Advice for difficult homework exercises Experimental Design #5

Helmut Waldl

summer term 2025

• ad 17: The first part must not be a problem at all ...

For the second part of the exercise we start from the model in the form

$$\mathbf{y} = \mathbf{1} \mathbf{\mu} + \mathbf{X}_eta oldsymbol{eta} + \mathbf{X}_\gamma oldsymbol{\gamma} + \mathbf{X}_2 oldsymbol{ au} + oldsymbol{arepsilon}$$

where

- \mathbf{X}_{β} is the design matrix corresponding to the b_1 random block effects $\boldsymbol{\beta}$ with $\mathsf{E}(\boldsymbol{\beta}) = \mu_{\beta} \mathbf{1}_{b_1}$ and $\mathsf{Var}(\boldsymbol{\beta}) = \sigma_{\beta}^2 \mathbf{I}_{b_1}$ and
- $-\mathbf{X}_{\gamma}$ is the design matrix corresponding to the b_2 fixed block effects $\boldsymbol{\gamma}$

we analyze the transformed model for

$$\begin{aligned} \mathbf{y}_2 &= \mathbf{X}_{\beta}^T \mathbf{y} = \mathbf{X}_{\beta}^T \mathbf{1} \boldsymbol{\mu} + \mathbf{X}_{\beta}^T \mathbf{X}_{\beta} \boldsymbol{\beta} + \mathbf{X}_{\beta}^T \mathbf{X}_{\gamma} \boldsymbol{\gamma} + \mathbf{X}_{\beta}^T \mathbf{X}_2 \boldsymbol{\tau} + \mathbf{X}_{\beta}^T \boldsymbol{\varepsilon} = \\ &= b_2 \boldsymbol{\mu} \mathbf{1}_{b_1} + b_2 \boldsymbol{\beta} + \mathbf{1}_{b_2}^T \boldsymbol{\gamma} \mathbf{1}_{b_1} + \mathbf{X}_{\beta}^T \mathbf{X}_2 \boldsymbol{\tau} + \boldsymbol{\varepsilon}_{i.} \end{aligned}$$

where

- $-\mathbf{1}_{b_2}^T \boldsymbol{\gamma} \mathbf{1}_{b_1}$ is a b_1 -vector where all components are $\sum_{j=1}^{b_2} \gamma_j$ and
- $\boldsymbol{\varepsilon}_{i.}$ is a b_1 -vector where the *i*-th component is the sum of the b_2 independent errors of row-block i

Now we separate the mean and the error part of the random effect $\beta = \mu_{\beta} \mathbf{1}_{b_1} + \boldsymbol{\varepsilon}_{\beta}$ and combine the intercept and the constant sum of γ -parameters:

$$\mathbf{y}_2 - b_2 \mu_eta \mathbf{1}_{b_1} = \mathbf{1}_{b_1} \left(b_2 \mu + \mathbf{1}_{b_2}^T \boldsymbol{\gamma} \right) + \mathbf{X}_eta^T \mathbf{X}_2 \boldsymbol{\tau} + \left(b_2 \boldsymbol{\varepsilon}_eta + \boldsymbol{\varepsilon}_{i.}
ight) =$$

= $\mathbf{Z}_1 \,
u + \mathbf{Z}_2 \, \boldsymbol{ au}_{inter} + \boldsymbol{\varepsilon}_2$

i.e.

- $-\nu = b_2 \mu + \mathbf{1}_{b_2}^T \boldsymbol{\gamma}$ is the nuisance parameter for the (now) CRD with corresponding design matrix \mathbf{Z}_1 and
- and $\boldsymbol{\varepsilon}_2$ is the new error term with $\mathsf{E}(\boldsymbol{\varepsilon}_2) = \mathbf{0}_{b_1}$ and $\mathsf{Var}(\boldsymbol{\varepsilon}_2) = (b_2^2 \sigma_\beta^2 + b_2 \sigma^2) \mathbf{I}_{b_1}$

For this new model go for the estimates of the differences between the treatment parameters ...

Note that the standard errors for the estimated differences between τ_{inter} are much higher than these for the differences between τ in the fixed effects model.

Why is the following argument wrong? "On the other hand the standard errors for the estimated differences between τ_{intra} are smaller because of the bigger error degrees of freedom of the intra-model.