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General motivations
Motivations
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Why to combine model-based algorithms with DNN?

� Improve the performance: incorporate domain knowledge.

� Open the blackbox: interpret DNN predictions.

� Temper DNN's data-hunger: reduce the training data.

How to do that?

� Traditional approach: feature engineering.

� Pros: dimensionality reduction, interpretability.
� Cons: usually suboptimal.

� Architectures based on existing algorithms: deep unfolding,
Wiener�Hammerstein type NNs, spline adaptive �ltering,
tensor-based learning.

� Representation learning: convolutional nerual networks,
autoencoders, etc.

The Whys and The Hows
Motivations
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Case studies

� Thermographic image regression

� Linear models + DNN

� Domain knowledge included via physical models

� ECG classi�cation

� Nonlinear models + DNN

� Domain knowledge included via model-driven representation

learning

In this talk...
Motivations
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Goal

Analysis, detection of structural imperfections of materials.

Problem description
Thermographic imaging
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Linear model

� d: noisy surface temperature measurements after heating.

� u: initial temperature distribution inside the material.

� Φ: forward mapping that models the heat conduction.

� The corresponding discrete linear inverse problem:
Φu = d.

Heuristics

� Nonnegativity: entries of u represents temperature data.

� Sparsity: locations of nonzeros in u are either defects or noise.

� Group sparsity: nonzero groups in u are most probably defects.

Challenges in thermographic imaging

� Numerical: it is a discrete ill-posed inverse problem.

� Computational: it is a large-scale problem.

� Modeling: how to derive Φ?

Problem description
Thermographic imaging
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Two-stage reconstruction process [1]

1) Transformation of the thermographic imaging problem:

ṽ = arg min
v
{‖d−Kv‖22 + λ2 · Ω(v)}.

2) Applying ultrasonic imaging techniques to the new problem:

ũ = arg min
u
{‖ṽ −Mu‖22 + µ2 · Ω(u)}.

One-stage reconstruction process

By Φ = KM, the full reconstruction can be written as follows:

ũ = arg min
u
{‖d−Φu‖22 + ν2 · Ω(u)}.

[1] P. Burgholzer, M. Thor, J. Gruber, and G. Mayr. Three-dimensional
thermographic imaging using a virtual wave concept. Journal of Applied
Physics, 121(10):105102 1�11, 2017.

Virtual wave concept
Model based approach
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a) Tvirt by Abel-ADMM
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c) T0 by reg tsaft
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Figure: Second stage of the reconstruction process. a) Virtual wave reconstruction by
ADMM with Abel trf.; initial temperature distribution by b) tsaft, c) reg tsaft, and d)
group sparse grp. tsaft, where groups of size 10× 10 were used as indicated by the
black grid.

Two-stage reconstruction process
Model based approach
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Motivation

� Existing iterative algorithms can converge to bad solutions.

� The convergence can be slow, and the solution have to be
recalculated for every new image.

� Incorporating problem-speci�c information into an algorithm.

Sparse estimation via ML techniques

We want to learn an algorithm for solving

ũ = arg min
u
f θ(u) = arg min

u
{‖d−Φu‖22 + τ2 · ‖u‖1}.

Parameter class of interests

θ = {d,Φ} , Ω =
{
d,Φ |d ∈ RN , Φ ∈ RN×M

}
Φ and d are not arbitrary, they are prescribed by physical models.

ML based sparse estimation
ML based approach
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Two-stage reconstruction by the hybrid ML approach.
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One-stage reconstruction by the end-to-end ML approach.
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ML based approach
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Reconstruction in 2D

1) Extract the virtual waves ṽ from the measurements d.

� utilize the sparse and non-negative nature of ṽ;

2) Estimate the temperature distribution ũ by machine learning:

� input: thermal di�usivity invariant virtual waves ṽ

� output: approximation of ũ

Reconstruction in 3D [2]

� Estimate the temperature distribution in each 2D cross-section.

� 3D reconstruction from the sequence of 2D images.

[2] P. Kovács, B. Lehner, G. Thummerer, G. Mayr, P. Burgholzer, M. Huemer,
Deep learning approaches for thermographic imaging, Journal of Applied
Physics, 2020, vol. 128, no. 15, pp. 155103-1-16.

Hybrid approach
Hybrid approach
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Figure: Architecture of the compact u-net.

Deep learning by u-net
Hybrid approach
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Mathematical model of the heat di�usion(
∇2 − 1

α

∂

∂t

)
T (r, t) = − 1

α
T0(r)δ(t),

where

� α stands for the thermal di�usivity,

� T is the temperature as a function of space r and time t,

� T0 denotes the initial temperature pro�le at t = 0.

