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11.1 Introduction to two-level factorial experiments: basics
In many applications, experiments designed to examine the effects of
two-level factors are especially common.

Restricting factors to two levels minimizes the number of treatments that must
be considered for a given number of factors and maximizes the number of
factors that can be examined in a factorial experiment of a given number of
treatments.

If we consider f two-level factors, each of the 2f treatments can be completely
identified by an ordered string or vector of f binary „bits“ each symbolized by
(0, 1), (−,+) or („low“, „high“)

Two-level experimental designs are often depicted „spatially“ by representing
treatments as the corners of a square (f = 2), cube (f = 3), or hyper-cube
(f > 3), where each spatial dimension is associated with a factor.
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23 factorial design

geometric view design matrix

A factorial effects model of overparameterized form can be written as:

yijkt = µ+ α̇1 + β̇j + γ̇k + (α̇β)ij + (α̇γ)ik + (β̇γ)jk + ( ˙αβγ)ijk + εijkt
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23 factorial design (cont.)
In each main effect and interaction of the overparameterized model there is
just one parameter that is linearly independent of the former parameters. So

for a full-rank parameterization we need just one matrix F =

(
−1
1

)
.

With fi denoting the i-th row of F we get

yijkt = µ+ fiα+ fjβ + fkγ + fifj(αβ) + fifk(αγ) + fjfk(βγ) + fifjfk(αβγ) + εijkt

The full-rank parameterization requires a total of 2f parameters, the same as
the number of cell means.

The above model equation has the form of a regression model with f’s that are
always either −1 or +1.
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23 factorial design (cont.)
In matrix form, the data model for the complete, unreplicated 23 factorial
design (with obvious extension to the general 2f case) can be written as:

y =



y111
y112
y121
y122
y211
y212
y221
y222


=



+ − − − + + + −
+ − − + + − − +
+ − + − − + − +
+ − + + − − + −
+ + − − − − + +
+ + − + − + − −
+ + + − + − − −
+ + + + + + + +





µ
α
β
γ

(αβ)
(αγ)
(βγ)
(αβγ)


+ε = Xθ+ε

The design matrix X has orthogonal columns of length
√

n:

XTX = nI2f θ̂ =
1
n

XTy
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23 factorial design (cont.)
Including the case of replications, i.e. if r ≥ 1 we have

θ̂ = 2−f MT ȳ

Note that M is the above (2f × 2f )-design matrix of the unreplicated design
and ȳ is the 2f -vector of treatment-specific averages.

Any linear combination of elements of θ is estimable because M is square and
of full rank, i.e. any c of dimension 2f can be expressed as a linear
combination of the rows of M.

We just have one nuisance parameter, the intercept µ. The partitioned model
equation is

y = 1µ+ X2ϕ+ ε

Since X2 is orthogonal to 1, we have X2|1 = X2.

This means that „correction for the mean“ or the regression model intercept is
automatic in this parameterization. Hence we get

I−1 =
1
n

I2f −1 θ̂ =
1
n

XT
2 y
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11.4 Estimation of treatment contrasts
11.4.1 Full model

We order the treatment mean vector and the corresponding data average
vector lexicographically by their indexes:

yT =
(

y1...11 y1...12 y1...21 y1...22 · · · y2...22
)

and E(ȳ) = µ = Mθ. M is orthogonal, so there is a one-to-one relationship
between µ and θ.

We can unbiasedly estimate any linear combinations of the elements of µ

ĉTµ = ĉTMθ = cTMθ̂ = cTM 2−f MT ȳ = cT ȳ

with

E(cT ȳ) = cTµ and Var(cT ȳ) =
σ2

r
cTc
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11.4.2 Reduced model
Return to the f = 3 example, and suppose we assume that interactions
involving γ don’t exist, i.e.

(αγ) = (βγ) = (αβγ) = 0

We partition the model:
µ = X1θ1 + X2θ2

where θ2 is the p2-vector of parameters assumed to be zero and θ1 contains
the p1 parameters parameters remaining in the model.

If our assumptions are correct, we have

y = X1θ1 + ε and θ̂1 =
1
n

XT
1 y = 2−f MT

1 ȳ

where M =
(

M1 M2
)
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Reduced model (cont.)
According to our assumptions

ĉTµ = ̂cTM1θ1 = cTM1θ̂1 = 2−f cTM1MT
1 ȳ

this is not necessarily the same thing as cT ȳ, as follows when the full model is
used.

We only have E(ĉTµ) = cTµ if the reduced model is correct. Otherwise we
get a biased estimate!

