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Chapter 1

How To Use This Book

The purpose of this book is to help you program shared-
memory parallel machines without risking your sanity.'
We hope that this book’s design principles will help you
avoid at least some parallel-programming pitfalls. That
said, you should think of this book as a foundation on
which to build, rather than as a completed cathedral. Your
mission, if you choose to accept, is to help make further
progress in the exciting field of parallel programming—
progress that will in time render this book obsolete. Paral-
lel programming is not as hard as some say, and we hope
that this book makes your parallel-programming projects
easier and more fun.

In short, where parallel programming once focused
on science, research, and grand-challenge projects, it is
quickly becoming an engineering discipline. We therefore
examine specific parallel-programming tasks and describe
how to approach them. In some surprisingly common
cases, they can even be automated.

This book is written in the hope that presenting the
engineering discipline underlying successful parallel-
programming projects will free a new generation of par-
allel hackers from the need to slowly and painstakingly
reinvent old wheels, enabling them to instead focus their
energy and creativity on new frontiers. We sincerely hope
that parallel programming brings you at least as much fun,
excitement, and challenge that it has brought to us!

1.1 Roadmap

This book is a handbook of widely applicable and heav-
ily used design techniques, rather than a collection of
optimal algorithms with tiny areas of applicability. You
are currently reading Chapter 1, but you knew that al-

! Or, perhaps more accurately, without much greater risk to your
sanity than that incurred by non-parallel programming. Which, come to
think of it, might not be saying all that much.

ready. Chapter 2 gives a high-level overview of parallel
programming.

Chapter 3 introduces shared-memory parallel hardware.
After all, it is difficult to write good parallel code un-
less you understand the underlying hardware. Because
hardware constantly evolves, this chapter will always be
out of date. We will nevertheless do our best to keep up.
Chapter 4 then provides a very brief overview of common
shared-memory parallel-programming primitives.

Chapter 5 takes an in-depth look at parallelizing one
of the simplest problems imaginable, namely counting.
Because almost everyone has an excellent grasp of count-
ing, this chapter is able to delve into many important
parallel-programming issues without the distractions of
more-typical computer-science problems. My impression
is that this chapter has seen the greatest use in parallel-
programming coursework.

Chapter 6 introduces a number of design-level meth-
ods of addressing the issues identified in Chapter 5. It
turns out that it is important to address parallelism at
the design level when feasible: To paraphrase Dijk-
stra [Dij68], “retrofitted parallelism considered grossly
suboptimal” [McK12b].

The next three chapters examine three important ap-
proaches to synchronization. Chapter 7 covers locking,
which in 2014 is not only the workhorse of production-
quality parallel programming, but is also widely consid-
ered to be parallel programming’s worst villain. Chap-
ter 8 gives a brief overview of data ownership, an of-
ten overlooked but remarkably pervasive and power-
ful approach. Finally, Chapter 9 introduces a number
of deferred-processing mechanisms, including reference
counting, hazard pointers, sequence locking, and RCU.

Chapter 10 applies the lessons of previous chapters to
hash tables, which are heavily used due to their excel-
lent partitionability, which (usually) leads to excellent



performance and scalability.

As many have learned to their sorrow, parallel program-
ming without validation is a sure path to abject failure.
Chapter 11 covers various forms of testing. It is of course
impossible to test reliability into your program after the
fact, so Chapter 12 follows up with a brief overview of a
couple of practical approaches to formal verification.

Chapter 13 contains a series of moderate-sized parallel
programming problems. The difficulty of these problems
vary, but should be appropriate for someone who has
mastered the material in the previous chapters.

Chapter 14 looks at advanced synchronization methods,
including non-blocking synchronization and parallel real-
time computing, while Chapter 15 covers the advanced
topic of memory ordering. Chapter 16 follows up with
some ease-of-use advice. Finally, Chapter 17 looks at a
few possible future directions, including shared-memory
parallel system design, software and hardware transac-
tional memory, functional programming for parallelism,
and quantum computing.

This chapter is followed by a number of appendices.
The most popular of these appears to be Appendix C,
which delves even further into memory ordering. Appen-
dix E contains the answers to the infamous Quick Quizzes,
which are discussed in the next section.

1.2  Quick Quizzes

“Quick quizzes” appear throughout this book, and the
answers may be found in Appendix E starting on page 393.
Some of them are based on material in which that quick
quiz appears, but others require you to think beyond that
section, and, in some cases, beyond the realm of current
knowledge. As with most endeavors, what you get out of
this book is largely determined by what you are willing to
put into it. Therefore, readers who make a genuine effort
to solve a quiz before looking at the answer find their
effort repaid handsomely with increased understanding of
parallel programming.

Quick Quiz 1.1: Where are the answers to the Quick
Quizzes found? l

Quick Quiz 1.2: Some of the Quick Quiz questions
seem to be from the viewpoint of the reader rather than
the author. Is that really the intent? H

Quick Quiz 1.3: These Quick Quizzes are just not my
cup of tea. What can I do about it?

In short, if you need a deep understanding of the ma-
terial, then you should invest some time into answering
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the Quick Quizzes. Don’t get me wrong, passively read-
ing the material can be quite valuable, but gaining full
problem-solving capability really does require that you
practice solving problems.

I learned this the hard way during coursework for my
late-in-life Ph.D. I was studying a familiar topic, and
was surprised at how few of the chapter’s exercises I
could answer off the top of my head.? Forcing myself to
answer the questions greatly increased my retention of the
material. So with these Quick Quizzes I am not asking
you to do anything that I have not been doing myself!

Finally, the most common learning disability is think-
ing that you already know. The quick quizzes can be an
extremely effective cure.

1.3 Alternatives to This Book

As Knuth learned, if you want your book to be finite, it
must be focused. This book focuses on shared-memory
parallel programming, with an emphasis on software
that lives near the bottom of the software stack, such as
operating-system kernels, parallel data-management sys-
tems, low-level libraries, and the like. The programming
language used by this book is C.

If you are interested in other aspects of parallelism,
you might well be better served by some other book.
Fortunately, there are many alternatives available to you:

1. If you prefer a more academic and rigorous treat-
ment of parallel programming, you might like Her-
lihy’s and Shavit’s textbook [HSOS8]. This book starts
with an interesting combination of low-level primi-
tives at high levels of abstraction from the hardware,
and works its way through locking and simple data
structures including lists, queues, hash tables, and
counters, culminating with transactional memory.
Michael Scott’s textbook [Scol3] approaches sim-
ilar material with more of a software-engineering
focus, and, as far as I know, is the first formally
published academic textbook to include a section
devoted to RCU.

2. If you would like an academic treatment of parallel
programming from a programming-language-prag-
matics viewpoint, you might be interested in the
concurrency chapter from Scott’s textbook [Sco06]
on programming-language pragmatics.

2 So I suppose that it was just as well that my professors refused to
let me waive that class!
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SAMPLE SOURCE CODE

. If you are interested in an object-oriented patternist

treatment of parallel programming focussing on
C++, you might try Volumes 2 and 4 of Schmidt’s
POSA series [SSRB00, BHS07]. Volume 4 in par-
ticular has some interesting chapters applying this
work to a warehouse application. The realism of this
example is attested to by the section entitled “Parti-
tioning the Big Ball of Mud”, wherein the problems
inherent in parallelism often take a back seat to the
problems inherent in getting one’s head around a
real-world application.

. If you want to work with Linux-kernel device driv-

ers, then Corbet’s, Rubini’s, and Kroah-Hartman’s
“Linux Device Drivers” [CRKHO05] is indispensable,
as is the Linux Weekly News web site (http:
//1lwn.net/). There is a large number of books
and resources on the more general topic of Linux
kernel internals.

. If your primary focus is scientific and technical com-

puting, and you prefer a patternist approach, you
might try Mattson et al.’s textbook [MSMO5]. It cov-
ers Java, C/C++, OpenMP, and MPL. Its patterns are
admirably focused first on design, then on implemen-
tation.

. If your primary focus is scientific and technical com-

puting, and you are interested in GPUs, CUDA, and
MPI, you might check out Norm Matloff’s “Program-
ming on Parallel Machines” [Mat13]. Of course, the
GPU vendors have quite a bit of additional informa-
tion [AMDI17, Zell1, NVil7a, NVil7b].

. If you are interested in POSIX Threads, you might

take a look at David R. Butenhof’s book [But97].
In addition, W. Richard Stevens’s book [Ste92] cov-
ers UNIX and POSIX, and Stewart Weiss’s lecture
notes [Weil3] provide an thorough and accessible
introduction with a good set of examples.

. If you are interested in C++11, you might like

Anthony Williams’s “C++ Concurrency in Action:
Practical Multithreading” [Wil12].

. If you are interested in C++, but in a Windows en-

vironment, you might try Herb Sutter’s “Effective
Concurrency” series in Dr. Dobbs Journal [SutO8].
This series does a reasonable job of presenting a
commonsense approach to parallelism.

10. If you want to try out Intel Threading Building
Blocks, then perhaps James Reinders’s book [Rei07]
is what you are looking for.

11. Those interested in learning how various types of
multi-processor hardware cache organizations affect
the implementation of kernel internals should take
a look at Curt Schimmel’s classic treatment of this
subject [Sch94].

12. Finally, those using Java might be well-served by
Doug Lea’s textbooks [Lea97, GPB*07].

However, if you are interested in principles of parallel
design for low-level software, especially software written
in C, read on!

1.4 Sample Source Code

This book discusses its fair share of source code, and
in many cases this source code may be found in the
CodeSamples directory of this book’s git tree. For ex-
ample, on UNIX systems, you should be able to type the
following:

find CodeSamples -name rcu_rcpls.c -print

This command will locate the file rcu_rcpls.c,
which is called out in Appendix B. Other types of systems
have well-known ways of locating files by filename.

1.5 Whose Book Is This?

As the cover says, the editor is one Paul E. McKen-
ney. However, the editor does accept contributions via the
perfbook@vger.kernel.org email list. These contri-
butions can be in pretty much any form, with popular ap-
proaches including text emails, patches against the book’s
IATEX source, and even git pull requests. Use whatever
form works best for you.

To create patches or git pull requests, you
will need the I&TEX source to the book, which is at
git://git.kernel.org/pub/scm/linux/kernel/
git/paulmck/perfbook.git. You will of course also
need git and IKTEX, which are available as part of most
mainstream Linux distributions. Other packages may
be required, depending on the distribution you use. The
required list of packages for a few popular distributions is


http://lwn.net/
http://lwn.net/
mailto:perfbook@vger.kernel.org
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
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Listing 1.1: Creating an Up-To-Date PDF

git clone git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

cd perfbook

# You may need to install a font here. See item 1 in FAQ.txt.

evince perfbook.pdf & # Two-column version
make perfbook-1c.pdf

1

2

3

4 make
5

6

7 evince perfbook-l1c.pdf & # One-column version for e-readers

Listing 1.2: Generating an Updated PDF

1 git remote update

2 git checkout origin/master

3 make

4 evince perfbook.pdf & # Two-column version

5 make perfbook-lc.pdf

evince perfbook-1c.pdf & # One-column version for e-readers

o

listed in the file FAQ-BUILD. txt in the I&TEX source to
the book.

To create and display a current I&TgX source tree of
this book, use the list of Linux commands shown in List-
ing 1.1. In some environments, the evince command that
displays perfbook.pdf may need to be replaced, for ex-
ample, with acroread. The git clone command need
only be used the first time you create a PDF, subsequently,
you can run the commands shown in Listing 1.2 to pull in
any updates and generate an updated PDF. The commands
in Listing 1.2 must be run within the perfbook directory
created by the commands shown in Listing 1.1.

PDFs of this book are sporadically posted at
http://kernel.org/pub/linux/kernel/people/
paulmck/perfbook/perfbook.html and at http:
//www.rdrop.com/users/paulmck/perfbook/.

The actual process of contributing patches and send-
ing git pull requests is similar to that of the Linux
kernel, which is documented in the Documentation/
SubmittingPatches file in the Linux source tree. One
important requirement is that each patch (or commit, in
the case of a git pull request) must contain a valid
Signed-off-by: line, which has the following format:

Signed-off-by: My Name <mynameQexample.org>

Please see http://lkml.org/1lkml/2007/1/15/
219 for an example patch containing a Signed-off-by:
line.

It is important to note that the Signed-off-by: line
has a very specific meaning, namely that you are certify-
ing that:

(a) The contribution was created in whole or in part by
me and I have the right to submit it under the open
source license indicated in the file; or

(b) The contribution is based upon previous work that, to
the best of my knowledge, is covered under an appro-
priate open source License and I have the right under
that license to submit that work with modifications,
whether created in whole or in part by me, under the
same open source license (unless I am permitted to
submit under a different license), as indicated in the
file; or

(c) The contribution was provided directly to me by
some other person who certified (a), (b) or (c) and I
have not modified it.

(d) T'understand and agree that this project and the contri-
bution are public and that a record of the contribution
(including all personal information I submit with it,
including my sign-off) is maintained indefinitely and
may be redistributed consistent with this project or
the open source license(s) involved.

This is quite similar to the Developer’s Certificate of
Origin (DCO) 1.1 used by the Linux kernel. You must use
your real name: I unfortunately cannot accept pseudony-
mous or anonymous contributions.

The language of this book is American English, how-
ever, the open-source nature of this book permits transla-
tions, and I personally encourage them. The open-source
licenses covering this book additionally allow you to sell
your translation, if you wish. I do request that you send
me a copy of the translation (hardcopy if available), but
this is a request made as a professional courtesy, and is
not in any way a prerequisite to the permission that you
already have under the Creative Commons and GPL li-
censes. Please see the FAQ.txt file in the source tree
for a list of translations currently in progress. I consider
a translation effort to be “in progress” once at least one
chapter has been fully translated.


http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.rdrop.com/users/paulmck/perfbook/
http://www.rdrop.com/users/paulmck/perfbook/
http://lkml.org/lkml/2007/1/15/219
http://lkml.org/lkml/2007/1/15/219

1.5. WHOSE BOOK IS THIS?

As noted at the beginning of this section, I am this
book’s editor. However, if you choose to contribute, it
will be your book as well. With that, I offer you Chapter 2,
our introduction.
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Chapter 2

Introduction

Parallel programming has earned a reputation as one of
the most difficult areas a hacker can tackle. Papers and
textbooks warn of the perils of deadlock, livelock, race
conditions, non-determinism, Amdahl’s-Law limits to
scaling, and excessive realtime latencies. And these perils
are quite real; we authors have accumulated uncounted
years of experience dealing with them, and all of the
emotional scars, grey hairs, and hair loss that go with
such experiences.

However, new technologies that are difficult to use
at introduction invariably become easier over time. For
example, the once-rare ability to drive a car is now com-
monplace in many countries. This dramatic change came
about for two basic reasons: (1) cars became cheaper and
more readily available, so that more people had the op-
portunity to learn to drive, and (2) cars became easier to
operate due to automatic transmissions, automatic chokes,
automatic starters, greatly improved reliability, and a host
of other technological improvements.

