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16.1 Introduction to regression experiments: second-order
polynomial models
We now consider designs for experiments in which the anticipated model is
quadratic in the controlled variables.

Response surface optimization strategies are often based on a series of
experiments, focusing on

first-order regression in the early iterations to establish paths of „steepest
ascent“ to new experimental regions, and
second-order regression in the final step(s) when the conditions that will
optimize the process are within the region of the design.

Of course, regression is possible with even higher-order polynomial models
but the number of parameters in polynomial models of order 3 or more is
quite large, requiring experiments that are often impractically large.

Regression experiments designed for quadratic polynomials provide more
information about the nature of the expected response-versus-controlled
variable relationship than those designed for first-order polynomial models, at
the cost of a larger number of required experimental runs.
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A typical example

taken from https://learnche.org/pid/
design-analysis-experiments/index
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16.2 Quadratic polynomial models
We again define a d-dimensional vector x = (x1, x2, . . . , xd)

T , a point in the
d-dimensional experimental region R specifying a particular experimental
treatment. A second-order, or quadratic, polynomial model for the expected
response may be written as:

E(y) = α+

d∑
i=1

xiβi +

d∑
i=1

x2
i βii +

d−1∑
i=1

d∑
j=i+1

xixjβij

An equivalent matrix notation that is sometimes more convenient is:

E(y) = α+ xTβ1 + xTB2x

where β1 is a d-vector with (β1)i = βi and
B2 is a (d × d)-matrix with (B2)ii = βii and (B2)ij = (B2)ji =

βij
2 .
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Quadratic polynomial models (cont.)
In many regression experiments, an important goal is to identify values of the
independent variables that result in minimal or maximal expected response.

For known coefficients of the quadratic model, the stationary point or points at
which derivatives of E(y) with respect to each xi are zero can be identified as

∂

∂x
E(y) = β1 + 2B2x0 = 0

When B2 is regular, the solution and can be written as:

x0 = −
B−1

2 β1

2

x0 maximizes E(y) if all eigenvalues of B2 are negative, and minimizes E(y)
if all eigenvalues of B2 are positive.
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Quadratic polynomial models (cont.)
The regression coefficients are unknown quantities and can only be estimated,
the (estimated) coefficients from the fitted model can be substituted in the
above expressions to yield an estimated stationary point x0 for an additional
treatment.

x̂0 = −
B̂−1

2 β̂1

2

But eigenvalues of B̂2 might be mixed in sign, such that the estimated
stationary point neither maximizes nor minimizes the fitted response model.

Even more attention should be directed to the possibility that x̂0 might not be
physically meaningful at all in the context of the problem. x̂0 can be forced to
lie in the experimental region by constrained optimization techniques.

Generally, estimated stationary points that lie outside the region in which an
experiment is conducted should be regarded with suspicion, because
extrapolations based on polynomial models are often unreliable even when
the model is an adequate approximation to the truth in a limited region.
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Quadratic polynomial models (cont.)
For an n-run experiment, we can write a matrix model for the full experiment
as:

y = α1 + X2β + ε = α1 + XLβL + XPQβPQ + XMQβMQ + ε

each row of XL is the transpose of the vector x associated with the
corresponding run,
βL is the vector of „linear“ polynomial coefficients,
XPQ, like XL, is a (n × d)-matrix, (XPQ)ij is the square of (XL)ij,
βPQ is the set of „pure quadratic“ coefficients - those associated with
squared controlled variables,

XMQ is a (n × d(d−1)
2 )-matrix with the pairwise products of all distinct

pairs of elements from the vector x
βMQ contains the „mixed quadratic“ coefficients - those associated with
products of two controlled variables.
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16.3 Designs for second-order models
In order to support estimation of the coefficients in a quadratic polynomial
model, an experimental design must include at least 3 distinct values for each
controlled variable.

16.3.1 Complete three-level factorial designs

In the complete factorial design (CFD) each controlled variable takes on three
coded levels within R.