On the other hand the variance of the reduced model estimate is

Var(ĉTµ) = cTM1Var(θ̂1)MT
1 c =

σ2

r
2−f cTM1MT

1 c

which in any case is not bigger than the variance of the full model estimate.

So estimates based on a reduced model have variance no greater than, and
sometimes less than, estimates of the same quantity derived under the full
model.
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11.4.3 Examples
The following examples demonstrate the variance reduction of different
estimates using a reduced model. We have to compare cTM1MT

1 c (reduced
model) with cTMMTc (full model).

Single cell mean:

cTµ is a single element of µ, i.e. cT =
(

0 · · · 0 1 0 · · · 0
)

cTM1MT
1 c = p1 cTMMTc = 2f variance reduction:

p1

2f

Treatment contrast corresponding to a reduced model effect:

c is a column of M1 and cTM1 =
(

0 · · · 0 2f 0 · · · 0
)

cTM1MT
1 c = 4f cTMMTc = 4f variance reduction: 1
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Examples (cont.)
Treatment contrast corresponding to an effect removed from the full model:

c is a column of M2 and cTM1 = 0, i.e. the sample variance under the reduced
model is zero!

cTM1MT
1 c = 0 cTMMTc = 4f variance reduction: 0

The potential benefit of using a reduced model is improved precision
associated with some treatment contrasts - depending on the contrast of
interest.

But there is also risk in adopting a reduced model, specifically that the
estimates will be biased and tests potentially invalid if the omitted effects are
actually present.
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11.5 Testing factorial effects

11.5.1 Individual model terms, experiments with replication

Suppose we wish to test
H0 : (♢) = 0

where (♢) represents any factorial effect, e.g., α or (αβγ).

The least square estimate of (♢) and its variance are

(̂♢) = (MTM)−1mT
(♢)ȳ = 2−f mT

(♢)ȳ

Var
(
(̂♢)

)
= 2−2f mT

(♢) Var(ȳ)m(♢) = 2−2f σ
2

r
mT

(♢)m(♢) =
σ2

n
where m(♢) is the column from M that corresponds to the parameter (♢).
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Individual model terms, experiments with replication
The unbiased estimate of σ2 is the mean squared error (MSE)

σ̂2 = s2
pooled =

∑
ij...

s2
ij...

2f

where s2
ij... is the sample variance of the r data values collected under the

treatment identified by (ij . . .). σ̂2 and (̂♢) are independent, so under H0 the
test statistic

t = (̂♢)

√
n

s2
pooled

follows a t-distribution with 2f (r − 1) degrees of freedom.

W. Müller experimental design - unit 8 May 7th 2025 13 / 36



11.5.2 Multiple model terms, experiments with replication
Suppose we wish to test H0 : θ2 = 0 or equivalently

H0 : µ = X1θ1 against H1 : µ = X1θ1 + X2θ2

where the subvectors θi and the submatrices Xi correspond to the partitioned
model above. We have to test all the parameters in θ2 simultaneously, i.e. we
have to perform an F-test.

For the full-rank factorial model with ± „coding“ the residual sum of squares
are

SSEH1 = (y − Xθ̂)T(y − Xθ̂) = yTy − r 2f θ̂
T
θ̂

So the treatment sum of squares associated with θ2 are

SSTθ2 = SSEH0 − SSEH1 = yTy − n θ̂
T
1 θ̂1 − yTy + n θ̂

T
θ̂

= n(θ̂
T
θ̂ − θ̂

T
1 θ̂1)
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Multiple model terms, experiments with replication (cont.)
Since the columns of M are orthogonal, in this case omitting some parameters
from the model does not change the estimates of the remaining parameters. So
we have

SSTθ2 = n(θ̂
T
θ̂ − θ̂

T
1 θ̂1) = n θ̂

T
2 θ̂2

With dfθ2 = p2 we can compute MSTθ2 which is the denominator of the
F-test-statistic.

F =

n θ̂
T
2 θ̂2

p2

SSEH1
2f (r−1)

under H0 we have F ∼ F
(
p2; 2f (r − 1)

)
Because the information matrix for any subset of model parameters is I = nI,
the noncentrality parameter for the test is λ = n

σ2 θ̂
T
2 θ̂2 and we may easily

compute the power of the test.
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11.5.3 Experiments without replication
If the full model is correct and ε is normally distributed, the effect estimates
are independently distributed as:

(̂♢) ∼ N
(
(♢);

σ2

n

)
The estimates are approximately normal distributed even if ε is not normal.

