
CHAPTER 1
MODELLING IN GEOMETRY

In this chapter we present an example of an algebraic modeling of logical statements de-
rived from geometrical problems. More precisely, we show how geometrical problems can
be translated to systems of polynomial equations, and how the truth or falsity of the original
statement corresponds to solvability of the resulting system of equations. Finally, we present
an algorithm that can decide the solvability of systems of algebraic equations.

1.1 AN INTRODUCTORY EXAMPLE

Consider the very simple geometrical configuration illustrated in Figure 1.1:

• Given two points A and C and the line passing through A and C.

• Given a point B such that the line AB is perpendicular to the line AC.

• Given a point D such that the line CD is perpendicular to the line AC.

Then

• the lines AB and CD must be parallel.

A

C

B

D

Figure 1.1: Parallel lines

The logical statement describing the geometric situation is

∀
A,B,C,D

((perpendicular(A,B,A,C) ∧ perpendicular(C,A,C,D)) ⇒ parallel(A,B,C,D))

(1.1)

with appropriate predicates ‘perpendicular’ and ‘parallel’.
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1.2 MODELLING GEOMETRY IN ALGEBRA

The first step in modelling geometry is to introduce a coordinate system. Using coordinates
we will then be able to describe properties such as ‘perpendicular’ and ‘parallel’ by polynomial
equalities and inequalities. Continuing the example from above, let

A = (0, 0) B = (b1, b2) C = (c1, c2) D = (d1, d2).

1.2.1 First Approach

Using the coordinates as described above,

perpendicular(A,B,A,C) means

(

b1
b2

)

·

(

c1
c2

)

= b1c1 + b2c2 = 0 (1.2)

perpendicular(C,A,C,D) means

(

c1
c2

)

·

(

d1 − c1
d2 − c2

)

= c1(d1 − c1) + c2(d2 − c2) = 0

(1.3)

parallel(A,B,C,D) means

(

b2
−b1

)

·

(

d1 − c1
d2 − c2

)

= b2(d1 − c1)− b1(d2 − c2) = 0 (1.4)

For short we write the equalities in (1.2), (1.3), and (1.4) as p1 = 0, p2 = 0, and p3 = 0,
respectively. Essentially, formula (1.1) is now

∀
b1,b2,c1,c2,d1,d2

(p1 = 0 ∧ p2 = 0 ⇒ p3 = 0),

which is by de’Morgan’s rule equivalent to

¬ ∃
b1,b2,c1,c2,d1,d2

p1 = 0 ∧ p2 = 0 ∧ p3 6= 0. (1.5)

Now the trick: the inequality p3 6= 0 is equivalent to ∃
α0

α0p3 − 1 = 0, hence, (1.5) is equiva-

lent to

¬ ∃
b1,b2,c1,c2,d1,d2

p1 = 0 ∧ p2 = 0 ∧ ∃
α0

α0p3 − 1 = 0, (1.6)

and, under the assumption that α0 is a variable different from all previously used variables,
we finally arrive at

¬ ∃
b1,b2,c1,c2,d1,d2,α0

p1 = 0 ∧ p2 = 0 ∧ α0p3 − 1 = 0. (1.7)

It is easy to see, that (1.7) just expresses that there is no solution for the system of equations

p1 = 0 p2 = 0 α0p3 − 1 = 0, (1.8)

substituting back the original expressions for p1, p2, and p3 we have a system of polynomial

(algebraic) equations

b1c1 + b2c2 = 0

c1d1 − c21 + c2d2 − c22 = 0

α0b2d1 − α0b2c1 − α0b1d2 + α0b1c2 − 1 = 0.
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Solving this system (e.g. with Mathematica) gives us solutions, e.g.

c1 = 0 c2 = 0 b1 = 0 b2 = 1 d1 = 1 d2 = 0 α0 = 1, (1.9)

which means that this does not constitute a proof of the original statement (1.1). In fact,
the statement is not true, because the solution of the system of equations gives a coun-
terexample. If we take A = C, B = (0, 1), and D = (1, 0), then the ‘line passing through
A and C ’ degenerates to a point such that the hypotheses ‘perpendicular(A,B,A,C)’ and
‘perpendicular(C,A,C,D)’ trivially become true whereas the conclusion ‘parallel(A,B,C,D)’
is false because AB and CD are perpendicular (and not parallel).