Denoting the levels as {−f , 0, f} for each variable, and adding nc − 1
additional runs at the center point x = 0, to provide replicate information
from which σ2 can be estimated, such a design contains a total of
n = 3d + nc − 1 runs.

The design matrices for a three-level factorial plan in d = 2 controlled
variables, with nc = 2 center points, can be seen on the next slide.
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Complete three-level factorial designs (cont.)

XL =



−f −f
−f 0
−f f
0 −f
0 0
0 f
f −f
f 0
f f
0 0


XPQ =



f 2 f 2

f 2 0
f 2 f 2

0 f 2

0 0
0 f 2

f 2 f 2

f 2 0
f 2 f 2

0 0


XMQ =



f 2

0
−f 2

0
0
0

−f 2

0
f 2

0


Complete three-level factorial designs are popular plans when d is relatively
small. However, for larger values of d, the number of experimental runs
required is impractically large in many settings.
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16.3.2 Central composite designs
The most widely used experimental plan in situations where a quadratic
polynomial model is anticipated is the central composite design (CCD).

It can be thought of as being comprised of three „subdesigns“ each located so
that its „center of gravity“ corresponds to the center point x = 0.

an nf -run orthogonal two-level design; either a full factorial plan in the d
controlled variables, or a regular fractional factorial plan of resolution at
least V,

a collection of nc runs taken at the center point, and

an „axial“ subdesign of 2d treatments, each of which is defined by
setting one of the controlled variables to a standard nonzero value a,
either positive or negative, and all other controlled variables to zero.

The overall size of the design is then n = nf + 2d + nc.
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Central composite designs (cont.)
The design matrices for a central composite design in d = 2 controlled
variables, with nc = 2 center points, can be written as

XL =



−f −f
−f f
f −f
f f
−a 0
a 0
0 −a
0 a
0 0
0 0


XPQ =



f 2 f 2

f 2 f 2

f 2 f 2

f 2 f 2

a2 0
a2 0
0 a2

0 a2

0 0
0 0


XMQ =



f 2

−f 2

−f 2

f 2

0
0
0
0
0
0


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16.3.3 Box-Behnken designs
Box-Behnken designs (BBD) are symmetric three-level designs, consisting of
a combination of two-level factorial plans, each constructed using only a
subset of the controlled variables.

For d controlled variables, one first selects a balanced incomplete block
design (BIBD) for d treatments in b blocks of size nf < d. This BIBD is just
used in the construction process of the BBD.

Each treatment in the BIBD is associated with one of the regression variables.

For each block in the BIBD, a two-level factorial design or regular fractional
factorial design of resolution at least V is selected for only those variables
associated with BIBD treatments included in the block; all other controlled
variables are zero in these runs.

nc center point runs are added to form a Box-Behnken regression design of
n = b nf + nc runs.
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Box-Behnken designs (cont.)
A quadratic regression design for d = 3 controlled variables can be formed
using the BIBD for three treatments in three blocks of two units each:

1 2 1 3 2 3

Using a complete 22 factorial design in the pairs of factors associated with
each block, a Box-Behnken design with nc = 3 center point runs can then be
constructed:

XL =



−f −f 0
−f f 0
f −f 0
f f 0
−f 0 −f
−f 0 f
f 0 −f
f 0 f
0 −f −f
0 −f f
0 f −f
0 f f
0 0 0
0 0 0
0 0 0



XPQ =



f 2 f 2 0
f 2 f 2 0
f 2 f 2 0
f 2 f 2 0
f 2 0 f 2

f 2 0 f 2

f 2 0 f 2

f 2 0 f 2

0 f 2 f 2

0 f 2 f 2

0 f 2 f 2

0 f 2 f 2

0 0 0
0 0 0
0 0 0



XMQ =



f 2 0 0
−f 2 0 0
−f 2 0 0
f 2 0 0
0 f 2 0
0 −f 2 0
0 −f 2 0
0 f 2 0
0 0 f 2

0 0 −f 2

0 0 −f 2

0 0 f 2

0 0 0
0 0 0
0 0 0


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16.3.4 Augmented pairs designs
The augmented pairs designs (APD) are constructed by combining sets of
design points.