If most effects are actually zero (effect sparsity), procedures developed to
detect outliers can be used to identify the relatively few effects that appear to
be „real“.

Graphical procedures like normal plots and half-normal plots of the effect
estimates are used to detect nonzero effects as „outliers“.
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Graphical methods
For any group of effects, (♢)i, i = 1, . . . p (usually excluding µ) order the
corresponding estimates from least to greatest, and refer to them as
(̂♢)[1] ≤ (̂♢)[2] ≤ · · · ≤ (̂♢)[p]

Then a normal plot is constructed by plotting the (̂♢)[i] versus quantiles from

the standard normal distribution, Φ−1
(

i−0.5
p

)
; i = 1, . . . , p, where Φ−1(·) is

the inverse of the standard normal cdf.

Cuthbert Daniel
(1904 - 1997)

Half-normal plots introduced by Daniel (1959), are construc-
ted by plotting the sorted absolute values of effect estimates,
|(̂♢)|[i], versus quantiles from the „positive half“ of the stan-

dard normal distribution, Φ−1
(

1
2 + i−0.5

2p

)
; i = 1, . . . , p.

If all parameter estimates actually have expectation zero, the
plotted points should lie approximately along a straight line.
Any „real“ effects (those that are not zero) tend to appear as
„outliers“.
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Graphical methods (cont.)
To demonstrate the use of a half-normal plot, data were simulated for an
unreplicated 24 factorial experiment, where all factorial effects are actually
zero except:

α = 6 β = −4 (αβ) = 2 and σ = 3

|(̂♢)|[i]
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Lenth’s method

Russ Lenth (*1948)

Lenth proposed an algorithm for performing the half-
normal plot analysis in a more automatic and objective
way:

let B the set of absolute values of estimated
coefficients of interest

compute s0 = 1.5 · median(B) as an initial robust
estimate of σ√

n

let B∗ = {|θ̂| ∈ B : |θ̂| < 2.5 · s0}, i.e. remove the
clearly nonzero elements from B
compute the so-called „pseudo standard error“ PSE = 1.5 · median(B∗)
as a refined estimate of σ√

n

any estimated effect is significant if it is greater than t · PSE
A table of critical values of t for α = 0.05 and B of at least moderate size was
published by Lenth 1989. t is between 2 and 2.5.
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11.6 Additional guidelines for model editing
Half-normal plots and Lenth’s method can help to find a reduced model form
that conforms well to the data.

However, sometimes they lead to a suggested model that „makes no sense“:
An example would be a 24 factorial model with only α and (βγδ) as
significant parameters.

There are two principles for „meaningful“ models

Effect Hierarchy Principle: If an interaction involving a given set of
factors is included in the model, all main effects and interactions
involving subsets of these factors should also be included.

Effect Heredity Principle: If an interaction involving a given set of
factors is included in the model, at least one effect of the next smallest
order involving a subset of these factors should also be included.

W. Müller experimental design - unit 8 May 7th 2025 20 / 36



12.1 Introduction to Two-level factorial experiments:
blocking
If n is so large that consistent experimental control cannot be exerted
throughout all runs, or if several batches of experimental material must be
used to complete the study, blocking the experiment into a few or several
subexperiments may account for substantial uncontrolled variation.

For a two-level blocked experiment a full-rank effects model can be written
as:

ymij... = µ+ θm + [x1α+ x2β + · · ·+ x1x2 · · · (αβ · · · )] + εmij...

where θm denotes the additive effect associated with block m and xi = ±1
indicates that factor i is at its high or low level.

Because the blocks form a partition of the experimental runs, an equivalent
form for the full-rank parameterization is:

ymij... = θm + [x1α+ x2β + · · ·+ x1x2 · · · (αβ · · · )] + εmij...
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12.1.1 Models
A matrix form for the entire blocked experiment is:

y = X1θ + X2ϕ+ ε

If each block contains k observations and the elements of y are ordered by
block we have

X1 =


1k 0k · · · 0k

0k 1k · · · 0k
...

...
. . .

...
0k 0k . . . 1k

 H1 =
1
k


Jk Ok · · · Ok

Ok Jk · · · Ok
...

...
. . .

...
Ok Ok . . . Jk


In a CBD k = 2f and the rows of X2 corresponding to each k-row section of
X1 „code for“ all 2f factorial treatments.
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12.1.2 Notation
For two-level experiments a simpler notation can be used.