1.2.2 Improved Approach

Obviously, something must have gone wrong in the previous section, because the statement
under investigation is true. The system of equations derived in the previous section, whose
solvability should be equivalent to the statement that we want to prove, however, was an
inaccurate model, because it allowed the ‘wrong solution’ (1.9). Note, however, that clearly
C should be different from A when we talk about ’the line passing through A and C ’, but our
model did not contain any hypothesis expressing C 6= A. Strictly speaking, (1.9) is of course
a correct solution of the system of equations (check by substitution!), but the equations are a
wrong model for the original proof problem.

Using coordinates C 6= A means c1 6= 0 ∨ c2 6= 0. Applying the trick like in (1.6) again,
this is equivalent to

∃
α1

α1c1 − 1 = 0 ∨ ∃
α2

α2c2 − 1 = 0

which is equivalent to

∃
α1,α2

q1 = 0 with q1 = (α1c1 − 1)(α2c2 − 1).

In other words, (1.1) is equivalent to the unsolvability of

b1c1 + b2c2 = 0

c1d1 − c21 + c2d2 − c22 = 0

(α1c1 − 1)(α2c2 − 1) = 0

α0b2d1 − α0b2c1 − α0b1d2 + α0b1c2 − 1 = 0

If we pass this system of equations to Mathematica, it will in fact tell us that there is no
solution, so the original statement (1.1) is proved.

1.2.3 The General Model

Let us assume we have a geometrical configuration described by

p1 = 0 . . . pn = 0 q1 6= 0 . . . qm 6= 0

and a conclusion described by

c = 0,
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where pi, qj , c ∈ Q[x1, . . . , xl] for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then

∀
x1,...,xl

(p1 = 0 ∧ . . . ∧ pn = 0 ∧ q1 6= 0 ∧ . . . ∧ qm 6= 0 ⇒ c = 0)

is equivalent to

¬ ∃
x1,...,xl

¬(p1 = 0 ∧ . . . ∧ pn = 0 ∧ q1 6= 0 ∧ . . . ∧ qm 6= 0 ⇒ c = 0),

which is in turn equivalent to

¬ ∃
x1,...,xl

p1 = 0 ∧ . . . ∧ pn = 0 ∧ q1 6= 0 ∧ . . . ∧ qm 6= 0 ∧ c 6= 0.

The inequalities can then be turned into equalities by the so-called Rabinovich-Trick

¬ ∃
x1,...,xl

p1 = 0 ∧ . . . ∧ pn = 0 ∧ ∃
α1

α1q1 − 1 = 0 ∧ . . . ∧ ∃
αm

αmqm − 1 = 0 ∧ ∃
α0

α0c− 1 = 0,

and since we assume that α0, α1, . . . , αm are new variables distinct from x1, . . . , xn this is
equivalent to

¬ ∃
x1,...,xl,α0,α1,...,αm

p1 = 0 ∧ . . . ∧ pn = 0 ∧ α1q1 − 1 = 0 ∧ . . . ∧ αmqm − 1 = 0 ∧ α0c− 1 = 0.

This is nothing else than saying that the system of polynomial equations in the variables
x1, . . . , xl, α0, α1, . . . , αm

p1 = 0

...

pn = 0

α1q1 − 1 = 0

...

αmqm − 1 = 0

α0c− 1 = 0

has no solutions for x1, . . . , xl, α0, α1, . . . , αm.

EXAMPLE 1.1: THEOREM OF THALES

Let A and B be two points and M the midpoint between A and B. Let c be the circle
with center M through A and B, and let C be any point on c. Then AC and BC are
perpendicular.

We introduce coordinates and fix M = (0, 0). We have A = (a1, a2), B = (b1, b2), and
C = (c1, c2). Since M is the midpoint between A and B, we have

a1 + b1 = 0 a2 + b2 = 0,

and since C and A are on a circle, their distance to the center M must be equal, i.e.

a21 + a22 − c21 − c22 = 0.
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AC and BC are perpendicular can be formulated as

(c1 − a1)(c1 − b1) + (c2 − a2)(c2 − b2) = 0.