The first set of points is a two-level fractional factorial plan of size nf and
of resolution at least III (or a full two-level factorial design for d = 2); the
nf points in this two-level design are specified by the vectors of
controlled variables (x1, x2, . . . , xnf ).

The second set of points contains one experimental run determined by
each distinct pair of runs in the first set, specified as: xij = − xi+xj

2

The third set of points are nc replicated runs at the design region center
point.

The augmented pairs design contains a total of n = nf +

(
nf

2

)
+ nc runs.
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Augmented pairs designs (cont.)
For d = 3, the design matrices for an augmented pairs design containing
nc = 3 center point runs are:

XL =



f f f
f −f −f
−f f −f
−f −f f
−f 0 0
0 −f 0
0 0 −f
0 0 f
0 f 0
f 0 0
0 0 0
0 0 0
0 0 0



XPQ =



f 2 f 2 f 2

f 2 f 2 f 2

f 2 f 2 f 2

f 2 f 2 f 2

f 2 0 0
0 f 2 0
0 0 f 2

0 0 f 2

0 f 2 0
f 2 0 0
0 0 0
0 0 0
0 0 0



XMQ =



f 2 f 2 f 2

−f 2 −f 2 f 2

−f 2 f 2 −f 2

f 2 −f 2 −f 2

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0



The first set of nf = 4 points here is based on a 23−1
III fraction.
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16.4 Design scaling and information
All designs in each of the four classes described above have two important
„balance“ properties:

The elements in each column of XL have a zero sum.

The elements in each column of XMQ have a zero sum.

If we use a model containing only the „nuisance parameter“ α, the hat matrix
is of form H1 = 1

n J.

As a result, (I − H1)XL = XL and (I − H1)XMQ = XMQ.

The zero-sum property cannot hold for the columns of XPQ, however, because
all nonzero elements of this matrix must be positive. But

The elements in each column of XPQ have the same average, say aPQ.

So (I − H1)XPQ = XPQ − aPQJn×d.
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Design scaling and information (cont.)
We can derive the form of aPQ for each design:

design aPQ design aPQ

CFD 2 · 3d−1 · f 2

n BBD r · 2nf · f 2

n

CCD 2d · f 2

n + 2a2

n ADP (nf +
nf
2 (

nf
2 − 1)) f 2

n

where r is the replication factor for the BIBD on which the BBD is based.

Because the columns of XL are orthogonal to each other and to those in XMQ
the design information matrices of the 4 second order models are

ICFD =


6 · f 2Id 0 0

0 f 4( 12
5 Id + 2

5 Jd) 0
0 0 4 · f 4I d(d−1)

2

 IBBD =


8 · f 2Id 0 0

0 f 4( 104
15 Id + 44

15 Jd) 0
0 0 4 · f 4I d(d−1)

2



ICCD =


6 · f 2Id 0 0

0 f 4( 12
5 Id + 2

5 Jd) 0
0 0 4 · f 4I d(d−1)

2

 IADP =


6 · f 2Id 0 0

0 f 4( 42
13 Id + 16

13 Jd) 0
0 0 4 · f 4I d(d−1)

2



In the computation of ICCD we set a = f .
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Design scaling and information (cont.)
In the three-level plans above have coded controlled variable values restricted
to −f , 0 and f , so the overall scale of I for these designs is governed by the
value of f .

