least squares):

— Generalized Fourier coefficients: ¢ = &+«

— Orthogonal projection: & = Psxz = ®®Tx

B Orthogonal transformations with system &

e.g.: trigonometric system, Walsh, rational, and Hermite functions, etc.

1st component 2nd component 6th component Linear model

08 08

N 0) . —o - By(0) - S N0) s —Signal
' b —-- Approx.

06 06

+ - +.4 =

02 0z

o AN ——
02 02
04 04

05 os

26/48



Variable Projection (VP)
VPNet

B Nonlinear modeling problem:

where:

xr € R™:
T e R™:

input data

model estimation

Dy (0) € R™: parametric function system
$(0) € RM*™: system matrix
c: linear parameters, e.g. c€ R" or c€ C"
0 : nonlinear system parameters, e.g. 6 € DP for rational functions
B Linear and nonlinear parameters are separated

1st component

2nd component

—c1 - @u(tn)

. —cr - Da(ti)

08

04

02

5 o

s o 5

08

06

04

6th component

Nonlinear model

—cs - Po(t;m)

s o

Nonlinear least-squares approximation of a QRS complex using Hermite functions

parametrized by the dilation and the translation.
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Adaptive transformations @ @
VPNet

m General case:

r(c,0) = ||z — ®(0)c|3 — mi@n

Decomposition:
- Generalized Fourier coefficients: ¢ = ®*(0)z
— Orthogonal projection: & = Pggyz = ®(0)®"(0)x
— Variable projection functional [3]:

ra(0) == ||z — ®(0)DF(0)z|3 — mein

Adaptive transformations
{®r(0) |0 < k < n} adaptive system, S() := span{Px(0)}
Function system itself is adapted to the input

[3] G. H. Golub and V. Pereyra. The differentiation of pseudo-inverses and
nonlinear least squares problems whose variables separate. SIAM Journal on
Numerical Analysis, 1973. 28/48



Example: B-splines @ @

VPNet

B Nonlinear parameters: free knots 6 € R?

B Applications:
— ECG compression [4]
- ECG heartbeat classification [5]

A Y?
0 °MM¢WW¢ oot

Eredeti jel —ECG
Kozelités (PRD: 108.7%) 10 ; ; — VarPro PRD: 14.90%

200 250 300 50 150 200 250 300

—10( L

50 150

a) In|t|aI estlmatlon (b) Optlmlzmg the knots by VP.

[4] P. Kovéacs and A. M. Fekete. Nonlinear least-squares spline fitting with variable knots.
Applied Mathematics and Computation, 354:490-501, 2019.

[5] T. Dézsa, G. Bognar, and P. Kovacs. Ensemble learning for heartbeat classification using
adaptive orthogonal transformations. In EUROCAST 2019, Springer LNCS, 2020.
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Example: adaptive Hermite functions @
VPNet

B Nonlinear parameters: dilation and translation 6 = [r, \]T € R?
Br(m, A t) == VA- B (ANt —7)) (£, 7 €R,A>0)
B Applications:
— ECG compression [6]
- ECG segmentation / delineation [7]
- ECG, BP, AP waveform modeling [8]
— ECG heartbeat classification [9]
Koreites =95 473 o —oreties pro=02 53¢ o i pro-so o)

03 03 o8

Figure: Fitting the P, T waves, and the QRS complex.

[6] T. Dézsa, P. Kovacs. ECG signal compression using adaptive Hermite functions. Adv Int Syst Comput, 2015.
[7] P. Kovacs, C. B&ck, J. Meier, M. Huemer. ECG segmentation using adaptive Hermite functions. In Asilomar, 2017.
[8] P. Kovacs, C. Béck, T. Dézsa, J. Meier, M. Huemer. Waveform modeling by adaptive weighted Hermite functions. In ICASSP, 2019.