Factors are often denoted by upper-case letters: A, B, . . . The corresponding
columns of the design matrix are sometimes denoted the same way, e.g., ABC
can refer to the column vector of x1x2x3 values, the „regressor“ associated
with the parameter (αβγ). The upper-case „I“, the identity element is used to
represent the column of ones associated with µ.

A treatment is sometimes designated by listing lower-case letters associated
with factors set to level 2, e.g.,

„ac“ . . . the treatment defined by setting factors A and C at level 2, and
others at level 1

„abcd“ . . . the treatment defined by setting factors A to D at level 2, and
others at level 1

„(1)“ . . . the treatment defined by setting all factors at level 1
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12.2 Complete blocks
The most straightforward form of blocking
in 2f experimentation is the CBD.

E.g. a CBD for f = 2 factors, arranged in r
complete blocks, can be depicted as beside.

Let M2 be the
(
2f × (2f − 1)

)
-design matrix associated with just the factorial

effects (i.e., excluding µ) for an unreplicated 2f experiment. If the elements of
y are ordered by block X2 can be written as:

X2 =


M2
M2

...
M2

 With H1 =
1
2f


J2f O2f · · · O2f

O2f J2f · · · O2f

...
...

. . .
...

O2f O2f . . . J2f


we get X2|1 = (I − H1)X2 = X2 − O = X2
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Complete blocks (cont.)
X2|1 = X2 because the sum of each column of M2 is zero.

Hence the estimates of factorial effects are computed as if the experiment
were not blocked.

The standard assumption is that there is no block-by-treatment interaction.

In the ANOVA decomposition the treatment sum of squares SST with
dfT = 2f − 1 can be further decomposed into one-degree-of-freedom
components for each factorial effect, e.g. for a 22 CBD with r blocks

SST =
∑

ij

r (ȳ.ij − ȳ...)2 = n
(
α̂2 + β̂2 + (α̂β)2

)
with dfT = 3

the component associated with factor A is SSTA = n α̂2 with dfA = 1.
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12.3 Balanced incomplete block designs (BIBDs)
BIBD structures can also be taken in con-
structing blocked factorial designs.

See a BIBD with t = 22 treatments, orga-
nized in b = 4 blocks, each of size k = 3
beside.

Analysis of data from a factorial experiment organized as a BIBD follows ea-
sily from the results of unstructured BIBDs. The factorial representation is just
a reparameterization of the models we would use if we ignored the factorial
structure of the experiment.

For example, we can arbitrarily assign the 22 treatments in the above experi-
ment to:

treatment no. 1 2 3 4
„new notation“ (1) a b ab
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Balanced incomplete block designs (cont.)
The parameters of the treatment effects in either notation correspond to:

unstructured factorial
τ1 = −α− β + (αβ)
τ2 = +α− β − (αβ)
τ3 = −α+ β − (αβ)
τ4 = +α+ β + (αβ)

The solution of this set of linear equations for α, β and (αβ) is left to the
reader.

The most commonly used blocking technique in 2f experiments is
fundamentally different.

In most factorial experiment settings, some factorial effects (e.g., main effects
and low-order interactions) are of substantially more interest than others. The
result is called „regular blocking scheme“.
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12.4 Regular blocks of size 2f−1

We start with „half-replicate“-blocking, i.e. one half of all possible treatments
are included in each block of size 2f−1 so that each treatment appears exactly
once in each pair of blocks.

Blocks are arranged so that for a selected effect (♢)

(♢) is multiplied by + in the effects model representation for all
treatments included in one block, and

(♢) is multiplied by - in the effects model representation for all
treatments included in the paired block.

In this case (♢) is no longer estimable, so the highest-order interaction is
often chosen for (♢).

We say (♢) is confounded with the block contrast. Let e.g. (♢) be the factorial
effect ABC. Those treatments for which the entry in the ABC column is +1
are assigned in one block, while those for which it is -1 are placed in the other.
Then the parameter (αβγ) is „confounded with“ the block contrast θ2 − θ1

W. Müller experimental design - unit 8 May 7th 2025 28 / 36



Regular blocks of size 2f−1 (cont.)
To see how ABC „splits“ the treatments of a 23 experiments into blocks we
list the treatments explicitly

treatment I A B C AB AC BC ABC blocks
(1) + − − − + + + − 1
a + + − − − − + + 2
b + − + − − + − + 2
c + − − + + − − + 2

ab + + + − + − − − 1
ac + + − + − + − − 1
bc + − + + − − + − 1
abc + + + + + + + + 2

The paired blocks then have the treatments assigned
as beside.