Consider two designs from any of the above classes that are identical except
that design A is scaled by fA and design B is scaled by fB. If the information
matrix for design A is IA, then the information matrix for design B is:

IB =

 fB
fA

Id 0

0 f 2
B

f 2
A

I d(d+1)
2

 · IA ·

 fB
fA

Id 0

0 f 2
B

f 2
A

I d(d+1)
2


All functions of the information matrix that reflect statistical performance
(noncentrality and estimation precision) are superior for the design that has
larger „span“ as measured by f . For these designs, „f “ is usually simply coded
as „1“.
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16.5 Orthogonal blocking
May blocking be arranged such that efficiency is not lost? Equivalently, we
can ask whether I is the same when block parameters are included in the
model as when α is the only nuisance parameter, i.e. whether the design is
blocked orthogonally.

Recall that for unblocked designs, the four design classes we have considered
are each such that:

The elements in each column of XL have a zero sum.
The elements in each column of XMQ have a zero sum.
The elements in each column of XPQ have the same average aPQ.

Hence for the blocked case, (I − H1)XL and (I − H1)XMQ will be as they are
in the unblocked case if the elements of each column of XL and XMQ sum to
zero within each block.

(I − H1)XPQ will be as it is in the unblocked case if the elements of each
column of XPQ have an average value of aPQ within each block. The number
of center points in each block can be adjusted to meet the conditions for
orthogonal blocking.
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16.6 Split-plot designs
The general structure for split-plot regression experiments is essentially the
same regardless of the order of model used in analysis

The values of some controlled variables remain constant within blocks/plots,
while the values of other controlled variables differ across units/split-plots
within a block/plot.

Model monomials (xi, x2
i , and xixj) that have constant values within each block

are assessed in the whole-plot section of the ANOVA decomposition, relative
to a MSE reflecting block-to-block variation.

Other model terms for which values change from unit to unit within blocks
are assessed in the split-plot section of the ANOVA decomposition, relative to
a MSE reflecting unit-to-unit (within-block) variation.
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16.7 Bias due to omitted model terms
Quadratic regression models are useful and popular because they can
approximate many (but not all) „curved“ functions reasonably well over a
limited domain.

It is important to understand how much estimation bias might result from the
omission of higher-order (i.e., greater than two) monomial terms from the
model.

The phenomenon of coefficient estimate bias is really general, and can occur
with any linear model when some important terms are omitted (or cannot be
estimated based on the selected design).

Suppose the data were actually generated by a model of form

y = Xθ + Wφ+ ε

and we fit a model of matrix form y = Xθ + ε to the data.
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Bias due to omitted model terms (cont.)
The design matrix X would include the collection of columns from 1, XL,
XPQ, and XMQ, while W might contain columns associated with the omitted
third-order monomials (e.g., x2

i xj).

If X has full rank the unique least-squares estimate of θ is θ̂ = (XTX)−1XTy.
The „true“ expectation of θ̂ then is

E(θ̂) = θ + (XTX)−1XTWφ

i.e. the bias of each estimated coefficient is determined by the value of the
omitted coefficients φ, and the form of (XTX)−1XTW, often called the alias
matrix.

An experimental design for which the alias matrix contains elements of
relatively small absolute value is often preferred, because this offers relatively
more protection against coefficient bias if it turns out that φ is nonzero.
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17.1 Introduction to optimal design
In many cases, the designs presented so far are optimal, in the sense that no
other experimental plan in the same number of runs can provide more precise
estimates or powerful tests against broad collections of alternative hypotheses
for the parameters of interest, given the assumed model.

Optimal design provides a more direct connection between experimental
design and statistical performance by framing design selection as an
optimization problem, in which standard errors are minimized or
noncentrality parameters are maximized.
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17.2 Optimal design fundamentals
The framework for optimal design construction requires specification of three
entities:

The experimental region R: the finite or infinite set of values for x, the
scalar or vector of independent variables that defines a treatment. E.g.
R = {1, 2, . . . , t} for an experiment in t unstructured treatments,
R = {0, 1}f in two-level factorial experiments,
R = [−1, 1]d for regression problems when the d independent variables
have each been scaled to [−1, 1].
The (here linear) model:

M : y = tT
xβ + ε

where tx is a function of the elements of x.
E.g. a main effects model for an experiment in f two-level factors yields
tT
x = (1, xT) of f + 1 elements

a quadratic regression model in d independent variables leads to a vector

tx of 1 + 2d +

(
d
2

)
elements.
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Optimal design fundamentals (cont.)

