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14.1 Introduction to factorial group screening experiments
The smallest regular two-level factorial designs for examining the main
effects of f factors are the resolution III fractions, for which the number of
included treatments must be at least the smallest power of 2 greater than f .

When the number of factors is big preliminary factor screening
experimentation must be carried out for a large number of factors, with the
expectation that most will have little or no influence on the responses.

The use of smaller experimental designs will require even more assumptions

Factorial group screening designs rely on the seemingly unusual strategy of
completely aliasing subsets of main effects, so that the overall size of the
experiment will be small.
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Introduction factorial group screening experiments (cont.)
Suppose a two-level factorial experiment with 25 factors.

The first stage of a group screening study might be based on an experiment in
which the factors are divided into five groups of five factors each. Within each
group, the factors are intentionally aliased.

The first experiment can then be thought of as being executed to examine the
effects of five „group factors“.

Suppose that a main effects model (in the five group factors) is used to
analyze the data from the first stage experiment, and that only one of the
groups appears to be „active“, i.e. has a nonzero effect.

A second stage experiment could then be constructed to obtain information
about the effects of the five individual factors in this group, the other 20
factors being held at constant levels.

There are clearly risks involved in using such a strategy.
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14.3 Factorial structure of group screening designs

Robert Dorfman
(1916 - 2002)

The earliest forms of group screening designs were not
developed for factorial experiments.

An application was the testing of pooled blood speci-
mens for a relatively rare antigen.

If analysis of the pooled sample was negative, all indivi-
duals represented in the pool were classified as antigen-
free, but if analysis of the pooled sample was positive,
each individual had to be retested individually.

Factorial group screening may be a reasonable approach
to experimentation when

it is reasonable to assume that most factors have no or negligible
influence on the response, a situation often called effect sparsity, and

the immediate experimental goal is to determine which few of the factors
actually do have non-negligible effects.
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Factorial structure of group screening designs (cont.)
Suppose the f individual factors are divided into g groups containing
f1, f2, . . . , fg individual factors, respectively. We label the first group factor A,
and the individual factors in this group A1 through Af1 , and use similar
notation for the remaining individual factors and groups.

A group screening design is a resolution II plan for which the identifying
relation contains:

I = A1A2 = A2A3 = · · · = Af1−1Af1
B1B2 = B2B3 = · · · = Bf2−1Bf2

...
...

...
G1G2 = G2G3 = · · · = Gfg−1Gfg

plus generalized interactions implied by these words.

Data analysis following a group screening design focuses on the groups, since
no information is available that allows separation of the influence of
individual factors within a group.
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Factorial structure of group screening designs (cont.)
The main effects associated with the individual factors in group 1 are denoted
by α1, α2, · · · , αf1 , then the expectation of each response from the screening
experiment contains either

+α1 + α2 + · · ·+ αf1

for runs in which all factors in group 1 are set at their high levels, or

−α1 − α2 − · · · − αf1

for runs in which all factors in group 1 are set at their low levels. So we may
write a model for the data in the screening experiment using a group main
effect α =

∑f1
i=1 αi.

Similarly, all f1f2 two-factor interactions associated with one individual factor
from group 1 and one individual factor from group 2 must take a common
sign in each run, so their sum can be replaced with a group two-factor
interaction (αβ) =

∑f1
i=1

∑f2
j=1(αiβj).
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Factorial structure of group screening designs (cont.)
More generally, the mean structure for a group effects factorial model is

E(y) = µG + α+ β + γ + · · ·+ (αβ) + · · ·+ (αβγ) + · · ·
Suppose six factors are combined in three groups of size 2. Then the
relationship between group model parameters and individual factor
parameters is

group factor
model terms individual factor model terms

µG
µ+ (α1α2) + (β1β2) + (γ1γ2) + (α1α2β1β2)+
+(α1α2γ1γ2) + (β1β2γ1γ2) + (α1α2β1β2γ1γ2)

α
∑2

i=1 αi + (αiβ1β2) + (αiγ1γ2) + (αiβ1β2γ1γ2)