The same is true of a many other technologies, includ-
ing computers. It is no longer necessary to operate a
keypunch in order to program. Spreadsheets allow most
non-programmers to get results from their computers that
would have required a team of specialists a few decades
ago. Perhaps the most compelling example is web-surfing
and content creation, which since the early 2000s has
been easily done by untrained, uneducated people using
various now-commonplace social-networking tools. As
recently as 1968, such content creation was a far-out re-
search project [Eng68], described at the time as “like a
UFO landing on the White House lawn”’[Gri00].

Therefore, if you wish to argue that parallel program-
ming will remain as difficult as it is currently perceived
by many to be, it is you who bears the burden of proof,
keeping in mind the many centuries of counter-examples
in a variety of fields of endeavor.

If parallel programming is so hard, why are there any
parallel programs?

Unknown

2.1 Historic Parallel Programming
Difficulties

As indicated by its title, this book takes a different ap-
proach. Rather than complain about the difficulty of
parallel programming, it instead examines the reasons
why parallel programming is difficult, and then works to
help the reader to overcome these difficulties. As will be
seen, these difficulties have fallen into several categories,
including:

1. The historic high cost and relative rarity of parallel
systems.

2. The typical researcher’s and practitioner’s lack of
experience with parallel systems.

3. The paucity of publicly accessible parallel code.

4. The lack of a widely understood engineering disci-
pline of parallel programming.

5. The high overhead of communication relative to
that of processing, even in tightly coupled shared-
memory computers.

Many of these historic difficulties are well on the way
to being overcome. First, over the past few decades, the
cost of parallel systems has decreased from many mul-
tiples of that of a house to a fraction of that of a bicy-
cle, courtesy of Moore’s Law. Papers calling out the
advantages of multicore CPUs were published as early
as 1996 [ONH*96]. IBM introduced simultaneous multi-
threading into its high-end POWER family in 2000, and
multicore in 2001. Intel introduced hyperthreading into
its commodity Pentium line in November 2000, and both
AMD and Intel introduced dual-core CPUs in 2005. Sun
followed with the multicore/multi-threaded Niagara in



late 2005. In fact, by 2008, it was becoming difficult to
find a single-CPU desktop system, with single-core CPUs
being relegated to netbooks and embedded devices. By
2012, even smartphones were starting to sport multiple
CPUs.

Second, the advent of low-cost and readily available
multicore systems means that the once-rare experience
of parallel programming is now available to almost all
researchers and practitioners. In fact, parallel systems
are now well within the budget of students and hobbyists.
We can therefore expect greatly increased levels of inven-
tion and innovation surrounding parallel systems, and that
increased familiarity will over time make the once pro-
hibitively expensive field of parallel programming much
more friendly and commonplace.

Third, in the 20" century, large systems of highly par-
allel software were almost always closely guarded propri-
etary secrets. In happy contrast, the 21% century has seen
numerous open-source (and thus publicly available) paral-
lel software projects, including the Linux kernel [Tor03],
database systems [Pos08, MS08], and message-passing
systems [The08, UniO8a]. This book will draw primarily
from the Linux kernel, but will provide much material
suitable for user-level applications.

Fourth, even though the large-scale parallel-program-
ming projects of the 1980s and 1990s were almost all
proprietary projects, these projects have seeded other com-
munities with a cadre of developers who understand the
engineering discipline required to develop production-
quality parallel code. A major purpose of this book is to
present this engineering discipline.

Unfortunately, the fifth difficulty, the high cost of com-
munication relative to that of processing, remains largely
in force. Although this difficulty has been receiving in-
creasing attention during the new millennium, according
to Stephen Hawking, the finite speed of light and the
atomic nature of matter is likely to limit progress in this
area [Gar07, Moo03]. Fortunately, this difficulty has been
in force since the late 1980s, so that the aforementioned
engineering discipline has evolved practical and effective
strategies for handling it. In addition, hardware designers
are increasingly aware of these issues, so perhaps future
hardware will be more friendly to parallel software as
discussed in Section 3.3.

Quick Quiz 2.1: Come on now!!! Parallel program-
ming has been known to be exceedingly hard for many
decades. You seem to be hinting that it is not so hard.
What sort of game are you playing? il
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However, even though parallel programming might not
be as hard as is commonly advertised, it is often more
work than is sequential programming.

Quick Quiz 2.2: How could parallel programming
ever be as easy as sequential programming? ll

It therefore makes sense to consider alternatives to
parallel programming. However, it is not possible to
reasonably consider parallel-programming alternatives
without understanding parallel-programming goals. This
topic is addressed in the next section.

2.2 Parallel Programming Goals

The three major goals of parallel programming (over and
above those of sequential programming) are as follows:

1. Performance.
2. Productivity.

3. Generality.

Unfortunately, given the current state of the art, it is
possible to achieve at best two of these three goals for
any given parallel program. These three goals therefore
form the iron triangle of parallel programming, a triangle
upon which overly optimistic hopes all too often come to
grief.!

Quick Quiz 2.3: Oh, really??? What about correct-
ness, maintainability, robustness, and so on? l

Quick Quiz 2.4: And if correctness, maintainability,
and robustness don’t make the list, why do productivity
and generality? H

Quick Quiz 2.5: Given that parallel programs are
much harder to prove correct than are sequential pro-
grams, again, shouldn’t correctness really be on the list?
]

Quick Quiz 2.6: What about just having fun? B

Each of these goals is elaborated upon in the following
sections.

2.2.1 Performance

Performance is the primary goal behind most parallel-
programming effort. After all, if performance is not a
concern, why not do yourself a favor: Just write sequential

I Kudos to Michael Wong for naming the iron triangle.
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Figure 2.1: MIPS/Clock-Frequency Trend for Intel CPUs

code, and be happy? It will very likely be easier and you
will probably get done much more quickly.

Quick Quiz 2.7: Are there no cases where parallel
programming is about something other than performance?
]

Note that “performance” is interpreted quite broadly
here, including scalability (performance per CPU) and
efficiency (for example, performance per watt).

That said, the focus of performance has shifted from
hardware to parallel software. This change in focus is due
to the fact that, although Moore’s Law continues to deliver
increases in transistor density, it has ceased to provide the
traditional single-threaded performance increases. This
can be seen in Figure 2.1%2, which shows that writing
single-threaded code and simply waiting a year or two for
the CPUs to catch up may no longer be an option. Given
the recent trends on the part of all major manufacturers
towards multicore/multithreaded systems, parallelism is
the way to go for those wanting the avail themselves of
the full performance of their systems.

Even so, the first goal is performance rather than scal-
ability, especially given that the easiest way to attain

2 This plot shows clock frequencies for newer CPUs theoretically ca-
pable of retiring one or more instructions per clock, and MIPS (millions
of instructions per second, usually from the old Dhrystone benchmark)
for older CPUs requiring multiple clocks to execute even the simplest in-
struction. The reason for shifting between these two measures is that the
newer CPUs’ ability to retire multiple instructions per clock is typically
limited by memory-system performance. Furthermore, the benchmarks
commonly used on the older CPUs are obsolete, and it is difficult to
run the newer benchmarks on systems containing the old CPUs, in part
because it is hard to find working instances of the old CPUs.

linear scalability is to reduce the performance of each
CPU [Tor01]. Given a four-CPU system, which would
you prefer? A program that provides 100 transactions per
second on a single CPU, but does not scale at all? Or a
program that provides 10 transactions per second on a
single CPU, but scales perfectly? The first program seems
like a better bet, though the answer might change if you
happened to have a 32-CPU system.

That said, just because you have multiple CPUs is not
necessarily in and of itself a reason to use them all, espe-
cially given the recent decreases in price of multi-CPU
systems. The key point to understand is that parallel pro-
gramming is primarily a performance optimization, and,
as such, it is one potential optimization of many. If your
program is fast enough as currently written, there is no rea-
son to optimize, either by parallelizing it or by applying
any of a number of potential sequential optimizations.
By the same token, if you are looking to apply parallelism
as an optimization to a sequential program, then you will
need to compare parallel algorithms to the best sequential
algorithms. This may require some care, as far too many
publications ignore the sequential case when analyzing
the performance of parallel algorithms.

2.2.2 Productivity

Quick Quiz 2.8: Why all this prattling on about non-
technical issues??? And not just any non-technical issue,
but productivity of all things? Who cares? ll

Productivity has been becoming increasingly important
in recent decades. To see this, consider that the price of
early computers was tens of millions of dollars at a time
when engineering salaries were but a few thousand dollars
a year. If dedicating a team of ten engineers to such a
machine would improve its performance, even by only
10 %, then their salaries would be repaid many times over.

One such machine was the CSIRAC, the oldest still-
intact stored-program computer, which was put into op-
eration in 1949 [Mus04, Dep06]. Because this machine
was built before the transistor era, it was constructed of
2,000 vacuum tubes, ran with a clock frequency of 1kHz,
consumed 30 kW of power, and weighed more than three
metric tons. Given that this machine had but 768 words
of RAM, it is safe to say that it did not suffer from the
productivity issues that often plague today’s large-scale
software projects.

3 Of course, if you are a hobbyist whose primary interest is writing
parallel software, that is more than enough reason to parallelize whatever
software you are interested in.
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Figure 2.2: MIPS per Die for Intel CPUs

Today, it would be quite difficult to purchase a machine
with so little computing power. Perhaps the closest equiv-
alents are 8-bit embedded microprocessors exemplified
by the venerable Z80 [WikO08], but even the old Z80 had
a CPU clock frequency more than 1,000 times faster than
the CSIRAC. The Z80 CPU had 8,500 transistors, and
could be purchased in 2008 for less than $2 US per unit
in 1,000-unit quantities. In stark contrast to the CSIRAC,
software-development costs are anything but insignificant
for the Z80.

The CSIRAC and the Z80 are two points in a long-term
trend, as can be seen in Figure 2.2. This figure plots an
approximation to computational power per die over the
past four decades, showing an impressive six-order-of-
magnitude increase over a period of forty years. Note
that the advent of multicore CPUs has permitted this in-
crease to continue apace despite the clock-frequency wall
encountered in 2003, albeit courtesy of dies supporting
more than 50 hardware threads.

One of the inescapable consequences of the rapid de-
crease in the cost of hardware is that software productivity
becomes increasingly important. It is no longer sufficient
merely to make efficient use of the hardware: It is now
necessary to make extremely efficient use of software
developers as well. This has long been the case for se-
quential hardware, but parallel hardware has become a
low-cost commodity only recently. Therefore, only re-
cently has high productivity become critically important
when creating parallel software.

Quick Quiz 2.9: Given how cheap parallel systems
have become, how can anyone afford to pay people to
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program them? Ml

Perhaps at one time, the sole purpose of parallel soft-
ware was performance. Now, however, productivity is
gaining the spotlight.
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One way to justify the high cost of developing parallel
software is to strive for maximal generality. All else being
equal, the cost of a more-general software artifact can be
spread over more users than that of a less-general one. In
fact, this economic force explains much of the maniacal
focus on portability, which can be seen as an important
special case of generality.*

Unfortunately, generality often comes at the cost of per-
formance, productivity, or both. For example, portability
is often achieved via adaptation layers, which inevitably
exact a performance penalty. To see this more gener-
ally, consider the following popular parallel programming
environments:

Generality

C/C++ “Locking Plus Threads”: This category, which
includes POSIX Threads (pthreads) [Ope97], Win-
dows Threads, and numerous operating-system ker-
nel environments, offers excellent performance (at
least within the confines of a single SMP system) and
also offers good generality. Pity about the relatively
low productivity.

Java: This general purpose and inherently multithreaded
programming environment is widely believed to offer
much higher productivity than C or C++, courtesy
of the automatic garbage collector and the rich set
of class libraries. However, its performance, though
greatly improved in the early 2000s, lags that of C
and C++.

MPI: This Message Passing Interface [MPIO8] powers
the largest scientific and technical computing clus-
ters in the world and offers unparalleled performance
and scalability. In theory, it is general purpose, but
it is mainly used for scientific and technical com-
puting. Its productivity is believed by many to be
even lower than that of C/C++ “locking plus threads”
environments.

OpenMP: This set of compiler directives can be used to
parallelize loops. It is thus quite specific to this task,
and this specificity often limits its performance. It

4 Kudos to Michael Wong for pointing this out.
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is, however, much easier to use than MPI or C/C++
“locking plus threads.”

SQL: Structured Query Language [Int92] is specific to
relational database queries. However, its perfor-
mance is quite good as measured by the Transaction
Processing Performance Council (TPC) benchmark
results [TraO1]. Productivity is excellent; in fact, this
parallel programming environment enables people to
make good use of a large parallel system despite hav-
ing little or no knowledge of parallel programming
concepts.

The nirvana of parallel programming environments,
one that offers world-class performance, productivity, and
generality, simply does not yet exist. Until such a nir-
vana appears, it will be necessary to make engineering
tradeoffs among performance, productivity, and gener-
ality. One such tradeoff is shown in Figure 2.3, which
shows how productivity becomes increasingly important
at the upper layers of the system stack, while performance
and generality become increasingly important at the lower
layers of the system stack. The huge development costs
incurred at the lower layers must be spread over equally
huge numbers of users (hence the importance of general-
ity), and performance lost in lower layers cannot easily be
recovered further up the stack. In the upper layers of the
stack, there might be very few users for a given specific
application, in which case productivity concerns are para-
mount. This explains the tendency towards “bloatware”
further up the stack: extra hardware is often cheaper than
the extra developers. This book is intended for developers
working near the bottom of the stack, where performance
and generality are of great concern.

It is important to note that a tradeoff between produc-
tivity and generality has existed for centuries in many
fields. For but one example, a nailgun is more productive

11

SpeciaI—Purpose

Special-Purpose
Env Productive
for User 1
Environment
\Productive for User 2

Special-Purpose Environment

) Special-Purpose
Productive for User 3 Environment

Productive for User 4

General- Purpose
Environment
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than a hammer for driving nails, but in contrast to the
nailgun, a hammer can be used for many things besides
driving nails. It should therefore be no surprise to see
similar tradeoffs appear in the field of parallel comput-
ing. This tradeoff is shown schematically in Figure 2.4.
Here, users 1, 2, 3, and 4 have specific jobs that they need
the computer to help them with. The most productive
possible language or environment for a given user is one
that simply does that user’s job, without requiring any
programming, configuration, or other setup.

Quick Quiz 2.10: This is a ridiculously unachievable
ideal! Why not focus on something that is achievable in
practice? l

Unfortunately, a system that does the job required by
user 1 is unlikely to do user 2’s job. In other words, the
most productive languages and environments are domain-
specific, and thus by definition lacking generality.