The criterion function: For any specified design, D = {x1, x2, . . . , xn},
the concept of optimal design requires a function, φM(D), that can be
used as a measure of quality of the inference that can be expected from
the resulting data.
This might be the power of a test (maximize) or the standard deviation of
an estimate (to be minimized).

The criterion function also depends on the form of the model M, e.g.
designs that are very good for factorial models containing only main
effects can be very poor when interactions of higher order are included.

The general idea is to identify the design or designs, comprised of runs from
the experimental region, that maximize or minimize the criterion function,
e.g.:

Dopt = argmax
D

φM(D) such that D = {x1, . . . , xn} and xi ∈ R
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Optimal design fundamentals (cont.)
Optimal designs are especially valuable with:

Nonstandard experimental regions: Some designs require special
standard experimental regions. E.g. R = {0, 1}f for fractional factorial
designs or R = [−1, 1]d for central composite designs (CCDs).

Physical operating constraints may require x1 + 2x2 ≤ 2, say; i.e.,
R = {x : −1 ≤ xi ≤ +1, x1 + 2x2 ≤ 2}.

Because optimal designs are region-specific, they can be constructed for
any proposed experimental region.

Nonstandard models: Standard designs such as balanced incomplete
block designs (BIBDs), regular fractional factorials, and CCDs are
widely used because they perform well in the wide variety of
circumstances.

Because optimal designs are model-specific, they can be constructed for
any proposed linear model, not just the „standard“ forms.

W. Müller experimental design - unit 10 June 4th 2025 26 / 37



Optimal design fundamentals (cont.)

Nonstandard experiment size: For many of the classes of designs we
have examined, there are restrictions on the value of n

Because optimal designs are the solution to optimization problems for
which n can be specified to be any desired integer value, attention need
not be limited to the values that are required or convenient for any
particular class of designs.

A major disadvantage of optimal design is that construction of a design
requires solution of a mathematical optimization problem that is usually of
high dimension, can often be approached only numerically, and for which
„true“ optimal solutions sometimes cannot be practically verified.
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17.3 Optimality criteria
17.3.1 A-optimality

„A“ optimality refers to designs for which the average variance of estimates
of interest is minimized.

suppose we consider the basic linear model:

y = Xθ + ε

with full rank X and I = XTX. If the estimates of interest are the (entire) set
of elements of θ̂ we note that their individual variances can be written as:

Var
(
(θ̂)i

)
= σ2(I−1)ii

So an A-optimal design minimizes

φM(D) = trace(I−1)

over possible designs.
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17.3.2 D-optimality
„D“-optimality refers to designs for which the determinant of the covariance
matrix of estimates of interest is minimized.

This determinant is monotonically related to the volume of the simultaneous
confidence ellipsoid for the parameters. For the standard linear model:

y = Xθ + ε

with full rank X and I = XTX such designs minimize

φM(D) = |I−1|

or equivalently, maximize
φM(D) = |I|

over possible designs. The latter form is often preferred in practice since it
avoids the unnecessary numerical step of inverting I.
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17.3.3 G-optimality, I-optimality
D- and A-optimality are criteria for parameter estimation.

When model predictions ŷ for unobserved values for x are of primary interest,
G-optimality (for „global“) and I-optimality (for „integrated“) are the
appropriate criteria.

G-optimal designs are those for which the largest (with respect to x ∈ R)
value of Var (ŷ(x)) is minimized, and so can be implemented by minimizing

φM(D) = max
x∈R

tT
xI−1tx

Rather than minimizing the largest predictive variance, I-optimality is defined
so as to minimize the average (over R) response variance, and so can be
implemented by minimizing

φM(D) =

∫
R

tT
xI−1tx w(x) dx

for an appropriate weight function w (which may be omitted if all regions of
equal volume in R should receive the same weight).
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17.3.4.1 A factorial example
Suppose a two-level factorial design is required for fitting the model:

y = µ+ αx1 + βx2 + γx3 + (αβ)x1x2 + ε

where the three independent variables have been coded so that
R = {−1,+1}3.

