Deep Learning - the Key Technology of Artificial Intelligence

Sepp Hochreiter

JKU LIT

AI LAB

Audi JKU

deep learning center

|ARA|

institute of advanced research in artificial intelligence

Artificial Intelligence (AI)

- In 1956 coined by John McCarthy
- A machine that exhibits cognitive functions like humans (learning, planning, reasoning, problem solving)
- Deep Learning successes drive the current AI boom: revolutionized vision, speech, and text processing

Deep Learning

JYU

Intelligence from Big Data

ARTIFICIAL INTELLIGENCE

Early artificial intelligence stirs excitement.

MACHINE

JYU

Deep Learning

 Neural networks & very fast computers & massive data sets

- Multiple levels of sparse representations → higher levels code abstract concepts
- Started already in 1991 with LSTM by Hochreiter and Schmidhuber

Deep Learning learns layers of features

J⊻U

Records of Deep Learning

2011 speech
recognition: on an
industry benchmark:
16% error for Deep
Learning vs. 24% by
second

2013 vision: on the
ImageNet competition
with 1.2M images:
16% error for Deep
Learning vs. 26% by
second

TIMIT Phone classification	Accuracy	TIMIT Speaker identification	Accuracy
Prior art (Clarkson et al.,1999)	79.6%	Prior art (Reynolds, 1995)	99.7%
Stanford Feature learning	80.3%	Stanford Feature learning	
Images			
CIFAR Object classification	Accuracy	NORB Object classification	Accuracy
Prior art (Krizhevsky, 2010)	78.9%	Prior art (Ranzato et al., 2009)	94.4%
Stanford Feature learning	81.5%	Stanford Feature learning	97.3%
Prior art (Laptev et al., 2004) Stanford Feature learning	48% 53%	Prior art (Liu et al., 2009) Stanford Feature learning	71.2% 75.8%
КТН	Accuracy	UCF	Accuracy
Prior art (Wang et al., 2010)	92.1%	Prior art (Wang et al., 2010)	85.6%
Stanford Feature learning	93.9%	Stanford Feature learning	86.5%
Multimodal (audio/video)		Other records:	
AVLetters Lip reading	Accuracy	 Pedestrian detection 	
Prior art (Zhao et al., 2009)	58.9%	 Different phone record 	gnition tas
Stanford Feature learning	65.8%		

ist Menutil

an in a parto

AND A DECK

Deep Learning

Vision

AIPOLY IS ADDY TO RELEASE AN APP THAT HELPS The blind "See" through their smartphone.

chairs

J⊻U

DRUEDI COLOR SETTINGS INFO

Source Actor

Target Actor

Real-time Reenactment

Reenactment Result

Original Photo

Example Photo

Result

 \mathcal{L}

SIMULATION - THE PATH TO BILLIONS OF MILES

World drives trillions of

U.S. has 770 accident

A fleet of 20 test ca per year.

Simulation

gil 11

178

J⊻U

204

Read.

11 III 2973.52

10.00

Language

Speech, Text,

Deep Learning

JYU

Long Short-Term Memory

- 1991: invented by Hochreiter
- 1997: publication Hochreiter&Schmidhuber
- 2009: wins French & Arabic handwriting
- 2011: wins offline Chinese handwriting
- 2012: Google's Android speech recognizer
- 2015: Google's Voice transcription
- 2016: Apple's iOS 10 → Quicktype
- 2016: Google's Translate
- 2016: Amazon's Alexa
- 2017: Facebook's Translation

J⊻l

KEY MOMENTS IN DEEP-LEARNING HISTORY 1989-1997

1989

French researcher Yann LeCun, then at Bell Labs, begins foundational work on a type of neural net that becomes crucial for image recognition.

1991 German researchers Sepp Hochreiter and Jürgen Schmidhuber pioneer a neural net with memory features, which eventually proves superior for natural-language processing.

1997 IBM's Deep Blue beats **world champion Garry Kasparov** (right) in chess using traditional Al techniques.

-

Artificial Intelligence

"Ok Google, Shazam this song."