Another option is to tailor a given programming lan-
guage or environment to the hardware system (for exam-
ple, low-level languages such as assembly, C, C++, or
Java) or to some abstraction (for example, Haskell, Prolog,
or Snobol), as is shown by the circular region near the cen-
ter of Figure 2.4. These languages can be considered to be
general in the sense that they are equally ill-suited to the
jobs required by users 1, 2, 3, and 4. In other words, their
generality is purchased at the expense of decreased pro-
ductivity when compared to domain-specific languages
and environments. Worse yet, a language that is tailored
to a given abstraction is also likely to suffer from perfor-
mance and scalability problems unless and until someone
figures out how to efficiently map that abstraction to real
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hardware.

Is there no escape from iron triangle’s three conflicting
goals of performance, productivity, and generality?

It turns out that there often is an escape, for example,
using the alternatives to parallel programming discussed
in the next section. After all, parallel programming can
be a great deal of fun, but it is not always the best tool for
the job.

2.3 Alternatives to Parallel Pro-
gramming

In order to properly consider alternatives to parallel pro-
gramming, you must first decide on what exactly you
expect the parallelism to do for you. As seen in Sec-
tion 2.2, the primary goals of parallel programming are
performance, productivity, and generality. Because this
book is intended for developers working on performance-
critical code near the bottom of the software stack, the re-
mainder of this section focuses primarily on performance
improvement.

It is important to keep in mind that parallelism is but
one way to improve performance. Other well-known
approaches include the following, in roughly increasing
order of difficulty:

1. Run multiple instances of a sequential application.
2. Make the application use existing parallel software.

3. Apply performance optimization to the serial appli-
cation.

These approaches are covered in the following sections.

2.3.1 Multiple Instances of a Sequential

Application

Running multiple instances of a sequential application can
allow you to do parallel programming without actually
doing parallel programming. There are a large number of
ways to approach this, depending on the structure of the
application.

If your program is analyzing a large number of different
scenarios, or is analyzing a large number of independent
data sets, one easy and effective approach is to create a
single sequential program that carries out a single analysis,
then use any of a number of scripting environments (for
example the bash shell) to run a number of instances of

CHAPTER 2. INTRODUCTION

that sequential program in parallel. In some cases, this
approach can be easily extended to a cluster of machines.

This approach may seem like cheating, and in fact
some denigrate such programs as “embarrassingly paral-
lel”. And in fact, this approach does have some potential
disadvantages, including increased memory consumption,
waste of CPU cycles recomputing common intermediate
results, and increased copying of data. However, it is of-
ten extremely productive, garnering extreme performance
gains with little or no added effort.

2.3.2 Use Existing Parallel Software

There is no longer any shortage of parallel software en-
vironments that can present a single-threaded program-
ming environment, including relational databases [Dat82],
web-application servers, and map-reduce environments.
For example, a common design provides a separate pro-
gram for each user, each of which generates SQL pro-
grams. These per-user SQL programs are run concur-
rently against a common relational database, which au-
tomatically runs the users’ queries concurrently. The
per-user programs are responsible only for the user inter-
face, with the relational database taking full responsibility
for the difficult issues surrounding parallelism and persis-
tence.

In addition, there are a growing number of parallel
library functions, particularly for numeric computation.
Even better, some libraries take advantage of special-pur-
pose hardware such as vector units and general-purpose
graphical processing units (GPGPUs).

Taking this approach often sacrifices some perfor-
mance, at least when compared to carefully hand-coding a
fully parallel application. However, such sacrifice is often
well repaid by a huge reduction in development effort.

Quick Quiz 2.11: Wait a minute! Doesn’t this ap-
proach simply shift the development effort from you to
whoever wrote the existing parallel software you are us-
ing?

2.3.3 Performance Optimization

Up through the early 2000s, CPU performance was dou-
bling every 18 months. In such an environment, it is often
much more important to create new functionality than to
do careful performance optimization. Now that Moore’s
Law is “only” increasing transistor density instead of in-
creasing both transistor density and per-transistor perfor-
mance, it might be a good time to rethink the importance
of performance optimization. After all, new hardware
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generations no longer bring significant single-threaded
performance improvements. Furthermore, many perfor-
mance optimizations can also conserve energy.

From this viewpoint, parallel programming is but an-
other performance optimization, albeit one that is be-
coming much more attractive as parallel systems become
cheaper and more readily available. However, it is wise
to keep in mind that the speedup available from parallel-
ism is limited to roughly the number of CPUs (but see
Section 6.5 for an interesting exception). In contrast, the
speedup available from traditional single-threaded soft-
ware optimizations can be much larger. For example,
replacing a long linked list with a hash table or a search
tree can improve performance by many orders of mag-
nitude. This highly optimized single-threaded program
might run much faster than its unoptimized parallel coun-
terpart, making parallelization unnecessary. Of course, a
highly optimized parallel program would be even better,
aside from the added development effort required.

Furthermore, different programs might have different
performance bottlenecks. For example, if your program
spends most of its time waiting on data from your disk
drive, using multiple CPUs will probably just increase the
time wasted waiting for the disks. In fact, if the program
was reading from a single large file laid out sequentially
on a rotating disk, parallelizing your program might well
make it a lot slower due to the added seek overhead. You
should instead optimize the data layout so that the file can
be smaller (thus faster to read), split the file into chunks
which can be accessed in parallel from different drives,
cache frequently accessed data in main memory, or, if
possible, reduce the amount of data that must be read.

Quick Quiz 2.12: What other bottlenecks might pre-
vent additional CPUs from providing additional perfor-
mance? l

Parallelism can be a powerful optimization technique,
but it is not the only such technique, nor is it appropriate
for all situations. Of course, the easier it is to parallelize
your program, the more attractive parallelization becomes
as an optimization. Parallelization has a reputation of
being quite difficult, which leads to the question “exactly
what makes parallel programming so difficult?”

2.4 'What Makes Parallel Program-
ming Hard?

It is important to note that the difficulty of parallel pro-
gramming is as much a human-factors issue as it is a set of
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technical properties of the parallel programming problem.
We do need human beings to be able to tell parallel sys-
tems what to do, otherwise known as programming. But
parallel programming involves two-way communication,
with a program’s performance and scalability being the
communication from the machine to the human. In short,
the human writes a program telling the computer what
to do, and the computer critiques this program via the
resulting performance and scalability. Therefore, appeals
to abstractions or to mathematical analyses will often be
of severely limited utility.

In the Industrial Revolution, the interface between hu-
man and machine was evaluated by human-factor studies,
then called time-and-motion studies. Although there have
been a few human-factor studies examining parallel pro-
gramming [ENS05, ES05, HCS*05, SS94], these studies
have been extremely narrowly focused, and hence unable
to demonstrate any general results. Furthermore, given
that the normal range of programmer productivity spans
more than an order of magnitude, it is unrealistic to expect
an affordable study to be capable of detecting (say) a 10 %
difference in productivity. Although the multiple-order-
of-magnitude differences that such studies can reliably
detect are extremely valuable, the most impressive im-
provements tend to be based on a long series of 10 %
improvements.

We must therefore take a different approach.

One such approach is to carefully consider the tasks
that parallel programmers must undertake that are not
required of sequential programmers. We can then evaluate
how well a given programming language or environment
assists the developer with these tasks. These tasks fall into
the four categories shown in Figure 2.5, each of which is
covered in the following sections.
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2.4.1 Work Partitioning

Work partitioning is absolutely required for parallel exe-
cution: if there is but one “glob” of work, then it can be
executed by at most one CPU at a time, which is by defini-
tion sequential execution. However, partitioning the code
requires great care. For example, uneven partitioning can
result in sequential execution once the small partitions
have completed [Amd67]. In less extreme cases, load
balancing can be used to fully utilize available hardware
and restore performance and scalabilty.

Although partitioning can greatly improve performance
and scalability, it can also increase complexity. For ex-
ample, partitioning can complicate handling of global
errors and events: A parallel program may need to carry
out non-trivial synchronization in order to safely process
such global events. More generally, each partition re-
quires some sort of communication: After all, if a given
thread did not communicate at all, it would have no effect
and would thus not need to be executed. However, be-
cause communication incurs overhead, careless partition-
ing choices can result in severe performance degradation.

Furthermore, the number of concurrent threads must
often be controlled, as each such thread occupies common
resources, for example, space in CPU caches. If too
many threads are permitted to execute concurrently, the
CPU caches will overflow, resulting in high cache miss
rate, which in turn degrades performance. Conversely,
large numbers of threads are often required to overlap
computation and I/O so as to fully utilize I/O devices.

Quick Quiz 2.13: Other than CPU cache capacity,
what might require limiting the number of concurrent
threads?

Finally, permitting threads to execute concurrently
greatly increases the program’s state space, which can
make the program difficult to understand and debug, de-
grading productivity. All else being equal, smaller state
spaces having more regular structure are more easily un-
derstood, but this is a human-factors statement as much
as it is a technical or mathematical statement. Good par-
allel designs might have extremely large state spaces, but
nevertheless be easy to understand due to their regular
structure, while poor designs can be impenetrable despite
having a comparatively small state space. The best de-
signs exploit embarrassing parallelism, or transform the
problem to one having an embarrassingly parallel solu-
tion. In either case, “embarrassingly parallel” is in fact
an embarrassment of riches. The current state of the art
enumerates good designs; more work is required to make
more general judgments on state-space size and structure.
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2.4.2 Parallel Access Control

Given a single-threaded sequential program, that single
thread has full access to all of the program’s resources.
These resources are most often in-memory data structures,
but can be CPUs, memory (including caches), I/O devices,
computational accelerators, files, and much else besides.
The first parallel-access-control issue is whether the
form of the access to a given resource depends on that re-
source’s location. For example, in many message-passing
environments, local-variable access is via expressions and
assignments, while remote-variable access uses an en-
tirely different syntax, usually involving messaging. The
POSIX Threads environment [Ope97], Structured Query
Language (SQL) [Int92], and partitioned global address-
space (PGAS) environments such as Universal Parallel C
(UPC) [EGCDO03] offer implicit access, while Message
Passing Interface (MPI) [MPI08] offers explicit access be-
cause access to remote data requires explicit messaging.
The other parallel-access-control issue is how threads
coordinate access to the resources. This coordination is
carried out by the very large number of synchronization
mechanisms provided by various parallel languages and
environments, including message passing, locking, trans-
actions, reference counting, explicit timing, shared atomic
variables, and data ownership. Many traditional parallel-
programming concerns such as deadlock, livelock, and
transaction rollback stem from this coordination. This
framework can be elaborated to include comparisons of
these synchronization mechanisms, for example locking
vs. transactional memory [MMWO7], but such elabora-
tion is beyond the scope of this section. (See Sections 17.2
and 17.3 for more information on transactional memory.)
Quick Quiz 2.14: Just what is “explicit timing”??? ll

2.4.3 Resource Partitioning and Replica-
tion

The most effective parallel algorithms and systems exploit
resource parallelism, so much so that it is usually wise to
begin parallelization by partitioning your write-intensive
resources and replicating frequently accessed read-mostly
resources. The resource in question is most frequently
data, which might be partitioned over computer systems,
mass-storage devices, NUMA nodes, CPU cores (or dies
or hardware threads), pages, cache lines, instances of syn-
chronization primitives, or critical sections of code. For
example, partitioning over locking primitives is termed
“data locking” [BK85].
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Resource partitioning is frequently application depen-
dent. For example, numerical applications frequently par-
tition matrices by row, column, or sub-matrix, while com-
mercial applications frequently partition write-intensive
data structures and replicate read-mostly data structures.
Thus, a commercial application might assign the data for
a given customer to a given few computers out of a large
cluster. An application might statically partition data, or
dynamically change the partitioning over time.

Resource partitioning is extremely effective, but it can
be quite challenging for complex multilinked data struc-
tures.

2.4.4 Interacting With Hardware

Hardware interaction is normally the domain of the op-
erating system, the compiler, libraries, or other software-
environment infrastructure. However, developers working
with novel hardware features and components will often
need to work directly with such hardware. In addition,
direct access to the hardware can be required when squeez-
ing the last drop of performance out of a given system. In
this case, the developer may need to tailor or configure
the application to the cache geometry, system topology,
or interconnect protocol of the target hardware.

In some cases, hardware may be considered to be a
resource which is subject to partitioning or access control,
as described in the previous sections.

2.4.5 Composite Capabilities

Although these four capabilities are fundamental, good
engineering practice uses composites of these capabilities.
For example, the data-parallel approach first partitions
the data so as to minimize the need for inter-partition
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communication, partitions the code accordingly, and fi-
nally maps data partitions and threads so as to maximize
throughput while minimizing inter-thread communica-
tion, as shown in Figure 2.6. The developer can then
consider each partition separately, greatly reducing the
size of the relevant state space, in turn increasing produc-
tivity. Even though some problems are non-partitionable,
clever transformations into forms permitting partitioning
can sometimes greatly enhance both performance and
scalability [Met99].

2.4.6 How Do Languages and Environ-
ments Assist With These Tasks?

Although many environments require the developer to
deal manually with these tasks, there are long-standing
environments that bring significant automation to bear.
The poster child for these environments is SQL, many
implementations of which automatically parallelize single
large queries and also automate concurrent execution of
independent queries and updates.

These four categories of tasks must be carried out in all
parallel programs, but that of course does not necessarily
mean that the developer must manually carry out these
tasks. We can expect to see ever-increasing automation of
these four tasks as parallel systems continue to become
cheaper and more readily available.

Quick Quiz 2.15: Are there any other obstacles to
parallel programming? H

2.5 Discussion

This section has given an overview of the difficulties
with, goals of, and alternatives to parallel program-
ming. This overview was followed by a discussion
of what can make parallel programming hard, along
with a high-level approach for dealing with parallel
programming’s difficulties. Those who still insist that
parallel programming is impossibly difficult should re-
view some of the older guides to parallel programm-
ming [Seq88, Dig89, BK8S, Inm85]. The following quote
from Andrew Birrell’s monograph [Dig89] is especially
telling:

Writing concurrent programs has a reputation
for being exotic and difficult. I believe it is
neither. You need a system that provides you
with good primitives and suitable libraries, you
need a basic caution and carefulness, you need
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an armory of useful techniques, and you need
to know of the common pitfalls. I hope that
this paper has helped you towards sharing my
belief.

The authors of these older guides were well up to the
parallel programming challenge back in the 1980s. As
such, there are simply no excuses for refusing to step up
to the parallel-programming challenge here in the 21%
century!

We are now ready to proceed to the next chapter, which
dives into the relevant properties of the parallel hardware
underlying our parallel software.

CHAPTER 2. INTRODUCTION



Chapter 3

Premature abstraction is the root of all evil.