Further, suppose that each experimental run is relatively expensive or
time-consuming, and only n = 6 unblocked experimental runs are possible.

The question arises how to select the treatments for the 6 runs (out of 8
different treatments) to get an A- or D-optimal design respectively.

In this case we may enumerate all possible designs: There are
(

8
6

)
= 28

designs with 6 different treatments and 5 ·
(

8
5

)
= 280 designs with 5

different treatments. Designs with fewer than 5 treatments cannot be used to
estimate the 5 model parameters . . .
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A factorial example (cont.)
For all possible designs we compute the design criterion and choose the
designs which optimize the criterion.

Designs (1.) and (2.) are A-optimal, all 4 designs above are D-optimal.
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17.3.4.2 A regression example
Consider the design of a small regression experiment in which a quadratic
polynomial model in d = 1 independent variable is to be fit based on only
n = 3 experimental runs.

We are interested in estimating the first- and second-order coefficients, β1 and
β11. R = [−1,+1] is the interval of allowable values for the independent
variable x, so the number of possible designs is infinite.

However, here we may compute the D-optimal design analytically:

The three values of x to be used are c (center value), c− r∆ and c+ (1− r)∆,
where ∆ is the difference between the largest and smallest x.

The design matrix then is

X =

 1 c − r∆ (c − r∆)2

1 c c2

1 c + (1 − r)∆ (c + (1 − r)∆)2


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A regression example (cont.)
With X1 = 1 we get

X2|1 =
∆

3

 −r − 1 ∆(r2 + 2r − 1)− 2c(r + 1)
2r − 1 −∆(2r2 − 2r + 1) + 2c(2r − 1)
2 − r ∆(r2 − 4r + 2)− 2c(r − 2)


Finally the determinant of the (2 × 2) information matrix is:

|XT
2|1X2|1| =

∆2

3
(r(1 − r))2

and x = {−1, 0, 1} is the D-optimal 3-point design for this problem.
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17.4 Algorithms
Most often it is not possible to analytically derive or verify optimal
experimental designs, optimal designs almost always have to be constructed
numerically - which is difficult because

optimization is over many variables - often all of the elements of each x
in D.

The objective function is often optimized for several designs, i.e. there
are often many optimal designs of a given size for a given experimental
region, model and criterion.

Many near-optimal designs that are dissimilar to optimal plans may also
exist.

Designs are often constructed using algorithms that begin with an arbitrary or
random starting design, and make a series of iterative changes with the
purpose of improving the quality of the design at each step.
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Algorithms (cont.)
The most widely used approach to the numerical construction of optimum
experimental designs is undoubtedly through the use of various
point-exchange algorithms.

For finite R, a simple point-exchange algorithm, is:
Specify the N-point experimental region R, the model M, the experiment
size n, and the criterion function φM to be used.
Specify a „starting design“ D0 and compute φM(D0).
Construct the N designs, each of n + 1 points, by adding one additional
point from R to D0. Computing φM for all these designs and identify the
best design D+

0 .
Construct the n + 1 designs, each of n points, that consist of all but one
of the points in D+

0 , compute φM for each design and identify the best
design D1.
Continue the add-and-delete process as long as the design criterion is
improved.

More elaborate point-exchange algorithms have also been developed.
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Software and Packages
There is an enormous variety of DoE software, most notably

commerical solutions:

JMP https://www.jmp.com/de_at/home.html

Design-Expert
https://www.statease.com/software/design-expert/

Minitab https://www.additive-net.de/de/software/
produkte/minitab/minitab/doe

and R-packages, see https://cran.r-project.org/web/views/
ExperimentalDesign.html
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