Discover music without lifting a finger. Shazam + Google app. Now you're talking.

Amazon Al

Bringing powerful artificial intelligence to all developers

"Alexa....please tell Baxter the Robot to machine this part."

JYU

"Hey Siri, what's the best sushi place in town?"

Long Short-Term Memory

J⊻U

From Jürgen Schmidhuber: http://people.idsia.ch/~juergen/impact-on-most-valuable-companies.html

J⊻u Self-Normalizing Networks (2017)

1 bn \$ amazon

J⊻u Self-Normalizing Networks (2017)

- From: Zhen Huang <zhen_huang@apple.com>
- Subject: Thank you for inventing SELU.
- Date: Tue, 19 Nov 2019 14:19:36 -0500
- To: hochreit@bioinf.jku.at, klambauer@bioinf.jku.at, unterthiner@bioinf.jku.at

Dear Authors of SELU,

I want to express my sincere thanks to you for inventing SELU.

As in the paper: [arxiv.org]https://arxiv.org/abs/1910.01992 SELU helps us deploy the 50 layer CNN for Siri speech recognition.

I can not represent Apple, but as the first author of the paper, I personally sincerely appreciate the great contributions you made to the field of machine learning!

Thanks again!

Zhen Huang Ph.D., Senior machine learning scientist in Siri

Deep Learning

Art and Design

"Ode to Joy" harmonized in the style learned from:

Instrument to Instrument Sample #1

Source Piano Sample

JYU

Generated Harpsichord Sample

LSTM composed music piece

J⊻U

Deep Learning Against **COVID19**

Coronavirus at Different Scales

コスパ

		ML/AI landscape
population scale	<mark>፟፟፟፟፟፟፟፟</mark> ፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟	Tracking, epidemiological modeling,
macroscopic scale		Healthcare management, patient surveillance,
microscopic scale	Ð	Diagnosis,
molecular scale	HOLD-SON HIGH FOR	Drug discovery, genome sequencing,

Drug Discovery Pipeline

JZU

Inhibiting the SARS-Cov-2 Virus

Schematic representation of the Corona virus

Antibodies

J⊻U

u⊻u Computer-Aided Drug Discovery

Compound Design Using ML

J⊼∩

Drug Target Prediction

• Ligand-based

- Substructure search
- Similarity search
- Model-based search
- Structure-based
 - Docking
- Hybrid approaches
 - Proteochemometrics models

JY

Drug target prediction

J⊼∩

Large Databases for Learning

- Large databases of small molecules are available
- **Triplets**: molecule target (assay) activity
- Databases

Pub©hem268 million tripletsORUGBANK16 million tripletsORUGBANK13,000 drugsCORUGBANK13,000 drugs

Screening with Trained Models

J⊻U

SARS-Cov Inhibitors

- Deep neural network with SMILES as input Type: SmilesLSTM (Mayr et al., 2018)
- Trained on 3.6 M molecules
- ~220M drug-assay-activity triplets (labels)
- Multi-task network with ~6,000 output unit
- 4 output units related to SARS-Cov

Assay ID	Source	#inact	#act	Description
1706	PubChem	193637	269	QFRET-based assay for SARS-CoV 3C-like Protease
1879	PubChem	167	86	QFRET-based assay for SARS-CoV 3C-like Protease (confirmation)
485353	PubChem	215030	390	Yeast-based Assay for SARS-CoV PLP
652038	PubChem	493	135	Yeast-based Assay for SARS-CoV PLP (validation)

Mayr, A., Klambauer, G., Unterthiner, T., Steijaert, M., Wegner, J. K., Ceulemans, H., ... & Hochreiter, S. (2018). Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chemical science, 9(24), 5441-5451.

SARS-Cov Inhibitors

- Top-ranked molecules (Figure)
- List of 30,000 top-ranked molecules provided to scientific community via github

Hofmarcher, M., Mayr, A., Rumetshofer, E., Ruch, P., Renz, P., Schimunek, J., ... & Klambauer, G. (2020). Large-Scale Ligand-Based Virtual Screening for SARS-CoV-2 Inhibitors Using Deep Neural Networks. Available at SSRN 3561442.