A cast of thousands

Hardware and its Habits

Most people have an intuitive understanding that pass-
ing messages between systems is considerably more ex-
pensive than performing simple calculations within the
confines of a single system. However, it is not always
so clear that communicating among threads within the
confines of a single shared-memory system can also be
quite expensive. This chapter therefore looks at the cost
of synchronization and communication within a shared-
memory system. These few pages can do no more than
scratch the surface of shared-memory parallel hardware
design; readers desiring more detail would do well to start
with a recent edition of Hennessy and Patterson’s classic
text [HP11, HP95].

Quick Quiz 3.1: Why should parallel programmers
bother learning low-level properties of the hardware?
Wouldn’t it be easier, better, and more general to remain
at a higher level of abstraction? H

3.1 Overview

Careless reading of computer-system specification sheets
might lead one to believe that CPU performance is a
footrace on a clear track, as illustrated in Figure 3.1, where
the race always goes to the swiftest.

Although there are a few CPU-bound benchmarks that
approach the ideal case shown in Figure 3.1, the typical
program more closely resembles an obstacle course than
arace track. This is because the internal architecture of
CPUs has changed dramatically over the past few decades,
courtesy of Moore’s Law. These changes are described in
the following sections.

3.1.1 Pipelined CPUs

In the early 1980s, the typical microprocessor fetched an
instruction, decoded it, and executed it, typically taking at
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Figure 3.1: CPU Performance at its Best

least three clock cycles to complete one instruction before
proceeding to the next. In contrast, the CPU of the late
1990s and early 2000s will be executing many instructions
simultaneously, using a deep “pipeline” to control the
flow of instructions internally to the CPU. These modern
hardware features can greatly improve performance, as
illustrated by Figure 3.2.

Achieving full performance with a CPU having a long
pipeline requires highly predictable control flow through
the program. Suitable control flow can be provided by
a program that executes primarily in tight loops, for ex-
ample, arithmetic on large matrices or vectors. The CPU
can then correctly predict that the branch at the end of
the loop will be taken in almost all cases, allowing the
pipeline to be kept full and the CPU to execute at full
speed.

However, branch prediction is not always so easy. For
example, consider a program with many loops, each of
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Figure 3.3: CPU Meets a Pipeline Flush

which iterates a small but random number of times. For
another example, consider an object-oriented program
with many virtual objects that can reference many dif-
ferent real objects, all with different implementations for
frequently invoked member functions. In these cases, it is
difficult or even impossible for the CPU to predict where
the next branch might lead. Then either the CPU must
stall waiting for execution to proceed far enough to be
certain where that branch leads, or it must guess. Al-
though guessing works extremely well for programs with
predictable control flow, for unpredictable branches (such
as those in binary search) the guesses will frequently be
wrong. A wrong guess can be expensive because the CPU
must discard any speculatively executed instructions fol-
lowing the corresponding branch, resulting in a pipeline
flush. If pipeline flushes appear too frequently, they dras-
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tically reduce overall performance, as fancifully depicted
in Figure 3.3.

Unfortunately, pipeline flushes are not the only hazards
in the obstacle course that modern CPUs must run. The
next section covers the hazards of referencing memory.

3.1.2 Memory References

In the 1980s, it often took less time for a microprocessor
to load a value from memory than it did to execute an
instruction. In 2006, a microprocessor might be capable
of executing hundreds or even thousands of instructions
in the time required to access memory. This disparity
is due to the fact that Moore’s Law has increased CPU
performance at a much greater rate than it has decreased
memory latency, in part due to the rate at which memory
sizes have grown. For example, a typical 1970s minicom-
puter might have 4 KB (yes, kilobytes, not megabytes,
let alone gigabytes) of main memory, with single-cycle
access.! In 2008, CPU designers still can construct a
4 KB memory with single-cycle access, even on systems
with multi-GHz clock frequencies. And in fact they fre-
quently do construct such memories, but they now call
them “level-0 caches”, and they can be quite a bit bigger
than 4 KB.

Figure 3.4: CPU Meets a Memory Reference

! It is only fair to add that each of these single cycles lasted no less
than 1.6 microseconds.
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Although the large caches found on modern micro-
processors can do quite a bit to help combat memory-
access latencies, these caches require highly predictable
data-access patterns to successfully hide those latencies.
Unfortunately, common operations such as traversing a
linked list have extremely unpredictable memory-access
patterns—after all, if the pattern was predictable, us soft-
ware types would not bother with the pointers, right?
Therefore, as shown in Figure 3.4, memory references
often pose severe obstacles to modern CPUs.

Thus far, we have only been considering obstacles
that can arise during a given CPU’s execution of single-
threaded code. Multi-threading presents additional obsta-
cles to the CPU, as described in the following sections.

3.1.3 Atomic Operations

One such obstacle is atomic operations. The problem
here is that the whole idea of an atomic operation con-
flicts with the piece-at-a-time assembly-line operation of
a CPU pipeline. To hardware designers’ credit, modern
CPUs use a number of extremely clever tricks to make
such operations look atomic even though they are in fact
being executed piece-at-a-time, with one common trick
being to identify all the cachelines containing the data to
be atomically operated on, ensure that these cachelines
are owned by the CPU executing the atomic operation,
and only then proceed with the atomic operation while
ensuring that these cachelines remained owned by this
CPU. Because all the data is private to this CPU, other
CPUs are unable to interfere with the atomic operation
despite the piece-at-a-time nature of the CPU’s pipeline.
Needless to say, this sort of trick can require that the pipe-
line must be delayed or even flushed in order to perform
the setup operations that permit a given atomic operation
to complete correctly.

In contrast, when executing a non-atomic operation, the
CPU can load values from cachelines as they appear and
place the results in the store buffer, without the need to
wait for cacheline ownership. Fortunately, CPU designers
have focused heavily on atomic operations, so that as of
early 2014 they have greatly reduced their overhead. Even
so, the resulting effect on performance is all too often as
depicted in Figure 3.5.

Unfortunately, atomic operations usually apply only to
single elements of data. Because many parallel algorithms
require that ordering constraints be maintained between
updates of multiple data elements, most CPUs provide
memory barriers. These memory barriers also serve as
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Figure 3.5: CPU Meets an Atomic Operation

performance-sapping obstacles, as described in the next
section.

Quick Quiz 3.2: What types of machines would allow
atomic operations on multiple data elements? ll

3.1.4 Memory Barriers

Memory barriers will be considered in more detail in
Chapter 15 and Appendix C. In the meantime, consider
the following simple lock-based critical section:

spin_lock(&mylock) ;
a=a+1;
spin_unlock(&mylock) ;

[S)

w

If the CPU were not constrained to execute these state-
ments in the order shown, the effect would be that the
variable “a” would be incremented without the protection
of “mylock”, which would certainly defeat the purpose
of acquiring it. To prevent such destructive reordering,
locking primitives contain either explicit or implicit mem-
ory barriers. Because the whole purpose of these memory
barriers is to prevent reorderings that the CPU would
otherwise undertake in order to increase performance,
memory barriers almost always reduce performance, as
depicted in Figure 3.6.

As with atomic operations, CPU designers have been
working hard to reduce memory-barrier overhead, and
have made substantial progress.

3.1.5 Cache Misses

An additional multi-threading obstacle to CPU perfor-
mance is the “cache miss”. As noted earlier, modern
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Figure 3.6: CPU Meets a Memory Barrier

CPUs sport large caches in order to reduce the perfor-
mance penalty that would otherwise be incurred due to
high memory latencies. However, these caches are actu-
ally counter-productive for variables that are frequently
shared among CPUs. This is because when a given CPU
wishes to modify the variable, it is most likely the case
that some other CPU has modified it recently. In this case,
the variable will be in that other CPU’s cache, but not in
this CPU’s cache, which will therefore incur an expensive
cache miss (see Section C.1 for more detail). Such cache
misses form a major obstacle to CPU performance, as
shown in Figure 3.7.

Quick Quiz 3.3: So have CPU designers also greatly
reduced the overhead of cache misses? H

3.1.6 I/O Operations

A cache miss can be thought of as a CPU-to-CPU I/O
operation, and as such is one of the cheapest I/O oper-
ations available. 1/O operations involving networking,
mass storage, or (worse yet) human beings pose much
greater obstacles than the internal obstacles called out in
the prior sections, as illustrated by Figure 3.8.

This is one of the differences between shared-memory
and distributed-system parallelism: shared-memory paral-
lel programs must normally deal with no obstacle worse
than a cache miss, while a distributed parallel program
will typically incur the larger network communication
latencies. In both cases, the relevant latencies can be
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Figure 3.8: CPU Waits for I/O Completion

thought of as a cost of communication—a cost that would
be absent in a sequential program. Therefore, the ratio
between the overhead of the communication to that of the
actual work being performed is a key design parameter.
A major goal of parallel hardware design is to reduce this
ratio as needed to achieve the relevant performance and
scalability goals. In turn, as will be seen in Chapter 6,
a major goal of parallel software design is to reduce the
frequency of expensive operations like communications
cache misses.

Of course, it is one thing to say that a given operation is
an obstacle, and quite another to show that the operation
is a significant obstacle. This distinction is discussed in
the following sections.
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Figure 3.9: System Hardware Architecture

3.2 Overheads

This section presents actual overheads of the obstacles to
performance listed out in the previous section. However,
it is first necessary to get a rough view of hardware system
architecture, which is the subject of the next section.

3.2.1 Hardware System Architecture

Figure 3.9 shows a rough schematic of an eight-core com-
puter system. Each die has a pair of CPU cores, each
with its cache, as well as an interconnect allowing the pair
of CPUs to communicate with each other. The system
interconnect in the middle of the diagram allows the four
dies to communicate, and also connects them to main
memory.

Data moves through this system in units of “cache
lines”, which are power-of-two fixed-size aligned blocks
of memory, usually ranging from 32 to 256 bytes in size.
When a CPU loads a variable from memory to one of its
registers, it must first load the cacheline containing that
variable into its cache. Similarly, when a CPU stores a
value from one of its registers into memory, it must also
load the cacheline containing that variable into its cache,
but must also ensure that no other CPU has a copy of that
cacheline.

For example, if CPU 0 were to perform a compare-
and-swap (CAS) operation on a variable whose cacheline
resided in CPU 7’s cache, the following over-simplified
sequence of events might ensue:
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1. CPU 0 checks its local cache, and does not find the
cacheline.

2. The request is forwarded to CPU 0’s and 1’s intercon-
nect, which checks CPU 1’s local cache, and does
not find the cacheline.

3. The request is forwarded to the system interconnect,
which checks with the other three dies, learning that
the cacheline is held by the die containing CPU 6
and 7.

4. The request is forwarded to CPU 6’s and 7’s inter-
connect, which checks both CPUs’ caches, finding
the value in CPU 7’s cache.

5. CPU 7 forwards the cacheline to its interconnect,
and also flushes the cacheline from its cache.

6. CPU 6’s and 7’s interconnect forwards the cacheline
to the system interconnect.

7. The system interconnect forwards the cacheline to
CPU 0’s and 1’s interconnect.

8. CPU 0’s and 1’s interconnect forwards the cacheline
to CPU 0’s cache.

9. CPU 0 can now perform the CAS operation on the
value in its cache.

Quick Quiz 3.4: This is a simplified sequence of
events? How could it possibly be any more complex?
]

Quick Quiz 3.5: Why is it necessary to flush the cache-
line from CPU 7’s cache? B

This simplified sequence is just the beginning of a dis-
cipline called cache-coherency protocols [HP95, CSG99,
MHS12, SHW11], which is discussed in more detail in
Appendix C. As can be seen in the sequence of events trig-
gered by a CAS operation, a single instruction can cause
considerable protocol traffic, which can significantly de-
grade your parallel program’s performance.

Fortunately, if a given variable is being frequently read
during a time interval during which it is never updated,
that variable can be replicated across all CPUs’ caches.
This replication permits all CPUs to enjoy extremely fast
access to this read-mostly variable. Chapter 9 presents
synchronization mechanisms that take full advantage of
this important hardware read-mostly optimization.
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Table 3.1: Performance of Synchronization Mechanisms
on 4-CPU 1.8 GHz AMD Opteron 844 System

Ratio
Operation Cost (ns) (cost/clock)
Clock period 0.6 1.0
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0
Comms Fabric 5,000 8,330
Global Comms 195,000,000 325,000,000

3.2.2 Costs of Operations

The overheads of some common operations important
to parallel programs are displayed in Table 3.1. This
system’s clock period rounds to 0.6 ns. Although it is not
unusual for modern microprocessors to be able to retire
multiple instructions per clock period, the operations’
costs are nevertheless normalized to a clock period in
the third column, labeled “Ratio”. The first thing to note
about this table is the large values of many of the ratios.

The best-case compare-and-swap (CAS) operation con-
sumes almost forty nanoseconds, a duration more than
sixty times that of the clock period. Here, “best case”
means that the same CPU now performing the CAS op-
eration on a given variable was the last CPU to operate
on this variable, so that the corresponding cache line is
already held in that CPU’s cache. Similarly, the best-case
lock operation (a “round trip” pair consisting of a lock
acquisition followed by a lock release) consumes more
than sixty nanoseconds, or more than one hundred clock
cycles. Again, “best case” means that the data structure
representing the lock is already in the cache belonging
to the CPU acquiring and releasing the lock. The lock
operation is more expensive than CAS because it requires
two atomic operations on the lock data structure.

An operation that misses the cache consumes almost
one hundred and forty nanoseconds, or more than two
hundred clock cycles. The code used for this cache-miss
measurement passes the cache line back and forth between
a pair of CPUs, so this cache miss is satisfied not from
memory, but rather from the other CPU’s cache. A CAS
operation, which must look at the old value of the variable
as well as store a new value, consumes over three hundred
nanoseconds, or more than five hundred clock cycles.
Think about this a bit. In the time required to do one CAS
operation, the CPU could have executed more than five
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hundred normal instructions. This should demonstrate
the limitations not only of fine-grained locking, but of any
other synchronization mechanism relying on fine-grained
global agreement.

Quick Quiz 3.6: Surely the hardware designers could
be persuaded to improve this situation! Why have they
been content with such abysmal performance for these
single-instruction operations?

I/O operations are even more expensive. As shown
in the “Comms Fabric” row, high performance (and ex-
pensive!) communications fabric, such as InfiniBand or
any number of proprietary interconnects, has a latency
of roughly five microseconds for an end-to-end round
trip, during which time more than eight thousand in-
structions might have been executed. Standards-based
communications networks often require some sort of pro-
tocol processing, which further increases the latency. Of
course, geographic distance also increases latency, with
the speed-of-light through optical fiber latency around
the world coming to roughly 195 milliseconds, or more
than 300 million clock cycles, as shown in the “Global
Comms” row.

Quick Quiz 3.7: These numbers are insanely large!
How can I possibly get my head around them?

3.2.3 Hardware Optimizations

It is only natural to ask how the hardware is helping, and
the answer is “Quite a bit!”