Data generation in 2D assuming adiabatic boundary conditions

T̂ (ky, kz, t) = T̂0(ky, kz) · exp(−(k2y + k2z) · αt),

where

� T̂ , T̂0 are the cosine transforms of T and T0 in the yz-plane,

� ky and kz are the corresponding spatial frequencies.

Data sets
Hybrid approach
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Training data

� 8,000 simulated noise free samples with adiabatic boundary conditions.

� 2-5 square-shaped defects with side lengths between 2 and 6 pixels.

� The resolution of each image is 256× 64.

� 10 di�erent versions of each sample were used, representing SNRs
from -20 dB to 70 dB in 10 dB steps.

� Overall number of training images: 10× 8000

Testing data

� 1,000 simulated samples similar to the training images.

� Overall number of test images: 10× 1000

� Real measurement data containing 256 images of size 256× 64.

Data sets
Hybrid approach
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Numerical solvers for sparse approximation

� SPGL1 is for large-scale one-norm regularized least squares.

� YALL1 is a solver for basic/group sparse reconstruction.

� ASP is for solving several variations of the sparse optimization.

� ADMM (alternating direction method of multipliers) is a very
general algorithm for solving sparse approximation problems.

� SALSA is a fast ADMM type algorithm for image reconstruction.

� IR�sta is a recent numerical solver for large-scale problems.

Tested model based approaches

� fkmig: Stolt's f-k migration without sparse regularization.

� tsaft: Snythetic Aperture Focusing Technique in the time domain.

� reg tsaft: same as tsaft, but with sparse regularization.

State-of-the-art model based approaches
Experiments
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Figure: Reconstructions of a 0 dB SNR example from the test set.

Simulation results
Experiments
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Figure: The MSE of the baselines and the proposed method.

Simulation results
Experiments
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Figure: Parameters of the phantom.

Real measurement data
Experiments
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Figure: Using the model-based fkmig approach for 3D reconstruction of
the specimen without rotation.

Real measurement data
Experiments
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Figure: Using the model-based fkmig approach for 3D reconstruction of
the specimen a rotation of 25◦.

Real measurement data
Experiments



22/48

Figure: Using the large end-to-end e2e lrg approach for 3D
reconstruction of the specimen without rotation.

Real measurement data
Experiments
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Figure: Using the large end-to-end e2e lrg approach for 3D
reconstruction of the specimen with a rotation of 25◦.

Real measurement data
Experiments
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Figure: Using the large hybrid lrg approach for 3D reconstruction of the
specimen without rotation.

Real measurement data
Experiments
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Figure: Using the large hybrid lrg approach for 3D reconstruction of the
specimen with a rotation of 25◦.

Real measurement data
Experiments
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Reformulate the �st step

r(v, α) := ‖d−K(α)v‖22 → min
v,α

where

� d is the surface temperature data,

� K physics-based forward modeling of the �rst step,

� v virtual wave vector.

� α stands for the thermal di�usivity of the material.

Can we de�ne a network to learn α?

� Search the solution to r(v, α) by Variable Projection (VP).

� Wrap the least-squares estimate K+(α)d into a (VP)layer.

� De�ne the gradient through α by the theory of VP.

How can we do better?
Experiments
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� Inspirations

� CNNs, Wiener-Hammerstein based NNs.
� Biomedical signal processing (ECG, EEG, EMG, etc.)
� 1D signal processing with machine learning (neural networks)

� Traditional approach

� Feature extraction + machine learning
� Time- or frequency domain decomposition

Fourier transform, Hermite functions, wavelets, statistical
descriptors, variable projection (VP), etc.

� Domain knowledge, model-based methods
� Explainability

� Deep Learning

� Deep NN, convolutional NN, recurrent NN, etc.
� Representation learning

� Idea

� Combination: model-based (deep) NN with VP

General motivations
VPNet
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� Linear modeling problem:

x ≈ x̃ =

n−1∑
k=0

ckΦk = Φc

� Best approximation problem in Hilbert spaces:
S := span{Φ0,Φ1, . . . ,Φn−1} ⊂ Rm generated subspace

dist(x,S) := min
y∈S
‖x− y‖2 = ‖x− x̃‖2

� Solution to the discrete case (linear least squares):

� Generalized Fourier coe�cients: c = Φ+x

� Orthogonal projection: x̃ = PSx = ΦΦ+x

� Orthogonal transformations with system Φ

e.g.: trigonometric system, Walsh, rational, and Hermite functions, etc.
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VPNet
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� Nonlinear modeling problem:

x ≈ x̃ =

n−1∑
k=0

ckΦk(θ) = Φ(θ)c

where:
� x ∈ Rm: input data
� x̃ ∈ Rm: model estimation
� Φk(θ) ∈ Rm: parametric function system
� Φ(θ) ∈ Rm×n: system matrix
� c : linear parameters, e.g. c ∈ Rn or c ∈ Cn

� θ : nonlinear system parameters, e.g. θ ∈ Dp for rational functions
� Linear and nonlinear parameters are separated

+ + . . .+ =

Nonlinear least-squares approximation of a QRS complex using Hermite functions
parametrized by the dilation and the translation.