β
∑2

i=1 βi + (α1α2βi) + (βiγ1γ2) + (α1α2βiγ1γ2)

γ
∑2

i=1 γi + (α1α2γi) + (β1β2γi) + (α1α2β1β2γi)

(αβ)
∑2

i=1
∑2

j=1(αiβj) + (αiβjγ1γ2)

(αγ)
∑2

i=1
∑2

j=1(αiγj) + (αiβ1β1γj)

(βγ)
∑2

i=1
∑2

j=1(βiγj) + (α1α2βiγj)

(αβγ)
∑2

i=1
∑2

j=1
∑2

k=1(αiβjγk)
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14.4 Group screening design considerations
14.4.1 Effect canceling

Factor screening experiments usually focus on the identification of factors
with non-negligible main effects. Suppose that all interactions are actually
zero, and recall that a resolution III or IV design in the group factors allows
estimation of

α = α1 + · · ·+ αf1 β = β1 + · · ·+ βf2 · · · γ = γ1 + · · ·+ γfg

Factors in group 1 will be assessed to be important only if α̂ differs
significantly from zero. However, some or all of α, . . . , αf1 can be nonzero,
but their sum can be zero. This case is called effect canceling, and constitutes
one of the biggest risks in group screening.

If the potential direction of each main effect can be assumed, factor groups
can be formed to minimize the risk of effect canceling. Factors can be
grouped, and the levels designated „+“ and „−“ can be arranged so that the
anticipated signs of individual factor main effects in each group are the same.
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14.4.2 Screening failure
The efficiency of group screening is directly related to the number of
individual factors that can be eliminated from consideration in the first
grouped stage.

If only one group is passed on to the second stage of experimentation, then
many individual factors are eliminated from further study. But if all groups
appear to contain active factors, very little has been gained in the first stage of
experimenting. This phenomenon is called screening failure.

Screening is relatively more efficient if the important individual factors are all
assigned to one group or a relatively few groups. If the experimenter is willing
to classify individual factors by categories such as „likely important“,
„perhaps important“ and „likely unimportant“ or even assign subjective
probabilities for the activity of each factor, this information can be used to
isolate the factors thought to be most critical in one or a few groups.
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14.4.3 Aliasing
Even if a resolution III fraction is used as a design for all group factors, there
are many two-factor interactions aliased with at least some main effects.

E.g. for three factor groups, each of size 3 factors, and the 23−1
III fraction

generated by I = ABC, the group 1 main effect, α = α1 + α2 + α3, is aliased
with the group 2-by-group 3 interaction (βγ) =

∑3
i=1

∑3
j=1(βiγj) (nine

individual two-factor interactions!).

If some of these are actually nonzero and of opposite sign from α1 + α2 + α3,
this could result in effect canceling, even if the αi’s are all of the same sign.

The best protection against aliasing main effects with two-factor interactions
in a group screening context is to increase the resolution of the fraction to IV.
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14.4.4 Screening efficiency
The primary reason for using a group screening approach to factorial
experimentation is the reduction of experimental effort required to identify the
active factors.

However, the number of experimental runs that will be needed to screen f
factors cannot be known a priori because the procedure is inherently
sequential.

If an investigator supplies a probability that each factor is active, calculations
of the expected number of experimental runs required can be made.
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Screening efficiency (cont.)
Let p be the probability that each factor is active. Then the number of group
factors that minimizes the expected number of total runs required is
approximately

g = f
√

p

when each group is of equal size, the expected number of runs required for
this value of g is approximately

n = 2g + 2

Hence the „optimal“ number of groups is smaller, and the number of factors
per group larger, as individual factors are given a smaller probability of being
active.
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15.1 Introduction to Regression experiments: first-order
polynomial models
Fractional factorial designs do not include all treatments from the finite set of
treatments. The consequence of incomplete experimentation is that treatment
effects cannot be uniquely estimated unless additional assumptions can be
made that effectively eliminate some model parameters.

In experiments with functional treatment structure (treatments are the value
combinations of continuous input variables) the set of possible treatments is
not finite in size, and so experiments necessarily include only a subset of
them.