One hardware optimization is large cachelines. This
can provide a big performance boost, especially when
software is accessing memory sequentially. For example,
given a 64-byte cacheline and software accessing 64-bit
variables, the first access will still be slow due to speed-of-
light delays (if nothing else), but the remaining seven can
be quite fast. However, this optimization has a dark side,
namely false sharing, which happens when different vari-
ables in the same cacheline are being updated by different
CPUsgs, resulting in a high cache-miss rate. Software can
use the alignment directives available in many compilers
to avoid false sharing, and adding such directives is a
common step in tuning parallel software.

A second related hardware optimization is cache
prefetching, in which the hardware reacts to consecutive
accesses by prefetching subsequent cachelines, thereby
evading speed-of-light delays for these subsequent cache-
lines. Of course, the hardware must use simple heuristics
to determine when to prefetch, and these heuristics can be
fooled by the complex data-access patterns in many ap-



3.3. HARDWARE FREE LUNCH?

Figure 3.10: Hardware and Software: On Same Side

plications. Fortunately, some CPU families allow for this
by providing special prefetch instructions. Unfortunately,
the effectiveness of these instructions in the general case
is subject to some dispute.

A third hardware optimization is the store buffer, which
allows a string of store instructions to execute quickly
even when the stores are to non-consecutive addresses
and when none of the needed cachelines are present in
the CPU’s cache. The dark side of this optimization is
memory misordering, for which see Chapter 15.

A fourth hardware optimization is speculative execu-
tion, which can allow the hardware to make good use of
the store buffers without resulting in memory misorder-
ing. The dark side of this optimization can be energy
inefficiency and lowered performance if the speculative
execution goes awry and must be rolled back and retried.
Worse yet, the advent of Spectre and Meltdown [Hor18]
made it apparent that hardware speculation can also en-
able side-channel attacks that defeat memory-protection
hardware so as to allow unprivileged processes to read
memory that they should not have access to. It is clear
that the combination of speculative execution and cloud
computing needs more than a bit of rework!

A fifth hardware optimization is large caches, allowing
individual CPUs to operate on larger datasets without
incurring expensive cache misses. Although large caches
can degrade energy efficiency and cache-miss latency, the
ever-growing cache sizes on production microprocessors
attests to the power of this optimization.

A final hardware optimization is read-mostly replica-
tion, in which data that is frequently read but rarely up-
dated is present in all CPUs’ caches. This optimization
allows the read-mostly data to be accessed exceedingly
efficiently, and is the subject of Chapter 9.

In short, hardware and software engineers are really
fighting on the same side, trying to make computers go
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fast despite the best efforts of the laws of physics, as fan-
cifully depicted in Figure 3.10 where our data stream is
trying its best to exceed the speed of light. The next sec-
tion discusses some additional things that the hardware
engineers might (or might not) be able to do, depend-
ing on how well recent research translates to practice.
Software’s contribution to this fight is outlined in the
remaining chapters of this book.

3.3 Hardware Free Lunch?

The major reason that concurrency has been receiving so
much focus over the past few years is the end of Moore’s-
Law induced single-threaded performance increases (or
“free lunch” [Sut08]), as shown in Figure 2.1 on page 9.
This section briefly surveys a few ways that hardware
designers might be able to bring back some form of the
“free lunch”.

However, the preceding section presented some sub-
stantial hardware obstacles to exploiting concurrency.
One severe physical limitation that hardware designers
face is the finite speed of light. As noted in Figure 3.9
on page 21, light can travel only about an 8-centimeters
round trip in a vacuum during the duration of a 1.8 GHz
clock period. This distance drops to about 3 centimeters
for a 5 GHz clock. Both of these distances are relatively
small compared to the size of a modern computer system.

To make matters even worse, electric waves in silicon
move from three to thirty times more slowly than does
light in a vacuum, and common clocked logic constructs
run still more slowly, for example, a memory reference
may need to wait for a local cache lookup to complete be-
fore the request may be passed on to the rest of the system.
Furthermore, relatively low speed and high power drivers
are required to move electrical signals from one silicon
die to another, for example, to communicate between a
CPU and main memory.

Quick Quiz 3.8: But individual electrons don’t move
anywhere near that fast, even in conductors!!! The elec-
tron drift velocity in a conductor under the low voltages
found in semiconductors is on the order of only one mil-
limeter per second. What gives??? i

There are nevertheless some technologies (both hard-
ware and software) that might help improve matters:

1. 3D integration,
2. Novel materials and processes,

3. Substituting light for electricity,



24

70 UTZ\

—

3cm 1.5¢cm

Figure 3.11: Latency Benefit of 3D Integration

4. Special-purpose accelerators, and

5. Existing parallel software.

Each of these is described in one of the following sec-
tions.

3.3.1 3D Integration

3-dimensional integration (3DI) is the practice of bonding
very thin silicon dies to each other in a vertical stack.
This practice provides potential benefits, but also poses
significant fabrication challenges [KniOS8].

Perhaps the most important benefit of 3DI is decreased
path length through the system, as shown in Figure 3.11.
A 3-centimeter silicon die is replaced with a stack of four
1.5-centimeter dies, in theory decreasing the maximum
path through the system by a factor of two, keeping in
mind that each layer is quite thin. In addition, given
proper attention to design and placement, long horizontal
electrical connections (which are both slow and power
hungry) can be replaced by short vertical electrical con-
nections, which are both faster and more power efficient.

However, delays due to levels of clocked logic will
not be decreased by 3D integration, and significant man-
ufacturing, testing, power-supply, and heat-dissipation
problems must be solved for 3D integration to reach pro-
duction while still delivering on its promise. The heat-
dissipation problems might be solved using semiconduc-
tors based on diamond, which is a good conductor for
heat, but an electrical insulator. That said, it remains
difficult to grow large single diamond crystals, to say
nothing of slicing them into wafers. In addition, it seems
unlikely that any of these technologies will be able to de-
liver the exponential increases to which some people have
become accustomed. That said, they may be necessary
steps on the path to the late Jim Gray’s “smoking hairy
golf balls” [Gra02].
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3.3.2 Novel Materials and Processes

Stephen Hawking is said to have claimed that semiconduc-
tor manufacturers have but two fundamental problems: (1)
the finite speed of light and (2) the atomic nature of mat-
ter [Gar(Q7]. It is possible that semiconductor manufactur-
ers are approaching these limits, but there are nevertheless
a few avenues of research and development focused on
working around these fundamental limits.

One workaround for the atomic nature of matter are so-
called “high-K dielectric” materials, which allow larger
devices to mimic the electrical properties of infeasibly
small devices. These materials pose some severe fabri-
cation challenges, but nevertheless may help push the
frontiers out a bit farther. Another more-exotic work-
around stores multiple bits in a single electron, relying
on the fact that a given electron can exist at a number
of energy levels. It remains to be seen if this particu-
lar approach can be made to work reliably in production
semiconductor devices.

Another proposed workaround is the “quantum dot”
approach that allows much smaller device sizes, but which
is still in the research stage.

One challenge is that many recent hardware-device-
level breakthroughs require very tight control of which
atoms are placed where [Kell7]. It therefore seems likely
that whoever finds a good way to hand-place atoms on
each of the billions of devices on a chip will have most
excellent bragging rights, if nothing else!

3.3.3 Light, Not Electrons

Although the speed of light would be a hard limit, the fact
is that semiconductor devices are limited by the speed
of electricity rather than that of light, given that electric
waves in semiconductor materials move at between 3 %
and 30 % of the speed of light in a vacuum. The use
of copper connections on silicon devices is one way to
increase the speed of electricity, and it is quite possible
that additional advances will push closer still to the actual
speed of light. In addition, there have been some experi-
ments with tiny optical fibers as interconnects within and
between chips, based on the fact that the speed of light
in glass is more than 60 % of the speed of light in a vac-
uum. One obstacle to such optical fibers is the inefficiency
conversion between electricity and light and vice versa,
resulting in both power-consumption and heat-dissipation
problems.

That said, absent some fundamental advances in the
field of physics, any exponential increases in the speed of
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data flow will be sharply limited by the actual speed of
light in a vacuum.

3.3.4 Special-Purpose Accelerators

A general-purpose CPU working on a specialized problem
is often spending significant time and energy doing work
that is only tangentially related to the problem at hand.
For example, when taking the dot product of a pair of
vectors, a general-purpose CPU will normally use a loop
(possibly unrolled) with a loop counter. Decoding the
instructions, incrementing the loop counter, testing this
counter, and branching back to the top of the loop are in
some sense wasted effort: the real goal is instead to multi-
ply corresponding elements of the two vectors. Therefore,
a specialized piece of hardware designed specifically to
multiply vectors could get the job done more quickly and
with less energy consumed.

This is in fact the motivation for the vector instructions
present in many commodity microprocessors. Because
these instructions operate on multiple data items simulta-
neously, they would permit a dot product to be computed
with less instruction-decode and loop overhead.

Similarly, specialized hardware can more efficiently
encrypt and decrypt, compress and decompress, encode
and decode, and many other tasks besides. Unfortunately,
this efficiency does not come for free. A computer system
incorporating this specialized hardware will contain more
transistors, which will consume some power even when
not in use. Software must be modified to take advantage
of this specialized hardware, and this specialized hard-
ware must be sufficiently generally useful that the high
up-front hardware-design costs can be spread over enough
users to make the specialized hardware affordable. In part
due to these sorts of economic considerations, specialized
hardware has thus far appeared only for a few application
areas, including graphics processing (GPUs), vector pro-
cessors (MMX, SSE, and VMX instructions), and, to a
lesser extent, encryption.

Unlike the server and PC arena, smartphones have long
used a wide variety of hardware accelerators. These hard-
ware accelerators are often used for media decoding, so
much so that a high-end MP3 player might be able to play
audio for several minutes—with its CPU fully powered
off the entire time. The purpose of these accelerators
is to improve energy efficiency and thus extend battery
life: special purpose hardware can often compute more
efficiently than can a general-purpose CPU. This is an-
other example of the principle called out in Section 2.2.3:
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Generality is almost never free.

Nevertheless, given the end of Moore’s-Law-induced
single-threaded performance increases, it seems safe to
predict that there will be an increasing variety of special-
purpose hardware going forward.

3.3.5 Existing Parallel Software

Although multicore CPUs seem to have taken the com-
puting industry by surprise, the fact remains that shared-
memory parallel computer systems have been commer-
cially available for more than a quarter century. This is
more than enough time for significant parallel software to
make its appearance, and it indeed has. Parallel operating
systems are quite commonplace, as are parallel threading
libraries, parallel relational database management sys-
tems, and parallel numerical software. Use of existing
parallel software can go a long ways towards solving any
parallel-software crisis we might encounter.

Perhaps the most common example is the parallel re-
lational database management system. It is not unusual
for single-threaded programs, often written in high-level
scripting languages, to access a central relational database
concurrently. In the resulting highly parallel system, only
the database need actually deal directly with parallelism.
A very nice trick when it works!

3.4 Software Design Implications

The values of the ratios in Table 3.1 are critically im-
portant, as they limit the efficiency of a given parallel
application. To see this, suppose that the parallel applica-
tion uses CAS operations to communicate among threads.
These CAS operations will typically involve a cache miss,
that is, assuming that the threads are communicating pri-
marily with each other rather than with themselves. Sup-
pose further that the unit of work corresponding to each
CAS communication operation takes 300 ns, which is
sufficient time to compute several floating-point transcen-
dental functions. Then about half of the execution time
will be consumed by the CAS communication operations!
This in turn means that a two-CPU system running such
a parallel program would run no faster than a sequential
implementation running on a single CPU.

The situation is even worse in the distributed-system
case, where the latency of a single communications oper-
ation might take as long as thousands or even millions of
floating-point operations. This illustrates how important
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it is for communications operations to be extremely infre-
quent and to enable very large quantities of processing.

Quick Quiz 3.9: Given that distributed-systems com-
munication is so horribly expensive, why does anyone
bother with such systems? ll

The lesson should be quite clear: parallel algorithms
must be explicitly designed with these hardware prop-
erties firmly in mind. One approach is to run nearly
independent threads. The less frequently the threads com-
municate, whether by atomic operations, locks, or explicit
messages, the better the application’s performance and
scalability will be. This approach will be touched on in
Chapter 5, explored in Chapter 6, and taken to its logical
extreme in Chapter 8.

Another approach is to make sure that any sharing be
read-mostly, which allows the CPUs’ caches to replicate
the read-mostly data, in turn allowing all CPUs fast access.
This approach is touched on in Section 5.2.3, and explored
more deeply in Chapter 9.

In short, achieving excellent parallel performance and
scalability means striving for embarrassingly parallel al-
gorithms and implementations, whether by careful choice
of data structures and algorithms, use of existing paral-
lel applications and environments, or transforming the
problem into one for which an embarrassingly parallel
solution exists.

Quick Quiz 3.10: OK, if we are going to have to apply
distributed-programming techniques to shared-memory
parallel programs, why not just always use these distrib-
uted techniques and dispense with shared memory? ll

So, to sum up:

1. The good news is that multicore systems are inex-
pensive and readily available.

2. More good news: The overhead of many synchro-
nization operations is much lower than it was on
parallel systems from the early 2000s.

3. The bad news is that the overhead of cache misses is
still high, especially on large systems.

The remainder of this book describes ways of handling
this bad news.

In particular, Chapter 4 will cover some of the low-
level tools used for parallel programming, Chapter 5 will
investigate problems and solutions to parallel counting,
and Chapter 6 will discuss design disciplines that promote
performance and scalability.
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Chapter 4

Tools of the Trade

This chapter provides a brief introduction to some ba-
sic tools of the parallel-programming trade, focusing
mainly on those available to user applications running
on operating systems similar to Linux. Section 4.1 be-
gins with scripting languages, Section 4.2 describes the
multi-process parallelism supported by the POSIX API
and touches on POSIX threads, Section 4.3 presents anal-
ogous operations in other environments, and finally, Sec-
tion 4.4 helps to choose the tool that will get the job done.

Quick Quiz 4.1: You call these tools??? They look
more like low-level synchronization primitives to me! ll

Please note that this chapter provides but a brief in-
troduction. More detail is available from the references
cited (and especially from Internet), and more informa-
tion on how best to use these tools will be provided in
later chapters.

4.1 Scripting Languages

The Linux shell scripting languages provide simple but
effective ways of managing parallelism. For example,
suppose that you had a program compute_it that you
needed to run twice with two different sets of arguments.
This can be accomplished using UNIX shell scripting as
follows:

compute_it 1 > compute_it.l.out &
compute_it 2 > compute_it.2.out &
wait

cat compute_it.1.out

cat compute_it.2.out

[ N

Lines 1 and 2 launch two instances of this program,
redirecting their output to two separate files, with the &
character directing the shell to run the two instances of
the program in the background. Line 3 waits for both in-
stances to complete, and lines 4 and 5 display their output.
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You are only as good as your tools, and your tools
are only as good as you are.