Variable Projection (VP)
VPNet
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� General case:

r(c, θ) := ‖x− Φ(θ)c‖22 → min
c,θ

� Decomposition:

� Generalized Fourier coe�cients: c = Φ+(θ)x
� Orthogonal projection: x̃ = PS(θ)x = Φ(θ)Φ+(θ)x
� Variable projection functional [3]:

r2(θ) := ‖x− Φ(θ)Φ+(θ)x‖22 → min
θ

� Adaptive transformations

� {Φk(θ) | 0 ≤ k < n} adaptive system, S(θ) := span{Φk(θ)}
� Function system itself is adapted to the input

[3] G. H. Golub and V. Pereyra. The di�erentiation of pseudo-inverses and
nonlinear least squares problems whose variables separate. SIAM Journal on

Numerical Analysis, 1973.

Adaptive transformations
VPNet
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� Nonlinear parameters: free knots θ ∈ Rp

� Applications:

� ECG compression [4]
� ECG heartbeat classi�cation [5]

(a) Initial estimation. (b) Optimizing the knots by VP.

[4] P. Kovács and A. M. Fekete. Nonlinear least-squares spline �tting with variable knots.
Applied Mathematics and Computation, 354:490�501, 2019.

[5] T. Dózsa, G. Bognár, and P. Kovács. Ensemble learning for heartbeat classi�cation using
adaptive orthogonal transformations. In EUROCAST 2019, Springer LNCS, 2020.

Example: B-splines
VPNet
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� Nonlinear parameters: dilation and translation θ = [τ, λ]T ∈ R2

Φk(τ, λ; t) :=
√
λ · Φk (λ(t− τ)) (t, τ ∈ R, λ > 0)

� Applications:

� ECG compression [6]
� ECG segmentation / delineation [7]
� ECG, BP, AP waveform modeling [8]
� ECG heartbeat classi�cation [9]

Figure: Fitting the P, T waves, and the QRS complex.
[6] T. Dózsa, P. Kovács. ECG signal compression using adaptive Hermite functions. Adv Int Syst Comput, 2015.

[7] P. Kovács, C. Böck, J. Meier, M. Huemer. ECG segmentation using adaptive Hermite functions. In Asilomar, 2017.

[8] P. Kovács, C. Böck, T. Dózsa, J. Meier, M. Huemer. Waveform modeling by adaptive weighted Hermite functions. In ICASSP, 2019.

[9] T. Dózsa, G. Bognár, P. Kovács. Ensemble learning for heartbeat classi�cation using adaptive orthogonal transformations. In LNCS, 2020.

Example: adaptive Hermite functions
VPNet
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(d) Segmented heartbeat.

Figure: Segmentation of an ECG based on optimized Hermite functions.

Example: adaptive Hermite (ECG)
VPNet
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� Nonlinear parameters: inverse poles θ ∈ Dp

� Applications:

� ECG compression [10]
� ECG segmentation / delineation [11]
� ECG modeling [12] [13] [14]
� ECG heartbeat classi�cation [5], [15], [16]
� EEG seizure detection [17]

[10] P. Kovács, S. Fridli, and F. Schipp. Generalized Rational Variable Projection With Application in
ECG Compression. IEEE Trans Sign Proc, 2019.
[11] G. Bognár and S. Fridli. ECG Segmentation by Adaptive Rational Transform. In EUROCAST 2019,
Springer LNCS, 2020.
[12] S. Fridli, P. Kovács, L. Lócsi, and F. Schipp. Rational modeling of multi-lead QRS complexes in
ECG signals. Ann Univ Sci Budapest, 2012.
[13] S. Fridli, L. Lócsi, and F. Schipp. Rational function system in ECG processing. In EUROCAST
2011, Springer LNCS, 2012.
[14] P. Kovács. Rational variable projection methods in ECG signal processing. In EUROCAST 2017,
Springer LNCS, 2017.
[15] G. Bognár and S. Fridli. Heartbeat Classi�cation of ECG Signals Using Rational Function Systems.
In EUROCAST 2017, Springer LNCS, 2018.
[16] G. Bognár and S. Fridli. ECG Heartbeat Classi�cation by Means of Variable Rational Projection.
Biomed Sign Process Control, (to appear)
[17] K. Samiee, P. Kovács, and M. Gabbouj. Epileptic seizure classi�cation of EEG time-series using
rational discrete short time Fourier transform. IEEE Trans Biomed Eng, 2014.

Example: rational orthogonal systems
VPNet
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Figure: Example for the rational VarPro algorithm approximating a real
ECG from PhysioNet MIT-BIH Arrhythmia Database.