Using the model from above with n = 3, m = 0, and l = 6 we have the following system
of equations in the variables a1, a2, b1, b2, c1, c2:

a21 + a22 − c21 − c22 = 0

a1 + b1 = 0

a2 + b2 = 0

α0((c1 − a1)(c1 − b1) + (c2 − a2)(c2 − b2))− 1 = 0

In this example it is easy to convince oneself that this system has no solution, because
equations 2 and 3 mean

a1 = −b1 a2 = −b2,

and substituting in equation 4 yields

α0(c
2

1 − a21 + c22 − a22)− 1 = 0. (1.10)

From equation 1 we get a2
1
+ a2

2
= c2

1
+ c2

2
, which turns (1.10) into

α0 · 0− 1 = 0, i.e. − 1 = 0,

hence, the above system of polynomial equations has no solutions.

1.2.4 Deciding Solvability of a System of Polynomial Equations

In general, it is not as easy as in Example 1.1 to decide, whether a system of polynomial
equations has a solution or not. The theory of Gröbner bases plays a key role in this field, but
we will not go into much detail.

Given a set of polynomials G, a Gröbner basis of G is a set of polynomials B, such that

∀
g∈G

g = 0 ⇔ ∀
b∈B

b = 0,

i.e. the zero set of G equals the zero set of B, and B has some special properties that make
the system ∀

b∈B
b = 0 ‘easier to solve’ than the original system ∀

g∈G
g = 0. In many respects, a

Gröbner basis of G is the polynomial analogy to the triangular form of a matrix representing
a system of linear equations. Fortunately1, there is an algorithm that computes a Gröbner
basis for any given set of polynomials G. Similar to Gaussian elimination, the Gröbner basis
algorithm subsequently eliminates variables by a process called polynomial reduction, which
is a generalization of the univariate polynomial division to multivariate polynomials. Every
computer algebra system (like Mathematica, Maple, or Sage) offers a command to compute
Gröbner bases, in Mathematica this command is called GroebnerBasis.

1The concept of Gröbner bases and, most importantly, the first algorithm to compute a Gröbner basis for arbitrary
G were invented by Bruno Buchberger, the founder of RISC, the Research Institute for Symbolic Computation at
JKU Linz.
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THEOREM 1.2

A system of polynomial equations

g1 = 0, . . . , gn = 0

has no solutions over C if and only if the Gröbner basis of {g1, . . . , gn} contains a constant

polynomial unequal to 0.

EXAMPLE 1.3: THALES WITH GRÖBNER BASIS

Using Mathematica, we compute

GroebnerBasis[{a2
1
+ a2

2
− c2

1
− c2

2
, a1 + b1, a2 + b2,

α0((c1 − a1)(c1 − b1) + (c2 − a2)(c2 − b2))− 1}, {a1, a2, b1, b2, c1, c2, α0}]

and the answer is {1}, thus, the Gröbner basis contains the constant polynomial 1 and
the system of equations corresponding to the Theorem of Thales is unsolvable, therefore
the theorem is proven.

1.2.5 Describing Frequently Used Geometrical Properties by Polynomials

In this section we assume some coordinate system and four points

THEOREM 1.4

Let

X1 = ( x1

y1 ) X2 = ( x2

y2 ) X3 = ( x3

y3 ) X4 = ( x4

y4 ) .

1. X1, X2, and X3 are collinear if and only if

det(





1 x1 y1
1 x2 y2
1 x3 y3



) = 0.

2. X1, X2, X3, and X4 are collinear if and only if

det(









1 x1 y1 x1
2 + y1

2

1 x2 y2 x2
2 + y2

2

1 x3 y3 x3
2 + y3

2

1 x4 y4 x4
2 + y4

2









) = 0.

3. X1X2 and X3X4 are perpendicular if and only if

(x2 − x1)(x4 − x3) + (y2 − y1)(y4 − y3) = 0.
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4. X1X2 and X3X4 are parallel if and only if

(y2 − y1)(x4 − x3)− (x2 − x1)(y4 − y3) = 0.

EXAMPLE 1.5: THEOREM OF PAPPUS

Given one set of collinear points R, S, and T , and another set of collinear points U , V ,
and W , then the intersection points X, Y , and Z of line pairs RV and SU, RW and TU,
SW and TV are collinear, see Figure 1.2. We introduce coordinates:

R = ( r1r2 ) S = ( s1s2 ) T =
(

t1
t2

)

U = ( u1

u2
) V = ( v1v2 ) W = ( w1

w2
)

X = ( x1

x2
) Y = ( y1y2 ) Z = ( z1z2 ) .