Unknown

compute_it 1 > compute_it 2 >
compute_it.l.out & compute_it.2.out &

it.l.out ‘

’ cat compute_

’cat compute_it.2.out ‘

Figure 4.1: Execution Diagram for Parallel Shell Execu-
tion

The resulting execution is as shown in Figure 4.1: the two
instances of compute_it execute in parallel, wait com-
pletes after both of them do, and then the two instances
of cat execute sequentially.

Quick Quiz 4.2: But this silly shell script isn’t a real
parallel program! Why bother with such trivia??? l

Quick Quiz 4.3: Is there a simpler way to create a
parallel shell script? If so, how? If not, why not? ll

For another example, the make software-build scripting
language provides a -j option that specifies how much
parallelism should be introduced into the build process.
For example, typing make -j4 when building a Linux
kernel specifies that up to four parallel compiles be carried
out concurrently.

It is hoped that these simple examples convince you
that parallel programming need not always be complex or
difficult.

Quick Quiz 4.4: But if script-based parallel program-
ming is so easy, why bother with anything else? l
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CHAPTER 4. TOOLS OF THE TRADE

Listing 4.1: Using the fork () Primitive

Listing 4.2: Using the wait () Primitive

1 pid = fork();

2 if (pid == 0) {

3 /* child */

4 } else if (pid < 0) {

5 /* parent, upon error */

6  perror("fork");

7 exit (EXIT_FAILURE);

8 } else {

9 /% parent, pid == child ID */
10 }

4.2 POSIX Multiprocessing

This section scratches the surface of the POSIX environ-
ment, including pthreads [Ope97], as this environment is
readily available and widely implemented. Section 4.2.1
provides a glimpse of the POSIX fork() and related
primitives, Section 4.2.2 touches on thread creation and
destruction, Section 4.2.3 gives a brief overview of POSIX
locking, and, finally, Section 4.2.4 describes a specific
lock which can be used for data that is read by many
threads and only occasionally updated.

4.2.1 POSIX Process Creation and De-
struction

Processes are created using the fork() primitive, they
may be destroyed using the kill () primitive, they may
destroy themselves using the exit () primitive. A process
executing a fork () primitive is said to be the “parent”
of the newly created process. A parent may wait on its
children using the wait () primitive.

Please note that the examples in this section are quite
simple. Real-world applications using these primitives
might need to manipulate signals, file descriptors, shared
memory segments, and any number of other resources. In
addition, some applications need to take specific actions
if a given child terminates, and might also need to be
concerned with the reason that the child terminated. These
concerns can of course add substantial complexity to the
code. For more information, see any of a number of
textbooks on the subject [Ste92, Weil3].

If fork () succeeds, it returns twice, once for the par-
ent and again for the child. The value returned from
fork() allows the caller to tell the difference, as shown
in Listing 4.1 (forkjoin. c). Line 1 executes the fork ()
primitive, and saves its return value in local variable pid.
Line 2 checks to see if pid is zero, in which case, this is
the child, which continues on to execute line 3. As noted
earlier, the child may terminate via the exit () primitive.
Otherwise, this is the parent, which checks for an error

int pid;

1

2 int status;

3

4 for (53) A

5 pid = wait(&status);
6 if (pid == -1) {

7 if (errno == ECHILD)
8 break;

9 perror("wait");

10 exit (EXIT_FAILURE);
1 }

2}

return from the fork () primitive on line 4, and prints an
error and exits on lines 5-7 if so. Otherwise, the fork ()
has executed successfully, and the parent therefore exe-
cutes line 9 with the variable pid containing the process
ID of the child.

The parent process may use the wait () primitive to
wait for its children to complete. However, use of this
primitive is a bit more complicated than its shell-script
counterpart, as each invocation of wait () waits for but
one child process. It is therefore customary to wrap
wait () into a function similar to the waitall() func-
tion shown in Listing 4.2 (api-pthread.h), with this
waitall () function having semantics similar to the shell-
script wait command. Each pass through the loop span-
ning lines 4-12 waits on one child process. Line 5 invokes
the wait () primitive, which blocks until a child process
exits, and returns that child’s process ID. If the process
ID is instead —1, this indicates that the wait () primitive
was unable to wait on a child. If so, line 7 checks for
the ECHILD errno, which indicates that there are no more
child processes, so that line 8 exits the loop. Otherwise,
lines 9 and 10 print an error and exit.

Quick Quiz 4.5: Why does this wait () primitive need
to be so complicated? Why not just make it work like the
shell-script wait does? B

It is critically important to note that the parent and child
do not share memory. This is illustrated by the program
shown in Listing 4.3 (forkjoinvar.c), in which the
child sets a global variable x to 1 on line 9, prints a
message on line 10, and exits on line 11. The parent
continues at line 20, where it waits on the child, and on
line 21 finds that its copy of the variable x is still zero.
The output is thus as follows:

Child process set x=1
Parent process sees x=0

Quick Quiz 4.6: Isn’t there a lot more to fork() and
wait () than discussed here? ll
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Listing 4.3: Processes Created Via fork () Do Not Share Mem-
ory

Listing 4.4: Threads Created Via pthread_create() Share
Memory

1 int x = 0;

3 int main(int argc, char *argv[])
4 {
5 int pid;

7 pid = fork();
8§  if (pid == 0) { /* child */

9 x =1;

10 printf("Child process set x=1\n");

11 exit (EXIT_SUCCESS);

2}

13 if (pid < 0) { /* parent, upon error */
14 perror("fork");

15 exit (EXIT_FAILURE);

16}

18 /x parent */

20  waitall();
21 printf ("Parent process sees x=/d\n", x);

23 return EXIT_SUCCESS;

The finest-grained parallelism requires shared memory,
and this is covered in Section 4.2.2. That said, shared-
memory parallelism can be significantly more complex
than fork-join parallelism.

4.2.2 POSIX Thread Creation and De-
struction

To create a thread within an existing process, invoke the
pthread_create() primitive, for example, as shown on
lines 16 and 17 of Listing 4.4 (pcreate.c). The first ar-
gument is a pointer to a pthread_t in which to store the
ID of the thread to be created, the second NULL argument
is a pointer to an optional pthread_attr_t, the third
argument is the function (in this case, mythread()) that
is to be invoked by the new thread, and the last NULL ar-
gument is the argument that will be passed to mythread.

In this example, mythread () simply returns, but it
could instead call pthread_exit ().

Quick Quiz 4.7: If the mythread () function in List-
ing 4.4 can simply return, why bother with pthread_
exit ()7l

The pthread_join() primitive, shown on line 24, is
analogous to the fork-join wait () primitive. It blocks
until the thread specified by the tid variable completes
execution, either by invoking pthread_exit () or by re-
turning from the thread’s top-level function. The thread’s
exit value will be stored through the pointer passed as
the second argument to pthread_join(). The thread’s

1 int x = 0;

2

3 void *mythread(void *arg)

4 {

5 x =1;

6 printf("Child process set x=1\n");
7 return NULL;
8
9

}

10 int main(int argc, char *argv[])

1 {

12 int en;

13 pthread_t tid;

14 void *vp;

15

16 if ((en = pthread_create(&tid, NULL,

17 mythread, NULL)) != 0) {

18 fprintf (stderr, "pthread_join: %s\n", strerror(en));
19 exit (EXIT_FAILURE);

20 X

21
2 /* parent */

23

24 if ((en = pthread_join(tid, &vp)) != 0) {

25 fprintf (stderr, "pthread_join: %s\n", strerror(en));
2% exit (EXIT_FAILURE);
27}

28 printf("Parent process sees x=%d\n", x);
29

30 return EXIT_SUCCESS;

31}

exit value is either the value passed to pthread_exit ()
or the value returned by the thread’s top-level function,
depending on how the thread in question exits.

The program shown in Listing 4.4 produces output
as follows, demonstrating that memory is in fact shared
between the two threads:

Child process set x=1
Parent process sees x=1

Note that this program carefully makes sure that only
one of the threads stores a value to variable x at a time.
Any situation in which one thread might be storing a value
to a given variable while some other thread either loads
from or stores to that same variable is termed a “data
race”. Because the C language makes no guarantee that
the results of a data race will be in any way reasonable,
we need some way of safely accessing and modifying data
concurrently, such as the locking primitives discussed in
the following section.

Quick Quiz 4.8: If the C language makes no guaran-
tees in presence of a data race, then why does the Linux
kernel have so many data races? Are you trying to tell me
that the Linux kernel is completely broken??? B
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4.2.3 POSIX Locking

The POSIX standard allows the programmer to avoid
data races via “POSIX locking”. POSIX locking fea-
tures a number of primitives, the most fundamental
of which are pthread_mutex_lock() and pthread_
mutex_unlock(). These primitives operate on locks,
which are of type pthread_mutex_t. These locks may
be declared statically and initialized with PTHREAD_
MUTEX_INITIALIZER, or they may be allocated dynami-
cally and initialized using the pthread_mutex_init ()
primitive. The demonstration code in this section will
take the former course.

The pthread_mutex_lock() primitive “acquires”
the specified lock, and the pthread_mutex_unlock()
“releases” the specified lock. Because these are “exclu-
sive” locking primitives, only one thread at a time may
“hold” a given lock at a given time. For example, if a pair
of threads attempt to acquire the same lock concurrently,
one of the pair will be “granted” the lock first, and the
other will wait until the first thread releases the lock. A
simple and reasonably useful programming model per-
mits a given data item to be accessed only while holding
the corresponding lock [Hoa74].

Quick Quiz 4.9: What if I want several threads to hold
the same lock at the same time? H

This exclusive-locking property is demonstrated using
the code shown in Listing 4.5 (Lock.c). Line 1 defines
and initializes a POSIX lock named lock_a, while line 2
similarly defines and initializes a lock named lock_b.
Line 4 defines and initializes a shared variable x.

Lines 6-33 defines a function lock_reader () which
repeatedly reads the shared variable x while holding the
lock specified by arg. Line 12 casts arg to a pointer
to a pthread_mutex_t, as required by the pthread_
mutex_lock() and pthread_mutex_unlock() primi-
tives.

Quick Quiz 4.10: Why not simply make the argument
to lock_reader () on line 6 of Listing 4.5 be a pointer
to a pthread_mutex_t? l

Quick Quiz 4.11: What is the READ_ONCE() on
lines 20 and 47 and the WRITE_ONCE() on line 47 of
Listing 4.57 1

Lines 14-18 acquire the specified pthread_mutex_t,
checking for errors and exiting the program if any occur.
Lines 19-26 repeatedly check the value of x, printing the
new value each time that it changes. Line 25 sleeps for
one millisecond, which allows this demonstration to run
nicely on a uniprocessor machine. Lines 27-31 release the
pthread_mutex_t, again checking for errors and exiting
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Listing 4.5: Demonstration of Exclusive Locks

I pthread_mutex_t lock_a = PTHREAD_MUTEX_INITIALIZER;
2 pthread_mutex_t lock_b = PTHREAD_MUTEX_INITIALIZER;
3

4 int x = 0;

5

6 void *lock_reader(void *arg)

7 {

8 int en;

9 int i;

10 int newx -1;

11 int oldx = -1;
12 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;
13

14 if ((en = pthread_mutex_lock(pmlp)) != 0) {

15 fprintf (stderr, "lock_reader:pthread_mutex_lock: %s\n",
16 strerror(en));

17 exit (EXIT_FAILURE);

18}

19 for (i = 0; i < 100; i++) {

20 newx = READ_ONCE(x);

21 if (newx != oldx) {

2 printf("lock_reader(): x = %d\n", newx);

23

24 0ldx = newx;

25 poll(NULL, 0, 1);

2% )

27 if ((en = pthread_mutex_unlock(pmlp)) != 0) {

28 fprintf (stderr, "lock_reader:pthread_mutex_lock: %s\n",
29 strerror(en));

30 exit (EXIT_FAILURE);

3t}

32 return NULL;

33}

34
35 void *lock_writer(void *arg)

36 {

37 int en;

38 int i;

39 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;

41 if ((en = pthread_mutex_lock(pmlp)) != 0) {

42 fprintf (stderr, "lock_writer:pthread_mutex_lock: %s\n",
43 strerror(en)) ;

44 exit (EXIT_FAILURE);

s}

46 for (i = 0; i < 3; i++) {

47 WRITE_ONCE(x, READ_ONCE(x) + 1);

48 poll(NULL, 0, 5);
}

50 if ((en = pthread_mutex_unlock(pmlp)) != 0) {

51 fprintf (stderr, "lock_writer:pthread_mutex_lock: %s\n",
52 strerror(en));

53 exit (EXIT_FAILURE);

54 }

55 return NULL;

56}
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Listing 4.6: Demonstration of Same Exclusive Lock

Listing 4.7: Demonstration of Different Exclusive Locks

printf ("Creating two threads using same lock:\n");

1

2 en = pthread_create(&tidl, NULL, lock_reader, &lock_a);
3 if (en !=0) {

4 fprintf(stderr, "pthread_create: %s\n", strerror(en));
5 exit (EXIT_FAILURE);

6

7 en = pthread_create(&tid2, NULL, lock_writer, &lock_a);
8 if (en !=0) {

9 fprintf(stderr, "pthread_create: %s\n", strerror(en));
10 exit (EXIT_FAILURE);

1 }

12 if ((en = pthread_join(tidl, &vp)) !'= 0) {

13 fprintf (stderr, "pthread_join: %s\n", strerror(en));
14 exit (EXIT_FAILURE);

15}

16 if ((en = pthread_join(tid2, &vp)) !'= 0) {

17 fprintf (stderr, "pthread_join: %s\n", strerror(en));
18 exit (EXIT_FAILURE);

v}

the program if any occur. Finally, line 32 returns NULL,
again to match the function type required by pthread_
create().

Quick Quiz 4.12: Writing four lines of code for
each acquisition and release of a pthread_mutex_t sure
seems painful! Isn’t there a better way? Wl

Lines 35-56 of Listing 4.5 shows lock_writer(),
which periodically update the shared variable x while
holding the specified pthread_mutex_t. As with lock_
reader (), line 39 casts arg to a pointer to pthread_
mutex_t, lines 41-45 acquires the specified lock, and
lines 50-54 releases it. While holding the lock, lines 46-
49 increment the shared variable x, sleeping for five mil-
liseconds between each increment. Finally, lines 50-54
release the lock.

Listing 4.6 shows a code fragment that runs lock_
reader() and lock_writer() as threads using the
same lock, namely, lock_a. Lines 2-6 create a thread
running lock_reader (), and then Lines 7-11 create a
thread running lock_writer(). Lines 12-19 wait for
both threads to complete. The output of this code frag-
ment is as follows:

Creating two threads using same lock:
lock_reader(): x = 0

Because both threads are using the same lock, the
lock_reader() thread cannot see any of the interme-
diate values of x produced by lock_writer() while
holding the lock.