Regression experiments are carried out to compare treatments that are
„indexed“ by points in a continuous experimental region, denoted R.

The infinite set of treatments for one input variable corresponds to an
experimental region expressed as R = [lb, ub].

Since an experiment including all treatments of interest cannot be conducted,
there is of necessity more reliance on modeling assumptions.
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15.2 Polynomial models
We change notation slightly to emphasize the continuous nature of the
experimental region. Let d denote the number of controlled variables used to
define a treatment, i.e., the dimension of the experimental region, and let
x ∈ R be a d-element vector or point corresponding to any particular
treatment.

Let further yij denote the jth observation taken at the ith treatment included in
the experiment, then

yij = α+ xiβ + εij i = 1, . . . , t; j = 1, . . . , ni

εij iid with E(εij) = 0 and Var(εij) = σ2

xi encodes the set of experimental conditions for the ith of t distinct treatments
appearing in the design and β is a d-vector of parameters to be estimated.

In this first-order polynomial model, the elements of the parameter vector β
represent slopes of the expected response corresponding to each controlled
variable.
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Polynomial models (cont.)
A matrix model for the entire n-run experiment, n =

∑t
i=1 ni, can then be

written as:

y = α1 + X2β + ε E(ε) = 0, Var(ε) = σ2I

the elements of β actually represent treatment differences, e.g., under the
first-order model, β1 is the difference in expected response between any two
treatments for which x1 varies by one measurement unit of value while the
other independent variables are held constant.

The intercept, α, is an experiment-wide effect, and so is regarded as a
nuisance parameter in true experimental studies.
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Polynomial models (cont.)
In analysis of data from regression experiments, controlled variables are often
linearly rescaled so that the highest and lowest values used for each (coded)
controlled variable are +1 and −1.

Since controlled variables rescaled in this way are all (strictly speaking)
unitless, the physical units attached to the regression coefficients are reported
on the scale of the response variable.

This can be misleading if taken out of context. What is really happening here
is that xi has been coded to „units of half the range covered in the
experiment“.

In models where x’s are defined as (unitless) indicator variables all model
coefficients are given in the same units as the response variable.
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15.3 Designs for first-order models
15.3.1 Two-level designs

Designs that employ two appropriately selected values for each controlled
variable are often popular and effective.

Factorial and fractional factorial designs discussed in Chapters 11-13, where
the symbolic „+1“ and „−1“ values are used are very efficient for regression
experiments when analysis is based on a first-order model.

Where the controlled variables are scaled so that R = [−1,+1]d, all of these
designs lead to information matrices of form I = n Id for the parameter
vector β.

These designs are optimal in the sense that no design for this R leads to
unbiased estimates of linear functions of β that have smaller variance.

W. Müller experimental design - unit 10 May 21st 2025 17 / 32



15.3.2 Simplex designs
The smallest two-level orthogonal factorial designs we could construct for
first-order factorial models were the Plackett-Burman designs (Section 13.6),
requiring n be at least the smallest multiple of 4 greater than the number of
factors included in the experiment.

Because regression experiments allow selection of design points from a
continuous experimental region, it is possible in some cases to construct
orthogonal designs for first-order models that require slightly fewer points
than the Plackett-Burman designs by using more than two values to represent
at least some controlled variables.

The simplex design introduced by Box (1952) is one such design, which
contains n = d + 1 distinct design points for any value of d.

The name simplex is due to the fact that the d + 1 treatments used in such a
design are the vertices of a simplex in Rd - a geometric figure for which each
pair of vertices is separated by the same distance.
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Simplex designs (cont.)
E.g. an equilateral triangle is a simplex in R2, and a tetrahedron is a simplex
in R3.