J⊻u Drug Repurposing: Screening of Drugs

J⊻U

Reinforcement Learning **The New Frontier**

Model-based reinforcement learning

- Model given \rightarrow optimal control
- Model parameters learned \rightarrow adaptive optimal control
- Model learned \rightarrow model-based reinforcement learning

Model-based reinforcement

learning

- Model generates samples
- Model used for planning
- Model propagated through

Model-based: Monte Carlo Tree Search

AlphaGo Beats Lee Sedol

DeepMind's AlphaGo beats one of the best Go players

J⊻U

AlphaZero AI

JYL

December 2017: Alpha Zero Teaches Itself Chess 4 Hours → beats Stockfish

Model-free reinforcement learning in real world

- self-driving cars
- robots
- optimization of traffic
- smart city
- environmental optimization (air pollution)
- climate change

J⊻U

StarCraft II

eepMind

Nature 14. November 2019

DeepMind's AlphaStar is big LSTM network that plays starcraft.

AlphaStar was rated at Grandmaster level for all three StarCraft races and above 99.8% of officially ranked human players.

J⊻U

J⊻U

RUDDER

Delayed Rewards

Current weakness of reinforcement learning: strategic decisions.

Strategic decisions lead to **delayed rewards**:

- actions cause reward that is obtained much later
- many distracting rewards
- credit assignment problem: what action was responsible
Problem

Our Goal

- All future reward is zero since it is given immediately.
- Learning simplifies to estimating the expected immediate reward, e.g. by the arithmetic mean.
- Learning is simplified to estimating the expected immediate feedback.

Our Goal

- immediate feedback
- immediately adjust the return expectation

A **reward redistribution** is a procedure that redistributes for each sequence the realization or the expectation of its return variable along the sequence.

Reward redistributions do not change optimal policies:

- Reward is the change in the expected return positive reward → increase of expected return negative reward → decrease of expected return
- Immediately adjust the return expectation

Complex tasks are hierarchical with sub-tasks or sub-goals. A step in the value function is a change in return expectation: amount or probability to obtain.

Example task below: both getting the key and opening the door increases the probability of obtaining the treasure.

Learning step functions by fully connected networks requires to extract the expected return from every stateaction.

Learning step functions by memorizing (→ LSTM) is much more sample efficient.

↑ **→**

Reward is redistributed to the steps which are identified by LSTM.

RUDDER for ATARI game BOWLING

Agent has to 1.) Throw bowling ball 2.) Curve ball while it is rolling 3.) Clear all pins with ball

Agent has 2 rolls to knock down pins. Rolling a strike (clearing all pins) will give 2 more rolls. Reward is given at the end of all rolls.

Institute for Machine Learning - JKU Linz

RUDDER for ATARI game VENTURE

Agent has to 1.) Enter a room 2.) Collect the treasure 🖶 3.) Shoot monsters 🐈

Shooting monsters only gives reward after collecting treasure.

The hallmonsters 😌 can not be killed.

Institute for Machine Learning - JKU Linz

Align-RUDDER MineCraft

Align-RUDDER: Few Demonstrations

We have only **few demonstrations from humans**

- LSTM cannot learn on few demonstrations
- Overfitting

Solution

- Use alignment from bioinformatics to align demonstrations
- Underlying strategy is found: **profile model** and PSSM
- Works for as few as two demonstrations

Align-RUDDER: Alignment

コスに

MineCraft (MineRL task "ObtainDiamond")

Align-RUDDER: Five Steps

IV a) PSSM and Profile

 $s_{i,t} = \ln(\frac{q_{i,t}}{p_i})/\lambda_t^*$

Align-RUDDER: MineCraft

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

A general Reinforcement Learning method showcased on the example of Minecraft

2 5 10 50 100 Demonstrations of the Four Rooms Environment

2 5 10 50 100 Demonstrations of the Eight Rooms Environment