Quick Quiz 4.13: Is “x = 0” the only possible output
from the code fragment shown in Listing 4.6? If so, why?
If not, what other output could appear, and why?

Listing 4.7 shows a similar code fragment, but this time
using different locks: lock_a for lock_reader () and

1 printf("Creating two threads w/different locks:\n");

2 x = 0;

3 en = pthread_create(&tidl, NULL, lock_reader, &lock_a);
4 if (en '= 0) {

5 fprintf (stderr, "pthread_create: %s\n", strerror(en));
6 exit (EXIT_FAILURE);

7%

8 en = pthread_create(&tid2, NULL, lock_writer, &lock_b);
9 if (en !=0) {

10 fprintf (stderr, "pthread_create: %s\n", strerror(en));
11 exit (EXIT_FAILURE);

12 }

13 if ((en = pthread_join(tidl, &vp)) !'= 0) {

14 fprintf (stderr, "pthread_join: %s\n", strerror(en));
15 exit (EXIT_FAILURE);

16 }

17 if ((en = pthread_join(tid2, &vp)) != 0) {

18 fprintf (stderr, "pthread_join: %s\n", strerror(en));
19 exit (EXIT_FAILURE);

20 )

lock_b for lock_writer(). The output of this code
fragment is as follows:

Creating two threads w/different locks:
lock_reader(): x = 0
lock_reader(): x = 1
lock_reader(): x = 2
lock_reader(): x = 3

Because the two threads are using different locks, they
do not exclude each other, and can run concurrently. The
lock_reader () function can therefore see the interme-
diate values of x stored by lock_writer().

Quick Quiz 4.14: Using different locks could cause
quite a bit of confusion, what with threads seeing each
others’ intermediate states. So should well-written paral-
lel programs restrict themselves to using a single lock in
order to avoid this kind of confusion? H

Quick Quiz 4.15: In the code shown in Listing 4.7,
is lock_reader () guaranteed to see all the values pro-
duced by lock_writer()? Why or why not? i

Quick Quiz 4.16: Wait a minute here!!! Listing 4.6
didn’t initialize shared variable x, so why does it need to
be initialized in Listing 4.7? A

Although there is quite a bit more to POSIX exclusive
locking, these primitives provide a good start and are in
fact sufficient in a great many situations. The next section
takes a brief look at POSIX reader-writer locking.

4.2.4 POSIX Reader-Writer Locking

The POSIX API provides a reader-writer lock, which
is represented by a pthread_rwlock_t. As with
pthread_mutex_t, pthread_rwlock_t may be stat-
ically initialized via PTHREAD_RWLOCK_INITIALIZER
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or dynamically initialized via the pthread_rwlock_
init() primitive. The pthread_rwlock_rdlock()
primitive read-acquires the specified pthread_rwlock_
t, the pthread_rwlock_wrlock() primitive write-
acquires it, and the pthread_rwlock_unlock() prim-
itive releases it. Only a single thread may write-hold a
given pthread_rwlock_t at any given time, but multi-
ple threads may read-hold a given pthread_rwlock_t,
at least while there is no thread currently write-holding it.

As you might expect, reader-writer locks are designed
for read-mostly situations. In these situations, a reader-
writer lock can provide greater scalability than can an
exclusive lock because the exclusive lock is by defini-
tion limited to a single thread holding the lock at any
given time, while the reader-writer lock permits an arbi-
trarily large number of readers to concurrently hold the
lock. However, in practice, we need to know how much
additional scalability is provided by reader-writer locks.

Listing 4.8 (rwlockscale.c) shows one way of mea-
suring reader-writer lock scalability. Line 1 shows the def-
inition and initialization of the reader-writer lock, line 2
shows the holdtime argument controlling the time each
thread holds the reader-writer lock, line 3 shows the
thinktime argument controlling the time between the
release of the reader-writer lock and the next acquisition,
line 4 defines the readcounts array into which each
reader thread places the number of times it acquired the
lock, and line 5 defines the nreadersrunning variable,
which determines when all reader threads have started
running.

Lines 7-10 define goflag, which synchronizes the
start and the end of the test. This variable is initially
set to GOFLAG_INIT, then set to GOFLAG_RUN after all
the reader threads have started, and finally set to GOFLAG _
STOP to terminate the test run.

Lines 12-44 define reader(), which is the
reader thread. Line 19 atomically increments the
nreadersrunning variable to indicate that this thread
is now running, and lines 20-22 wait for the test to start.
The READ_ONCE () primitive forces the compiler to fetch
goflag on each pass through the loop—the compiler
would otherwise be within its rights to assume that the
value of goflag would never change.

Quick Quiz 4.17: Instead of using READ_ONCE () ev-
erywhere, why not just declare goflag as volatile on
line 10 of Listing 4.8?

Quick Quiz 4.18: READ_ONCE() only affects the com-
piler, not the CPU. Don’t we also need memory barriers to
make sure that the change in goflag’s value propagates

CHAPTER 4. TOOLS OF THE TRADE

Listing 4.8: Measuring Reader-Writer Lock Scalability

pthread_rwlock_t rwl = PTHREAD_RWLOCK_INITIALIZER;
int holdtime = 0; /* # loops holding lock. */

int thinktime = 0; /* # loops not holding lock. */
long long *readcounts;

int nreadersrunning = 0;

#define GOFLAG_INIT O
#define GOFLAG_RUN 1

9 #define GOFLAG_STOP 2

10 char goflag = GOFLAG_INIT;
1

12 void *reader(void *arg)

© N U R W —

13 {
14 int en;
15 int i;

16 long long loopcnt = 0;

17 long me = (long)arg;

18

19 __sync_fetch_and_add(&nreadersrunning, 1);

20 while (READ_ONCE(goflag) == GOFLAG_INIT) {
21 continue;

22 }

23 while (READ_ONCE(goflag) == GOFLAG_RUN) {

24 if ((en = pthread_rwlock_rdlock(&rwl)) !'= 0) {

25 fprintf (stderr,

26 "pthread_rwlock_rdlock: %s\n", strerror(en));
27 exit (EXIT_FAILURE);

28 }

29 for (i = 1; i < holdtime; i++) {

30 barrier();

31 ¥

32 if ((en = pthread_rwlock_unlock(&rwl)) != 0) {

33 fprintf (stderr,

34 "pthread_rwlock_unlock: %s\n", strerror(en));
35 exit (EXIT_FAILURE);

36 }

37 for (i = 1; i < thinktime; i++) {

38 barrier();

39 ¥

40 loopcnt++;

41 }

42  readcounts[me] = loopcnt;
43 return NULL;
44}

to the CPU in a timely fashion in Listing 4.8? l

Quick Quiz 4.19: Would it ever be necessary to use
READ_ONCE () when accessing a per-thread variable, for
example, a variable declared using GCC’s __thread stor-
age class? l

The loop spanning lines 23-41 carries out the perfor-
mance test. Lines 24-28 acquire the lock, lines 29-31 hold
the lock for the specified duration (and the barrier () di-
rective prevents the compiler from optimizing the loop out
of existence), lines 32-36 release the lock, and lines 37-
39 wait for the specified duration before re-acquiring the
lock. Line 40 counts this lock acquisition.

Line 42 moves the lock-acquisition count to this
thread’s element of the readcounts [] array, and line 43
returns, terminating this thread.

Figure 4.2 shows the results of running this test on
a 64-core POWERS system with two hardware threads
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Figure 4.2: Reader-Writer Lock Scalability

per core for a total of 128 software-visible CPUs. The
thinktime parameter was zero for all these tests, and
the holdtime parameter set to values ranging from one
thousand (“1K” on the graph) to 100 million (“100M” on
the graph). The actual value plotted is:

Ly

NL, 4.1)

where N is the number of threads, Ly is the number of
lock acquisitions by N threads, and L, is the number of
lock acquisitions by a single thread. Given ideal hardware
and software scalability, this value will always be 1.0.

As can be seen in the figure, reader-writer locking
scalability is decidedly non-ideal, especially for smaller
sizes of critical sections. To see why read-acquisition can
be so slow, consider that all the acquiring threads must
update the pthread_rwlock_t data structure. Therefore,
if all 128 executing threads attempt to read-acquire the
reader-writer lock concurrently, they must update this
underlying pthread_rwlock_t one at a time. One lucky
thread might do so almost immediately, but the least-lucky
thread must wait for all the other 127 threads to do their
updates. This situation will only get worse as you add
CPUs.

Quick Quiz 4.20: Isn’t comparing against single-CPU
throughput a bit harsh? l

Quick Quiz 4.21: But 1,000 instructions is not a par-
ticularly small size for a critical section. What do I do if
I need a much smaller critical section, for example, one
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containing only a few tens of instructions? W

Quick Quiz 4.22: In Figure 4.2, all of the traces other
than the 100M trace deviate gently from the ideal line. In
contrast, the 100M trace breaks sharply from the ideal
line at 64 CPUs. In addition, the spacing between the
100M trace and the 10M trace is much smaller than that
between the 10M trace and the 1M trace. Why does the
100M trace behave so much differently than the other
traces? M

Quick Quiz 4.23: POWERS is more than a decade
old, and new hardware should be faster. So why should
anyone worry about reader-writer locks being slow? ll

Despite these limitations, reader-writer locking is quite
useful in many cases, for example when the readers must
do high-latency file or network I/O. There are alternatives,
some of which will be presented in Chapters 5 and 9.

4.2.5 Atomic Operations (GCC Classic)

Given that Figure 4.2 shows that the overhead of reader-
writer locking is most severe for the smallest critical sec-
tions, it would be nice to have some other way to protect
the tiniest of critical sections. One such way are atomic
operations. We have seen one atomic operations already,
in the form of the __sync_fetch_and_add () primitive
on line 18 of Listing 4.8. This primitive atomically adds
the value of its second argument to the value referenced
by its first argument, returning the old value (which was
ignored in this case). If a pair of threads concurrently ex-
ecute __sync_fetch_and_add() on the same variable,
the resulting value of the variable will include the result
of both additions.

The GNU C compiler offers a number of additional
atomic operations, including __sync_fetch_and_
sub(), sync_fetch_and_or(), __sync_fetch_
and_and(), __sync_fetch_and_xor(), and __sync_
fetch_and_nand(), all of which return the old value.
If you instead need the new value, you can instead
use the __sync_add_and_fetch(), __sync_sub_
and_fetch(), __sync_or_and_fetch(), __sync_
and_and_fetch(), __sync_xor_and_fetch(), and
__sync_nand_and_fetch() primitives.

Quick Quiz 4.24: Is it really necessary to have both
sets of primitives? Wl

The classic compare-and-swap operation is pro-
vided by a pair of primitives, __sync_bool_compare_
and_swap() and __sync_val_compare_and_swap().
Both of these primitive atomically update a location to a
new value, but only if its prior value was equal to the spec-
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Listing 4.9: Compiler Barrier Primitive (for GCC)

#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
#define READ_ONCE(x) \

({ typeof(x) ___ x; B
#define WRITE_ONCE(x, val) ({ ACCESS_ONCE(x) = (val); })
#define barrier() asm volatile__("": : :"memory")

x = ACCESS_ONCE(x) ;

ified old value. The first variant returns 1 if the operation
succeeded and O if it failed, for example, if the prior value
was not equal to the specified old value. The second vari-
ant returns the prior value of the location, which, if equal
to the specified old value, indicates that the operation
succeeded. Either of the compare-and-swap operation is
“universal” in the sense that any atomic operation on a
single location can be implemented in terms of compare-
and-swap, though the earlier operations are often more
efficient where they apply. The compare-and-swap opera-
tion is also capable of serving as the basis for a wider set
of atomic operations, though the more elaborate of these
often suffer from complexity, scalability, and performance
problems [Her90].

Quick Quiz 4.25: Given that these atomic operations
will often be able to generate single atomic instructions
that are directly supported by the underlying instruction
set, shouldn’t they be the fastest possible way to get things
done? H

The __sync_synchronize() primitive issues a
“memory barrier”, which constrains both the compiler’s
and the CPU’s ability to reorder operations, as discussed
in Chapter 15. In some cases, it is sufficient to constrain
the compiler’s ability to reorder operations, while allow-
ing the CPU free rein, in which case the barrier ()
primitive may be used, as it in fact was on line 28 of
Listing 4.8. In some cases, it is only necessary to ensure
that the compiler avoids optimizing away a given memory
read, in which case the READ_ONCE () primitive may be
used, as it was on line 17 of Listing 4.5. Similarly, the
WRITE_ONCE() primitive may be used to prevent the com-
piler from optimizing away a given memory write. These
last three primitives are not provided directly by GCC,
but may be implemented straightforwardly as shown in
Listing 4.9, and all three are discussed at length in Sec-
tion 4.3.4.

Quick Quiz 4.26:
ONCE()? M

What happened to ACCESS_

4.2.6 Atomic Operations (C11)

The C11 standard added atomic operations, including
loads (atomic_load()), stores (atomic_store()),
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memory barriers (atomic_thread_fence() and
atomic_signal_fence()), and read-modify-write
atomics. The read-modify-write atomics include
atomic_fetch_add(), atomic_fetch_sub(),
atomic_fetch_and(), atomic_fetch_xor(),
atomic_exchange(), atomic_compare_exchange_
strong(), and atomic_compare_exchange_weak().
These operate in a manner similar to those described
in Section 4.2.5, but with the addition of memory-
order arguments to _explicit variants of all of the
operations. Without memory-order arguments, all the
atomic operations are fully ordered, and the arguments
permit weaker orderings. For example, “atomic_load_
explicit(&a, memory_order_relaxed)” is vaguely
similar to the Linux kernel’s “READ_ONCE ()”.!

4.2.7 Atomic Operations (Modern GCC)

One restriction of the C11 atomics is that they apply
only to special atomic types, which can be problematic.
The GNU C compiler therefore provides atomic intrin-
sics, including __atomic_load(), __atomic_load_
n(), __atomic_store(), __atomic_store n() _
atomic_thread_fence(), etc. These intrinsics offer
the same semantics as their C11 counterparts, but may
be used on plain non-atomic objects. Some of these in-
trinsics may be passed a memory-order argument from
this list: __ATOMIC_RELAXED, __ATOMIC_CONSUME,
__ATOMIC_ACQUIRE, _ATOMIC_RELEASE, _ATOMIC_
ACQ_REL, and __ATOMIC_SEQ_CST.

4.2.8 Per-Thread Variables

Per-thread variables, also called thread-specific data,
thread-local storage, and other less-polite names, are used
extremely heavily in concurrent code, as will be explored
in Chapters 5 and 8. POSIX supplies the pthread_key_
create() function to create a per-thread variable (and
return the corresponding key), pthread_key_delete()
to delete the per-thread variable corresponding to key,
pthread_setspecific() to set the value of the current
thread’s variable corresponding to the specified key, and
pthread_getspecific() to return that value.