Other treatment estimates and sums of squares are
unchanged by the introduction of blocks.
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Regular blocks of size 2f−1 (cont.)
The matrix form of the model with r replicates, i.e. 2r blocks, is very similar
to the complete block situation (slide 24).

We just have to partition the M2 matrix: with

M2 =

(
M2,1
M2,2

)
we get X2 =



M2,1
M2,2
M2,1
M2,2

...
M2,1
M2,2


=

(
x1 x2 · · · x2f −1

)

M2,1 and M2,2 each have columns with zero sums except for the column
corresponding to the confounded effect.
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Regular blocks of size 2f−1 (cont.)
The H1 matrix has now four times as many blocks as in the complete block
situation and the block matrix is divided by 2f−1 instead of 2f .
Each of the O2f -blocks is quartered into four blocks of O2f−1 and the
J2f -blocks are quartered as per

J2f =

(
J2f−1 O2f−1

O2f−1 J2f−1

)
If x2f −1 is the column in X2 corresponding to the factorial effect confounded
with blocks, we get

X2|1 = (I − H1)X2 =
(

x1 x2 · · · x2f −2 0
)

For r = 1, there are no degrees of freedom for residual sum of squares under
the full model. If we apply a reduced model instead the model variance could
be estimated again because degrees of freedom are „released“ from the
treatment sum of squares.
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12.4.1 Random blocks
An experiment divided into regular blocks can be analyzed as a split-plot
experiment, with levels of ABC compared between blocks, and other factorial
effects compared within blocks.

Here ABC is confounded with blocks in each replicate.

12.4.2 Partial confounding
Split-plot designs allow fully efficient estimation of all factorial effects except
for the effect selected for confounding, for which formal inferences cannot be
made if block effects are fixed, and for which generally less informative
whole-plot inferences can be made if block effects are random.

If we cannot treat block effects as random and need to make inference about
all effects in blocks of size 2f−1 we should try partial confounding.
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Partial confounding (cont.)
Different factorial effects are confounded with blocks in each complete
replicate. For example, with 23 treatments and blocks of size 4, in the first
replicate the blocks might be confounded with the interaction effect ABC, in
the second replicate the blocks might be confounded with the interaction
effect BC and so on.

Estimates and sums of squares for nonconfounded effects are computed as
usual, e.g., n α̂2 if A is not selected as the confounding effect in any replicate.

Estimates and sums of squares for confounded effects are computed using
only data from replicates in which they are not confounded.
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12.5 Regular blocks of size 2f−2

When blocks of size 2f−1 are too large, we split up these blocks into blocks of
size 2f−2 by selecting a second factorial effect to confound with blocks.

Continuing the 23-design example above where ABC was chosen to generate
the first treatment split, now add BC for the second. ABC and BC are
confounded with blocks, so (αβγ) and (βγ) are not estimable. So he degrees
of freedom for the model is reduced by 2.

The 23 = 8 treatments have to be distributed to 4 blocks of size 2. This means
we need 3 additional degrees of freedom for the blocks.

This also means that a third factorial effect must be confounded with blocks
too, i.e. the values of a third effect must also be constant within the blocks.

In this case it is the factorial effect A, which is the so-called generalized
interaction between the confounded effects ABC and BC.
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Regular blocks of size 2f−2 (cont.)
The effects ABC, BC and hence also A split the treatments into 4 blocks:

treatment I A B C AB AC BC ABC blocks
(1) + − − − + + + − 1
a + + − − − − + + 2
b + − + − − + − + 3
c + − − + + − − + 3
ab + + + − + − − − 4
ac + + − + − + − − 4
bc + − + + − − + − 1
abc + + + + + + + + 2

A better choice for the effects confounded with blocks would be AB, AC and
BC because then no main effect would be „sacrificed“.

W. Müller experimental design - unit 8 May 7th 2025 35 / 36



12.6 Regular blocks: general case
The ideas already introduced for blocks of size 2f−1 and 2f−2 can be
generalized to construct designs with smaller blocks by sequentially
re-splitting treatments into groups s times, to obtain 2s blocks of 2f−s units
each per replicate.

We can think in terms of the s factorial effects „independently“ selected to
confound with blocks, one corresponding to each of the sequence of „splits“
of the 2f treatments, with the understanding that new generalized interactions
are also confounded with blocks at each split after the first.

As blocking schemes become more complicated, it becomes less obvious
which treatments are applied to units in each block.

Model, parameter estimation and hypotheses testing is in line with regular
blocks of size 2f−1.
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