That point X is the intersection of RV and SU means that both R, V , and X as well as
S, U , and X are collinear, and by Theorem 1.4 this can be described by

det(





1 r1 r2
1 v1 v2
1 x1 x2



) = −r2v1 + r1v2 + r2x1 − r1x2 − v2x1 + v1x2 = 0

det(





1 s1 s2
1 u1 u2
1 x1 x2



) = −s2u1 + s1u2 + s2x1 − s1x2 + u1x2 − u2x1 = 0

Applying the same technique for the remaining hypotheses and the conclusion of the
theorem we arrive at a model2 with n = 8, m = 2, and l = 18

−r2v1 + r1v2 + r2x1 − r1x2 + v1x2 − v2x1 = 0

−s2u1 + s1u2 + s2x1 − s1x2 + u1x2 − u2x1 = 0

−r2w1 + r1w2 + r2y1 − r1y2 + w1y2 − w2y1 = 0

−t2u1 + t1u2 + t2y1 − t1y2 + u1y2 − u2y1 = 0

−s2w1 + s1w2 + s2z1 − s1z2 + w1z2 − w2z1 = 0

−t2v1 + t1v2 + t2z1 − t1z2 + v1z2 − v2z1 = 0

−r2s1 + r1s2 + r2t1 − r1t2 + s1t2 − s2t1 = 0

−u2v1 + u1v2 + u2w1 − u1w2 + v1w2 − v2w1 = 0

α1 (−r2s1 + r1s2 + r2u1 − r1u2 + s1u2 − s2u1)− 1 = 0

α2 (−r2s1 + r1s2 + r2v1 − r1v2 + s1v2 − s2v1)− 1 = 0

α0 (−x2y1 + x1y2 + x2z1 − x1z2 + y1z2 − y2z1)− 1 = 0

The Gröbner basis of the set of left-hand sides of these equations is in fact {1}, hence,
the Theorem of Pappus is proved.

2There are two additional hypotheses in the model that are not mentioned explicitly. Usually, one assumes all
the points being different, which would result in a huge amount of side conditions. It turns out, however, that it
suffices to require that R, S, and U and R, S, and V , respectively, are not collinear.
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Figure 1.2: Theorem of Pappus

1.3 A GENERALIZATION BEYOND GEOMETRY

Statements derived from geometrical theorems usually have the form of universally quantified
implications. We will now see that not only these can be translated into systems of polynomial
equations. The same technique as shown in the previous section can be applied to arbitrary

universally quantified boolean combinations of polynomial equalities3. We want to prove

∀
x1,...,xl

Φ, (1.11)

where Φ is a boolean combination of polynomial equations with polynomials in Q[x1, . . . , xl].
First we rewrite the statement as

¬ ∃
x1,...,xl

¬Φ,

and then we convert ¬Φ into conjunctive normal form, thus, (1.11) can be written as

¬ ∃
x1,...,xl

(Φ1,1 ∨ . . . ∨ Φ1,j1) ∧ . . . ∧ (Φn,1 ∨ . . . ∨ Φn,jn), (1.12)

where each Φi,j has the form either Pi,j = 0 or ¬(Pi,j = 0). Now we introduce new polyno-
mials

Qi,j :=

{

Pi,j if Φi,j has the form Pi,j = 0

αi,jPi,j − 1 if Φi,j has the form ¬(Pi,j = 0)

with new variables αi,j . Note that the αi,j can be thought of as existentially quantified in
Qi,j = 0, compare to the Rabinovich-Trick explained in the previous section. Since the αi,j

3Note that inequations of the form p 6= 0 are covered in this setting as well because p 6= 0 ≡ ¬(p = 0), hence,
an inequation is a boolean combination of an equality.
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are all new and distinct from x1, . . . , xl the existential quantifiers can be pushed outside such
that (1.12) can be written as

¬ ∃
x1,...,xl,{αi,j}

(Q1,1 = 0 ∨ . . . ∨Q1,j1 = 0) ∧ . . . ∧ (Qn,1 = 0 ∨ . . . ∨Qn,jn = 0).

