
Traditional or Adaptive Experimental Design?
A Comparison of Statistical Design of Experiments and 

Bayesian Optimization for a Chemical Synthesis 
Problem

João P. L. Coutinho*, You Peng**, Ricardo Rendall**, Caterina Rizzo**,  
Kaiwen Ma**, Swee-Teng Chin**, Ivan Castillo**, Marco S. Reis*

* University of Coimbra, CERES, Department of Chemical Engineering, Portugal

** The Dow Chemical Company

1



2

Introduction



• Although designs are static, several stages are reccomended for DOE

• Classic designs tipically assumes the system can be described by a first and second order polynomial model

1. Introduction
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• Recently, Bayesian Optimization (BO) has attracted attention as an alternative approach for experimental design

• BO is a sequential Bayesian experimental design framework with two main components:
• Bayesian surrogate model that reflects prior beliefs and provides uncertainty estimates given data

• Acquisition function balances exploration with exploitation to search for the optimum

• Despite recent popularity, the principles of BO are not new
• Thompson sampling was suggested in 1930’s as an heuristic to solve the exploration-exploitation dillema
• BO was formalized in the 1960’s and had a recent resurgence in the context of hyperparameter tuning
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• We aim to compare sequential DOE with BO for a complex real-world chemical synthesis problem 
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Case study



2. Case study
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• Openly available chemical reaction dataset used as case study [1]

• Problem has 3 categorical factors, 2 continuous factors and a single response (reaction yield)

• Experimental data from full factorial design (1728 samples) used as proxy for reaction system

• Objective: find the combinations of the factors that maximize reaction yield

12 ligands

4 bases 4 solvents

2 continuous variables:
Temperature and

concentration

[1] Shields et. al, 2021, Bayesian reaction optimization as a tool for chemical synthesis, Nature



• One-hot-encoding (OHE) is the standard approach to model categorical factors

• In chemical synthesis, we can also use chemical descriptors as covariates for each individual categorical factor

• 291 covariates are obtained from Density Functional Theory (DFT) simulations
• Due to high dimensionality, descriptors cannot be used within standard DOE
• BO is used with both types of encodings (OHE and DFT)

2. Case study
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Methodology



3. Methodology
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• There are 192 total possible combinations for categorical 
factors

• D-optimal design for main effects requires 48 experiments

• Factors are selected according to p-values and magnitude of 
regression coeficients 

• I-optimal design is used to obtain minimum prediction 
variance over design space

• JMP-PRO 18 used for design and modeling

D-optimal screening design 
(main effects only)

Fit ordinary least squares model and
select important factors

I-optimal design for full quadratic 
model

Estimate full quadratic model using 
LASSO 

(due to high number of parameters)

Find optimum factors that 
maximize yield
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• Gaussian processes (GP) allow to obtain a posterior distribution over functions

• GP mean and kernel encode the prior belief about the smoothness and overall shape of the function

• GPs provide uncertainty estimates and can flexibly model both midly and highly non-linear functions
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• The kernel lengthscale controls the complexity of the response surface given the distance between points

GP mean prediction with
small lengthscales

GP mean prediction with
large lengthscales

Anisotropic GP with large 
lengthscale for input 2 
( input 2 is irrelevant)



• GP hyperparameters are generally estimated by maximizing the marginal likelihood (Empirical Bayes)

• Being more Bayesian, GP hyperparameters can be treated as random variables with a prior distribution

• We can use Maximum A Posteriori (MAP) estimation as a way to encode more prior knowledge

• Being fully Bayesian, we sample from the hyperparameter prior using Markov Chain Monte Carlo (MCMC)

3. Methodology
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• Given the large number of factors, we can make two prior assumptions about the system under study [2,3]

Assumption: Only a subset of inputs is important (sparsity)
Inference: MCMC

Assumption: Non-linearity “decreases” with dimensionality
Inference: MAP estimation

[2] Hvarfner et al, 2024, Vanilla Bayesian Optimization Performs Great in High Dimensions, ICML
[3] Eriksson, Jankowiak, 2021, High-Dimensional Bayesian Optimization with Sparse Axis-Aligned Subspaces, UAI
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• Acquisition functions quantify the value of information (regarding optimum),  conditioned on prior beliefs and data

• Exploration (gather new information) is combined with exploitation (optimize given current knowledge)

• In this work, we rely on the log-Expected Improvement acquisition function, using Botorch Python package [4]

Standard 
deviation of 
prediction

(Exploration)

Predicted 
improvement 

over best value
(Exploitation)

[4] Balandat et al 2020, BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization, NEURIPS
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• D-optimal screening design can lead to different categorical level combinations with identical D-optimality

• To assess variability, 5 different repetions of sequential DOE are obtained by generating different D-optimal designs

• Different designs lead to different conclusions about factor importance

• I optimal design requires 39 to 44 additional runs for a total of 83 to 92 runs 
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• 20 different BO repetions with 48 experiments, each with 10 initial experiments selected using random sampling

• All algorithms quickly converge near to the global optimum 

• Best models: GP-SAAS for OHE, GP-DSP for DFT encodings



4. Results
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• BO algorithms lead to better observed yields than both D and I optimal designs

• None of the 5 DOE repetions find the global optimum of 100% yield

• BO models lead to better results than final DOE models, while using only 48 runs (same as D-optimal screening design)



4. Results
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• Full dataset (1728 samples) is used to assess global prediction quality in test scenarios

• GPs use all categorical factors, LASSO model only uses a subset of factors

• GP-DSP-DFT leads to slighly better overall predictions and better predictions around the optimum

Metric for 
global 

prediction 
quality 

(1728 samples)

LASSO
(44  training 

samples)

GP-DSP-DFT
(48  training 

samples)

GP-SAAS-OHE
(48  training 

samples)

R squared 0,32 0,34 0,36

Root mean
squared error

20,2 19,5 16,0
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5. Conclusions
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• BO leads to faster convergence than sequential DOE on the same modeling basis (OHE)

• DFT encodings can improve optimization performance – 291 covariates are efficiently used within BO

• BO is an efficient appproach to experimental design with many categorical factors: 
• Faster convergence than sequential DOE
• Avoid variability and uncertainty in the assessing important factors
• Easier human implementation by avoiding screening stage and restrictive modeling assumptions

• We are currently exploring ways to include DOE principles that could improve BO even further
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