91 T. Dézsa, G. Bognar, P. Kovacs. ble learning for hearth. lassification using adaptive orthogonal fe H In LNCS, 2020.




Example: adaptive Hermite (ECG) I3 @
VPNet

0.5

A

— QRS
—T
=1 i i I t P

50 100 150 200 250 300

(d) Segmented heartbeat.

Figure: Segmentation of an ECG based on optimized Hermite functions.
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Example: rational orthogonal systems ) @
VPNet

m Nonlinear parameters: inverse poles § € DP

m Applications:

ECG compression [10]

ECG segmentation / delineation [11]
ECG modeling [12] [13] [14]

ECG heartbeat classification [5], [15], [16]
- EEG seizure detection [17]

[10] P. Kovacs, S. Fridli, and F. Schipp. Generalized Rational Variable Projection With Application in
ECG Compression. IEEE Trans Sign Proc, 2019.

[11] G. Bognar and S. Fridli. ECG Segmentation by Adaptive Rational Transform. In EUROCAST 2019,
Springer LNCS, 2020.

[12] S. Fridli, P. Kovacs, L. Lécsi, and F. Schipp. Rational modeling of multi-lead QRS complexes in
ECG signals. Ann Univ Sci Budapest, 2012.

[13] S. Fridli, L. Lécsi, and F. Schipp. Rational function system in ECG processing. In EUROCAST
2011, Springer LNCS, 2012.

[14] P. Kovacs. Rational variable projection methods in ECG signal processing. In EUROCAST 2017,
Springer LNCS, 2017.

[15] G. Bognar and S. Fridli. Heartbeat Classification of ECG Signals Using Rational Function Systems.
In EUROCAST 2017, Springer LNCS, 2018.

[16] G. Bognar and S. Fridli. ECG Heartbeat Classification by Means of Variable Rational Projection.
Biomed Sign Process Control, (to appear)

[17] K. Samiee, P. Kovacs, and M. Gabbouj. Epileptic seizure classification of EEG time-series using
rational discrete short time Fourier transform. IEEE Trans Biomed Eng, 2014. 32/48



Example: rational (ECG) @ @
VPNet —

l T T
80 —ECG
60 — VarPro PRD: 60.02%
0.5 ° 20
20
(J
0 ® 0
® -20
[ ] -40
-0.5
-60
-80
-1 : : . -100 : : : : :
-1 -0.5 0 1 50 100 150 200 250  30(

0.5

Figure: Example for the rational VarPro algorithm approximating a real
ECG from PhysioNet MIT-BIH Arrhythmia Database.
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Example: trigonometric functions A

VPNet

5| —|DTFT] ]

45 _Jil,rus ]

ol JorFr |
- ~fvp

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3

0.35 0.4

Identification of close frequency components [18].

[18] Yuneisy, E. G. G., Kovécs, P., Huemer, M., Variable Projection for Multiple
Frequency Estimation, in /CASSP, 2020, pp. 4811-4815.
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Example: trigonometric functions @ @
VPNet -

% |—[DTFT|
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Identification of close frequency components [18].
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Example: trigonometric functions @ @
VPNet -
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Example: trigonometric functions @ @
VPNet
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Example: trigonometric functions @ @
VPNet
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Identification of close frequency components [18].
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Architectures

m Architectures
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Conyolutlonal Neural Networks @ @
Architectures

B -EEERa RS

L
Y
| i ) . Fl ) |
nputimage Convolution & Pooling layer(s) attened Hidden layers Output layer

Convolutional layers: convolution with nonlinear activation

Pooling layers: dimension reduction

Input: raw or preprocessed image

[
[
m Representation learning: built-in multilevel feature extraction
[
m Note: 1D CNN [19]

[19] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J.
Inman. 1D convolutional neural networks and applications: A survey, 2019. 36/48



VPNet Architecture
Architectures

K \ K

| J

VP layer(s) Output layer

Y
Input Hidden layers
m Input: raw or preprocessed signal
m VP layer(s): projection of the form
z— fOP)(z) = ot ()2 = c (classification)
or
= fOP)(z) = B(A)DF(0)z =%  (regression)
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Properties @ @