Mathematically, a simplex design is described by any ((d + 1)× d) design
matrix X2 for which (1|X2)

T (1|X2) is a diagonal matrix with nonzero
diagonal elements.
Such a matrix can always be constructed when R is, for example, a cuboid or
spheroid in d-dimensional space. For example, the matrix

X2 =
√

n



+ 1√
2

+ 1√
6

+ 1√
12

· · · + 1√
d(d+1)

− 1√
2

+ 1√
6

+ 1√
12

· · · + 1√
d(d+1)

0 − 2√
6

+ 1√
12

· · · + 1√
d(d+1)

0 0 − 3√
12

· · · + 1√
d(d+1)

...
...

...
. . .

...
0 0 0 · · · − d√

d(d+1)


satisfies the requirements for any value of d.
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Simplex designs (cont.)
Individual columns of X2 can be scaled to allow them to fit within the bounds
for each controlled variable.

For this selection of X2, the last controlled variable appears at two values in
the experiment, while all others appear at three.

For any such X2 the information matrix for β is

I = XT
2|1X2|1 = XT

2 X2 = nI
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15.4 Blocking experiments for first-order models
Full and regular fractional factorial designs can be blocked for regression
experiments in essentially the same way they are blocked when factors take
only two levels.

Suppose the blocking of a 25−2 fractional factorial with the defining relation
I = +ABC = −ADE = −BCDE, into two blocks of size 4 by confounding
BD = ACD = −ABE = −CE with the block difference.

Likewise, we can design a regression experiment to estimate the slopes
associated with five continuous independent variables for the model

y = α+

5∑
i=1

xiβi + ε
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Blocking experiments for first-order models (cont.)
The corresponding design matrix is

X2 =



+1 −1 −1 −1 +1
−1 +1 −1 +1 +1
−1 −1 +1 −1 −1
+1 +1 +1 +1 −1
+1 −1 −1 +1 −1
−1 +1 −1 −1 −1
−1 −1 +1 +1 +1
+1 +1 +1 −1 +1


block 1

block 2

The six estimable effect strings beside the intercept corresponding to the
defining relation I = +ABC = −ADE = −BCDE and the effects confounded
with the blocks BD = ACD = −ABE = −CE are

A + BC − DE − ABCDE B + AC − ABDE − CDE

C + AD − ACDE − BDE D + ABCD − AE − BCE

E + ABCE − AD − BCD BE + ACE − ABD − CD
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Blocking experiments for first-order models (cont.)
The five slopes in an assumed first-order polynomial model correspond to the
factorial main effects A, B, C, D, and E.

Because the design is an orthogonal resolution III fractional factorial

these are each aliased only with factorial terms of order greater than one,

they are orthogonal to each other, and

they are orthogonal to the factorial string aliased with the block
difference.

As a result, the 8-run regression experiment in two blocks of size 4 is fully
efficient, with design information matrix I = 8 I5 for β, and provides one
degree of freedom (that which would be associated with the
BE + ACE − ABD − CD string in a factorial model) for estimating σ2.
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Blocking experiments for first-order models (cont.)
A common aim in blocking an experiment is that blocks be arranged in a way
that does not reduce the treatment information.

Orthogonally blocked experiments accomplish this by yielding the same
design information matrix as their unblocked counterparts.

With orthogonally blocked designs the information marix I is just as in the
unblocked design.

The orthogonal blocking structure expressed with XT
1 X2 = 0 implies that

there is no information reduction associated with blocks in the blocked
design, just as the balanced structure associated with 1TX2 = 0 implies that
there is no information reduction associated with the intercept.
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15.5 Split-plot regression experiments
As with experiments in which factors have discrete levels, the operational
restrictions of regression experiments sometimes require that they be designed
and analyzed as split-plot studies. This may be related to:

some controlled variables being more difficult to change than others, or

the practical need to apply some controlled variables to larger quantities
of experimental material (plots) and other controlled variables to smaller
subquantities of material (split-plots).

Split-plot regression experiments can be organized in a manner similar to that
described in Chapter 10 for factors with discrete levels.
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15.6 Diagnostics
General goodness of fit tests for linear models may be used to test the
adequacy of fit (refers to the null hypothesis) and the lack of fit (suggests the
alternative) also for regression experiments.

We start with a particular test for adequacy of the assumed first-order model
based on the addition of runs made at the center point of the experimental
region.