A number of compilers (including GCC) provide a __
thread specifier that may be used in a variable definition
to designate that variable as being per-thread. The name
of the variable may then be used normally to access the

! Memory ordering is described in more detail in Chapter 15 and
Appendix C.
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value of the current thread’s instance of that variable. Of
course, __thread is much easier to use than the POSIX
thead-specific data, and so __thread is usually preferred
for code that is to be built only with GCC or other com-
pilers supporting __thread.

Fortunately, the C11 standard introduced a _Thread_
local keyword that can be used in place of __thread. In
the fullness of time, this new keyword should combine the
ease of use of __thread with the portability of POSIX
thread-specific data.

4.3 Alternatives to POSIX Opera-
tions

Unfortunately, threading operations, locking primitives,
and atomic operations were in reasonably wide use long
before the various standards committees got around to
them. As a result, there is considerable variation in how
these operations are supported. It is still quite common to
find these operations implemented in assembly language,
either for historical reasons or to obtain better perfor-
mance in specialized circumstances. For example, GCC’s
__sync_ family of primitives all provide full memory-
ordering semantics, which in the past motivated many
developers to create their own implementations for situa-
tions where the full memory ordering semantics are not
required. The following sections show some alternatives
from the Linux kernel and some historical primitives used
by this book’s sample code.

4.3.1 Organization and Initialization

Although many environments do not require any special
initialization code, the code samples in this book start
with a call to smp_init (), which initializes a mapping
from pthread_t to consecutive integers. The userspace
RCU library similarly requires a call to rcu_init (). Al-
though these calls can be hidden in environments (such
as that of GCC) that support constructors, most of the
RCU flavors supported by the userspace RCU library also
require each thread invoke rcu_register_thread()
upon thread creation and rcu_unregister_thread()
before thread exit.

In the case of the Linux kernel, it is a philosophical
question as to whether the kernel does not require calls
to special initialization code or whether the kernel’s boot-
time code is in fact the required initialization code.
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Listing 4.10: Thread API

int smp_thread_id(void)

thread_id_t create_thread(void *(*func) (void *), void *arg)
for_each_thread(t)

for_each_running_thread(t)

void *wait_thread(thread_id_t tid)

void wait_all_threads(void)

4.3.2 Thread Creation, Destruction, and
Control

The Linux kernel uses struct task_struct pointers
to track kthreads, kthread_create() to create them,
kthread_should_stop() to externally suggest that
they stop (which has no POSIX equivalent), kthread_
stop() to wait for them to stop, and schedule_
timeout_interruptible() for a timed wait. There
are quite a few additional kthread-management APIs, but
this provides a good start, as well as good search terms.

The CodeSamples API focuses on “threads”, which are
a locus of control.> Each such thread has an identifier
of type thread_id_t, and no two threads running at a
given time will have the same identifier. Threads share ev-
erything except for per-thread local state,® which includes
program counter and stack.

The thread API is shown in Listing 4.10, and members
are described in the following sections.

4.3.2.1 create_thread()

The create_thread() primitive creates a new thread,
starting the new thread’s execution at the function func
specified by create_thread()’s first argument, and
passing it the argument specified by create_thread()’s
second argument. This newly created thread will termi-
nate when it returns from the starting function specified
by func. The create_thread() primitive returns the
thread_id_t corresponding to the newly created child
thread.

This primitive will abort the program if more than NR_
THREADS threads are created, counting the one implic-
itly created by running the program. NR_THREADS is a
compile-time constant that may be modified, though some
systems may have an upper bound for the allowable num-
ber of threads.

2 There are many other names for similar software constructs, in-
cluding “process”, “task”, “fiber”, “event”, and so on. Similar design
principles apply to all of them.

3 How is that for a circular definition?
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4.3.2.2 smp_thread_id()

Because the thread_id_t returned from create_
thread () is system-dependent, the smp_thread_id ()
primitive returns a thread index corresponding to the
thread making the request. This index is guaranteed to be
less than the maximum number of threads that have been
in existence since the program started, and is therefore
useful for bitmasks, array indices, and the like.

4.3.2.3 for_each_thread()

The for_each_thread() macro loops through all
threads that exist, including all threads that would ex-
ist if created. This macro is useful for handling per-thread
variables as will be seen in Section 4.2.8.

4.3.2.4 for_each_running_thread()

The for_each_running_thread() macro loops
through only those threads that currently exist. It is the
caller’s responsibility to synchronize with thread creation
and deletion if required.

4.3.2.5 wait_thread()

The wait_thread() primitive waits for completion of
the thread specified by the thread_id_t passed to it.
This in no way interferes with the execution of the spec-
ified thread; instead, it merely waits for it. Note that
wait_thread() returns the value that was returned by
the corresponding thread.

4.3.2.6 wait_all_threads()

The wait_all_threads() primitive waits for comple-
tion of all currently running threads. It is the caller’s
responsibility to synchronize with thread creation and
deletion if required. However, this primitive is normally
used to clean up at the end of a run, so such synchroniza-
tion is normally not needed.

4.3.2.7 Example Usage

Listing 4.11 (threadcreate. c) shows an example hello-
world-like child thread. As noted earlier, each thread is
allocated its own stack, so each thread has its own private
arg argument and myarg variable. Each child simply
prints its argument and its smp_thread_id () before ex-
iting. Note that the return statement on line 7 terminates

CHAPTER 4. TOOLS OF THE TRADE

Listing 4.11: Example Child Thread

| void *thread_test(void *arg)

2 {

int myarg = (intptr_t)arg;

printf("child thread %d: smp_thread_id() = %d\n",
myarg, smp_thread_id());
return NULL;
}

O T A ™

Listing 4.12: Example Parent Thread

I int main(int argc, char *argv[])
2 {

3 int i;

4 int nkids = 1;

5
6 smp_init();

;
8

if (arge > 1) {

9 nkids = strtoul(argv[i], NULL, 0);

10 if (nkids > NR_THREADS) {

11 fprintf (stderr, "nkids = %d too large, max = %d\n",
12 nkids, NR_THREADS);

13 usage (argv[0]);

14 ¥

15 i

16 printf ("Parent thread spawning %d threads.\n", nkids);
17

18 for (i = 0; i < nkids; i++)

19 create_thread(thread_test, (void *) (intptr_t)i);

20

21 wait_all_threads();

22

23 printf("All spawned threads completed.\n");

24

25 exit (0);

2% }

the thread, returning a NULL to whoever invokes wait_
thread () on this thread.

The parent program is shown in Listing 4.12. It invokes
smp_init () to initialize the threading system on line 6,
parses arguments on lines 8-15, and announces its pres-
ence on line 16. It creates the specified number of child
threads on lines 18-19, and waits for them to complete
on line 21. Note that wait_all_threads () discards the
threads return values, as in this case they are all NULL,
which is not very interesting.

Quick Quiz 4.27: What happened to the Linux-kernel
equivalents to fork() and wait()? W

4.3.3 Locking

A good starting subset of the Linux kernel’s locking API is
shown in Listing 4.13, each API element being described
in the following sections. This book’s CodeSamples lock-
ing API closely follows that of the Linux kernel.
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Listing 4.13: Locking API

Listing 4.14: Living Dangerously Early 1990s Style

void spin_lock_init(spinlock_t *sp);
void spin_lock(spinlock_t *sp);

int spin_trylock(spinlock_t *sp);
void spin_unlock(spinlock_t *sp);

4.3.3.1 spin_lock_init()

The spin_lock_init () primitive initializes the speci-
fied spinlock_t variable, and must be invoked before
this variable is passed to any other spinlock primitive.

4.3.3.2 spin_lock()

The spin_lock() primitive acquires the specified spin-
lock, if necessary, waiting until the spinlock becomes
available. In some environments, such as pthreads, this
waiting will involve “spinning”, while in others, such as
the Linux kernel, it will involve blocking.

The key point is that only one thread may hold a spin-
lock at any given time.

4.3.3.3 spin_trylock()

The spin_trylock() primitive acquires the specified
spinlock, but only if it is immediately available. It returns
true if it was able to acquire the spinlock and false
otherwise.

4.3.3.4 spin_unlock()

The spin_unlock() primitive releases the specified
spinlock, allowing other threads to acquire it.

4.3.3.5 Example Usage

A spinlock named mutex may be used to protect a vari-
able counter as follows:

spin_lock(&mutex) ;
counter++;
spin_unlock(&mutex) ;

Quick Quiz 4.28: What problems could occur if the
variable counter were incremented without the protec-
tion of mutex? M

However, the spin_lock() and spin_unlock()
primitives do have performance consequences, as will
be seen in Chapter 10.

1 ptr = global_ptr;
2 if (ptr != NULL && ptr < high_address)
3 do_low(ptr);

Listing 4.15: C Compilers Can Invent Loads

| if (global_ptr != NULL &&
2 global_ptr < high_address)
3 do_low(global_ptr);

4.3.4 Accessing Shared Variables

The C standard defined semantics for concurrent read-
/write access to shared variables only in 2011, but concur-
rent C code was being written at least a quarter century
earlier [BKS8S5, Inm85]. This raises the question as to what
today’s greybeards did back in long-past pre-C11 days. A
short answer to this question is “they lived dangerously”.

At least they would have been living dangerously had
they been using 2018 compilers. In (say) the early 1990s,
compilers were less capable in part because much less
work had been done on them and in part because they
were confined to the relatively small memories of the day.
Nevertheless, problems did arise, as shown in Listing 4.14,
which the compiler is within its rights to transform into
Listing 4.15. As you can, the temporary on line 1 of
Listing 4.14 has been optimized away, so that global_
ptr will been loaded up to three times.

Quick Quiz 4.29: What is wrong with loading List-
ing 4.14’s global_ptr up to three times? M

Section 4.3.4.1 describes additional problems caused
by plain accesses, Sections 4.3.4.2 and 4.3.4.3 describe
some pre-C11 solutions. Of course, where practical, the
primitives described in Section 4.2.5 or (especially) Sec-
tion 4.2.6 should be instead be used to avoid data races,
that is, to ensure that if there are multiple concurrent ac-
cesses to a given variable, all of those accesses are loads.

4.3.4.1 Shared-Variable Shenanigans

Given code that does plain loads and stores,* the compiler
is within its rights to assume that the affected variables
are neither accessed nor modified by any other thread.
This assumption allows the compiler to carry out a large
number of transformations, including load tearing, store
tearing, load fusing, store fusing, code reordering, in-
vented loads, and invented stores, all of which work just
fine in single-threaded code. But concurrent code can

4 That is, normal loads and stores instead of C11 atomics, inline
assembly, or volatile accesses.
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Listing 4.16: C Compilers Can Fuse Loads

Listing 4.17: C Compilers Can Fuse Non-Adjacent Loads

1 if ('need_to_stop)

2 for (5;) {

3 do_something_quickly();
4 do_something_quickly();
5 do_something_quickly();
6 do_something_quickly();
7 do_something_quickly();
8 do_something_quickly();

9 do_something_quickly();
10 do_something_quickly();
1 do_something_quickly();
12 do_something_quickly();
13 do_something_quickly();
14 do_something_quickly();
15 do_something_quickly();
16 do_something_quickly();
17 do_something_quickly();
18 do_something_quickly();
19 }

be broken by each of these transformations, or shared-
variable shenanigans, as described below.

Load tearing occurs when the compiler uses mul-
tiple load instructions for a single access. For exam-
ple, the compiler could in theory compile the load from
global_ptr (see line 1 of Listing 4.14) as a series of
one-byte loads. If some other thread was concurrently
setting global_ptr to NULL, the result might have all
but one byte of the pointer set to zero, thus forming a
“wild pointer”. Stores using such a wild pointer could
corrupt arbitrary regions of memory, resulting in rare and
difficult-to-debug crashes.

Worse yet, on (say) an 8-bit system with 16-bit pointers,
the compiler might have no choice but to use a pair of
8-bit instructions to access a given pointer. Because the C
standard must support all manner of systems, the standard
cannot rule out load tearing in the general case.

Store tearing occurs when the compiler uses multiple
store instructions for a single access. For example, one
thread might store 0x1234 to a four-byte integer variable
at the same time another thread stored Oxabcd. If the
compiler used 16-bit stores for either access, the result
might well be 0x12cd, which could come as quite a sur-
prise to code loading from this integer. Again, the C
standard simply has no choice in the general case, given
the possibility of code using 32-bit integers running on a
16-bit system.

Load fusing occurs when the compiler uses the result
of a prior load from a given variable instead of repeating
the load. Not only is this sort of optimization just fine in
single-threaded code, it is often just fine in multithreaded
code. Unfortunately, the word “often” hides some truly
annoying exceptions.

For example, suppose that a real-time system needs

1 int *gp;

2

3 void t0(void)

4 {

5 WRITE_ONCE(gp, &myvar);
6 }

;

8

void t1(void)
9 {
10 pl = gp;
11 do_something(pl);
12 p2 = READ_ONCE(gp) ;
13 if (p2) {
14 do_something_else();
15 p3 = *gp;
16 b

17 }

to invoke a function named do_something_quickly()
repeatedly until the variable need_to_stop was set,
and that the compiler can see that do_something_
quickly () does not store to need_to_stop. The com-
piler might reasonably unroll this loop sixteen times in or-
der to reduce the per-invocation of the backwards branch
at the end of the loop. Worse yet, because the compiler
knows that do_something_quickly () does not store to
need_to_stop, the compiler could quite reasonably de-
cide to check this variable only once, resulting in the code
shown in Listing 4.16. Once entered, the loop on lines 2-
19 will never stop, regardless of how many times some
other thread stores a non-zero value to need_to_stop.
The result will at best be disappointment, and might well
also include severe physical damage.

The compiler can fuse loads across surprisingly large
spans of code. For example, in Listing 4.17, t0() and
t1() run concurrently, and do_something() and do_
something_else () are inline functions. Line 1 declares
pointer gp, which C initializes to NULL by default. At
some point, line 5 of t0() stores a non-NULL pointer
to gp. Meanwhile, t1() loads from gp three times on
lines 10, 12, and 15. Given that line 13 finds that gp is
non-NULL, one might hope that the dereference on line 15
would be guaranteed never to fault. Unfortunately, the
compiler is within its rights to fuse the read on lines 10
and 15, which means that if line 10 loads NULL and line 12
loads &myvar, line 15 could load NULL, resulting in a
fault.> Note that the intervening READ_ONCE () does not
prevent the other two loads from being fused, despite the
fact that all three are loading from the same variable.

Quick Quiz 4.30: Why does it matter whether
do_something() and do_something_else() in List-
ing 4.17 are inline functions? M

3> Will Deacon reports that this happened in the Linux kernel.
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Listing 4.18: C Compilers Can Fuse Stores

Listing 4.19: Inviting an Invented Store

| void shut_it_down(void)
{
stat