Architectures

Novelty

— novel model-driven network architecture
- application: 1D signal processing

Generality

— arbitrary parameterized function systems
- domain knowledge

Interpretability
— built-in feature extraction
— interpretable parameters: nonlinear VP system parameters
— direct connection with morphological properties

Simplicity
- few system parameters only
— compact architecture (cf. CNN and DNN)

38/48



Backpropagation & @

Architectures

m Offline supervised learning
m Backpropagation, stochastic gradient descent
m Gradients of VP coefficients:
ofe) 9ot ()
VP (1) = (0 =
O T

z,

where [3]
9T = —dT00dT + &F [0F]" 90T (I — dd)+
+(I - o 0)9dT [01]" ot
m Gradients of VP projection:

o) - b0t (g, AP AeONE)
1 () = B(6)3 (6) 5 5,

where [3]
(@D = (I — BOH)IDDT + (I — DOH)9DDT)"
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Experiments

m Experiments
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VPNet evaluation 3 @

Experiments

® Implementation: PyTorch / native NumPy framework
(custom plugin / own implementation)

m Function system: adaptive Hermite functions

Bp(r, \iz) == VA Az — 7)) (x, 7€ R, A\ >0)

(nonlinear parameters: translation and dilation)

m Synthetic dataset generation

B Real-world dataset: MIT-BIH Arrhythmia Database
(ECG classification problems)

m Exhausting evaluation of hyperparameters

m Comparison with fully-connected (FCNN) and convolutional
neural networks (CNN)

41/48



Synthetic Hermite dataset
Experiments

2003

* Classt
* Class2 2002
* Class3

* Class1
* Class2
Class3|

2001

19.99

19.98

19,

97 J
037 03 089 04 041 042 043 044 5 10 15 2 25 30 5 4

(a) Coefficients (b) System parameters (c) Samples

m Samples: linear combinations of Hermite functions of the form
xp = O(1, M) - Ck-
m Separable coefficients (3 classes)
(Ck0,Ch,1,Ch2) € R3: on spherical shells by classes
¢k,3 and ¢y 4: amplitude normalization
m Similar system parameters

T and A\ generated randomly with given mean and variance w218



Synthetic Hermite evaluation

Experiments

—— VPNet, n=9
—— VPNet, n=7
FCNN

0

200 400 600 800 1000 1200
Iteration

Figure: Best training curves
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Synthetic Hermite evaluation @ @

Experiments

1.00 —

§o.99

S 008, VPNet, n=9

8 VPNet, n=7

T 007 FCNN

@ CNN, K=5

F 096 CNN, K=15

CNN, K=25

0.95

3 4 5 6 7 8 9 10 11 12
Number of hidden neurons

Figure: Best test accuracy depending on the number of hidden neurons
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Real ECG dataset @ @

Experiments

10 20 30 40 5 60 70 8 90 100 10 20 30 40 5 60 70 80 90 100

(a) Normal beats (b) Ventricular ectopic beats

m PhysioNet MIT-BIH Arrhythmia Database

® Reduced, balanced subset

m Normal < ventricular ectopic heartbeats

m Training: 4260-4260 beats (DS1), test: 3220-3220 (DS2)
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Real ECG evaluation @

Experiments

0.97
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lg 0921 ___ VPNet, n=8  ----- CNN, K=5
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567 8 910 20

Number of hidden neurons

Figure: Best test accuracy depending on the number of hidden neurons
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Outline
Conclusion

m Conclusion
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Conclusion @ ®

Conclusion

m Summary

- Novel model-based architecture for 1D signal processing
General, flexible construction
Compactness
- Explainability, interpretable parameters
Preliminary results: outperforms FCNN and CNN wrt.
convergence and accuracy

m Further research

Mathematical and computational properties

— New fields of applications
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Different architectures, other ML methods combined with VP
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