The more general F-test for adequacy of fit is discussed in the context of the
first-order regression model after the center point test.
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15.6.1 Use of a center point
This method may be used to test the assumed first-order model
E(y) = α+

∑d
i=1 xiβi against quadratic terms x2

i βii.

Suppose a two-level design and that coding is such that each element of x is
+1 for half the runs and −1 for the other half (balanced design).

Since x is continuous we can also select points that are not at corners of the
experimental region (±1), such as the center point x = 0.
Let ȳf be the average of all nf data values taken from the factorial portion of
the design, and let ȳc be the average of all nc data values collected from the
center point treatment. Under the assumed first-order linear model:

E(ȳf ) = E(ȳc) = α

and since ȳf and ȳc are independent, and each is independent of MSE, we have

ȳf − ȳc√
MSE( 1

nf
+ 1

nc
)
∼ tn−d−1
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Use of a center point (cont.)
If the model contains quadratic terms of the form x2

i βii

E(ȳf ) = α+

d∑
i=1

βii but E(ȳc) = α

Hence the t-statistic shown above can be the basis for a test of the hypothesis:

H0 :

d∑
i=1

βii = 0

The addition of the center point does not allow individual estimation of all
„pure quadratic“ coefficients, βii, i = 1, . . . , d (except when d = 1), but only
their sum.

The test described here is a popular „one degree of freedom“ test for the
adequacy of a first-order model in a linear regression problem that is useful
when the design satisfies the necessary balance properties.
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15.6.2 General test for lack-of-fit
The test for lack of fit described in subsection 2.7.1 (Slides 01) is more
general, sometimes more powerful, and can be applied to any design
containing replicated points.

Suppose we have data from a design at t distinct experimental conditions,
with t > d + 1, with complete design matrix X = (1|X2) of full rank.

If n > t, the design contains one or more groups of replicate runs - those runs
coded with identical rows in X.

The unique rows of X are collected in the (n∗ × k)-matrix X∗ (n∗ < n).

X and X∗ are connected through the (n × n∗)-indicator matrix Z indicating
which row of X∗ to write into X. We have X = Z X∗.
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General test for lack-of-fit (cont.)
We now propose a more general model for y:

y = Zϕ+ ε with E(ε) = 0 and Var(ε) = σ2I

With HZ = Z(ZTZ)−1ZT the error sum of squares SSE can be split up into
Pure Error sum of squares SSPE and Lack Of Fit sum of squares SSLOF:

SSE = yT(I − H)y = yT(HZ − H)y + yT(I − HZ)y = SSLOF + SSPE

So we may substitute for SSE in the ANOVA decomposition of the total sum
of squares:

TSS = SST +SSLOF + SSPE

yT(I − 1
n

J)y = yT(H − 1
n

J)y +yT(HZ − H)y + yT(I − HZ)y
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General test for lack-of-fit (cont.)
The associated degrees of freedom are

SS df SS df
TSS n − 1 SST d
SSLOF t − d − 1 SSPE n − t

With this decomposition we may test the „adequacy“ of the assumed model,
i.e. H0 : E(y) = α1 + X2β with an F-test. Under H0 the test statistic is
distributed

F =
SSLOF
t−d−1
SSPE

n−t

∼ F(t − d − 1; n − t)

If H0 is not rejected, a test for H00 : β = 0, or „effectiveness“ of the assumed
first-order model, can be based on an F-test too. Under H00 the test-statistic is
distributed

F =
SST

d
SSPE

n−t

∼ F(d; n − t)
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General test for lack-of-fit (cont.)
We could have tested H00 : β = 0 with a conventional F-test too. The
test-statistic is distributed

F =
SST

d
SSE

n−d−1

∼ F(d; n − d − 1)

The advantage of the first form is that the denominator mean square is a valid
estimator of σ2 even if the first-order model is incorrect.

If the first-order model is correct, the denominator mean square of the second
test statistic is also valid, and is based on more degrees of freedom than the
first, leading to a more powerful test.
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