Example: rational (ECG)
VPNet
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Identi�cation of close frequency components [18].

[18] Yuneisy, E. G. G., Kovács, P., Huemer, M., Variable Projection for Multiple
Frequency Estimation, in ICASSP, 2020, pp. 4811-4815.

Example: trigonometric functions
VPNet
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Identi�cation of close frequency components [18].

Example: trigonometric functions
VPNet
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Identi�cation of close frequency components [18].

Example: trigonometric functions
VPNet
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Identi�cation of close frequency components [18].

Example: trigonometric functions
VPNet
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Identi�cation of close frequency components [18].

Example: trigonometric functions
VPNet
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Flattened
Hidden layers

Output layer

⋮ ⋮ ⋮ ⋮ ⋮

…

Input image
Convolution & Pooling layer(s)

� Convolutional layers: convolution with nonlinear activation

� Pooling layers: dimension reduction

� Representation learning: built-in multilevel feature extraction

� Input: raw or preprocessed image

� Note: 1D CNN [19]

[19] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J.
Inman. 1D convolutional neural networks and applications: A survey, 2019.

Convolutional Neural Networks
Architectures
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Input Hidden layers
Output layer

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

…

VP layer(s)

� Input: raw or preprocessed signal

� VP layer(s): projection of the form

x 7→ f (vp)(x) = Φ+(θ)x = c (classi�cation)

or

x 7→ f (vp)(x) = Φ(θ)Φ+(θ)x = x̃ (regression)

VPNet Architecture
Architectures
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� Novelty

� novel model-driven network architecture
� application: 1D signal processing

� Generality

� arbitrary parameterized function systems
� domain knowledge

� Interpretability

� built-in feature extraction
� interpretable parameters: nonlinear VP system parameters
� direct connection with morphological properties

� Simplicity

� few system parameters only
� compact architecture (cf. CNN and DNN)

Properties
Architectures
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� O�ine supervised learning

� Backpropagation, stochastic gradient descent

� Gradients of VP coe�cients:

f (vp)(x) = Φ+(θ)x,
∂f (vp)

∂θj
=
∂Φ+(θ)

∂θj
x,

where [3]

∂Φ+ = −Φ+∂ΦΦ+ + Φ+
[
Φ+
]T
∂ΦT (I − ΦΦ+)+

+(I − Φ+Φ)∂ΦT
[
Φ+
]T

Φ+

� Gradients of VP projection:

f (vp)(x) = Φ(θ)Φ+(θ)x,
∂f (vp)

∂θj
=
∂(Φ(θ)Φ+(θ))

∂θj
x,

where [3]

∂(ΦΦ+) = (I − ΦΦ+)∂ΦΦ+ +
(
(I − ΦΦ+)∂ΦΦ+

)T

Backpropagation
Architectures
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� Implementation: PyTorch / native NumPy framework

(custom plugin / own implementation)

� Function system: adaptive Hermite functions

Φk(τ, λ;x) :=
√
λ · ψk (λ(x− τ)) (x, τ ∈ R, λ > 0)

(nonlinear parameters: translation and dilation)

� Synthetic dataset generation

� Real-world dataset: MIT-BIH Arrhythmia Database

(ECG classi�cation problems)

� Exhausting evaluation of hyperparameters

� Comparison with fully-connected (FCNN) and convolutional
neural networks (CNN)

VPNet evaluation
Experiments
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(c) Samples

� Samples: linear combinations of Hermite functions of the form

xk = Φ(τk, λk) · ck.
� Separable coe�cients (3 classes)

(ck,0, ck,1, ck,2) ∈ R3: on spherical shells by classes

ck,3 and ck,4: amplitude normalization

� Similar system parameters

τk and λk: generated randomly with given mean and variance

Synthetic Hermite dataset
Experiments
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Figure: Best training curves

Synthetic Hermite evaluation
Experiments
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Figure: Best test accuracy depending on the number of hidden neurons

Synthetic Hermite evaluation
Experiments
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(b) Ventricular ectopic beats

� PhysioNet MIT-BIH Arrhythmia Database

� Reduced, balanced subset

� Normal ↔ ventricular ectopic heartbeats

� Training: 4260-4260 beats (DS1), test: 3220-3220 (DS2)

Real ECG dataset
Experiments
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Figure: Best test accuracy depending on the number of hidden neurons

Real ECG evaluation
Experiments
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� Summary

� Novel model-based architecture for 1D signal processing
� General, �exible construction
� Compactness
� Explainability, interpretable parameters
� Preliminary results: outperforms FCNN and CNN wrt.
convergence and accuracy

� Further research

� Mathematical and computational properties
� New �elds of applications
� Classi�cation, regression, clustering problems
� Di�erent architectures, other ML methods combined with VP

� Cooperation partners

Conclusion
Conclusion
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