The {αi,j} in the existential quantifier should indicate that we quantify over all αi,j that occur
in the Qi,j . Now remember that a product is zero if and only if one of the factors is zero4, in
other words

Qi,1 = 0 ∨ . . . ∨Qi,ji = 0 if and only if Qi,1 · . . . ·Qi,ji = 0,

thus, finally

¬ ∃
x1,...,xl,{αi,j}

(Q1,1 · . . . ·Q1,j1 = 0) ∧ . . . ∧ (Qn,1 · . . . ·Qn,jn = 0).

Hence, the original statement (1.11) is equivalent to the unsolvability of the system of poly-
nomial equations

Q1,1 · . . . ·Q1,j1 = 0

...
...

...

Qn,1 · . . . ·Qn,jn = 0,

which can be decided by computing

B = GroebnerBasis[{Q1,1 · . . . ·Q1,j1 , . . . , Qn,1 · . . . ·Qn,jn}]

and checking, whether B contains a constant polynomial unequal to 0.

EXAMPLE 1.6

We come back to our introductory example (1.1). It is easy to see that this statement can
be generalized: if we have two perpendicular lines, then being parallel to one of them is
obviously the same as being perpendicular to the other. To make a theorem out of that
we need two side-conditions, which guarantee that the given lines will not degenerate
to points, in other words,

∀
A,B,C,D

A 6= C ∧A 6= B ∧ perpendicular(A,B,A,C) ⇒

perpendicular(C,A,C,D) ⇔ parallel(A,B,C,D)

After introducing coordinates

A = (0, 0) B = (b1, b2) C = (c1, c2) D = (d1, d2)

the conjunctive normal form of the negated expression inside the quantifier gives

(b1 6= 0 ∨ b2 6= 0) ∧ (c1 6= 0 ∨ c2 6= 0) ∧

∧ (¬parallel(A,B,C,D) ∨ ¬perpendicular(C,A,C,D)) ∧

∧ (parallel(A,B,C,D) ∨ perpendicular(C,A,C,D)) ∧

∧ perpendicular(A,B,A,C)

4We used the product trick also when we expressed the condition c1 6= 0 ∨ c2 6= 0 in Section 1.2.2.
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Using Theorem 1.4 we get the following combination of equations an inequations

(b1 6= 0 ∨ b2 6= 0) ∧ (c1 6= 0 ∨ c2 6= 0) ∧

∧ (b2 (d1 − c1)− b1 (d2 − c2) 6= 0 ∨ −c1 (d1 − c1)− c2 (d2 − c2) 6= 0) ∧

∧ (b2 (d1 − c1)− b1 (d2 − c2) = 0 ∨ −c1 (d1 − c1)− c2 (d2 − c2) = 0) ∧

∧ b1c1 + b2c2 = 0.

Applying the Rabinovich-Trick and combining disjunctions to products results in the fol-
lowing set of polynomials

{−α0b1 + α1α0b1b2 − α1b2 + 1,−α2c1 + α3α2c1c2 − α3c2 + 1,

−α4α5b2c
3

1 + α4α5b1c2c
2

1 + α4b2c1 − α4α5b2c
2

2c1 − α4b1c2 + α4α5b1c
3

2 +

2α4α5b2c
2

1d1 − α4α5b1c
2

1d2 − α4α5b2c1d
2

1 − α4α5b1c2c1d1 + α4α5b2c2c1d2 +

α4α5b1c1d1d2 + α4α5b1c2d
2

2 + α4α5b2c
2

2d1 − 2α4α5b1c
2

2d2 − α4α5b2c2d1d2 − α4b2d1 +

α4b1d2 − α5c
2

1 − α5c
2

2 + α5c1d1 + α5c2d2 + 1,

2b2c
2

1d1 − b1c
2

1d2 − b2c1d
2

1 − b1c2c1d1 + b2c2c1d2 + b1c1d1d2 + b1c2d
2

2 + b2c
2

2d1 −

2b1c
2

2d2 − b2c2d1d2 − b2c
3

1 + b1c2c
2

1 − b2c
2

2c1 + b1c
3

2,

b1c1 + b2c2},

whose Gröbner basis is again {1}, hence, the statement is proved.
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