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8.1 Introduction to random block effects
Up to now block effects have been seen as unknown, fixed model parameters.
But there are also experimental situations in which it is reasonable to think of
block effects as random, suggesting that a mixed effects model may be more
appropriate.

If the random block effects assumption is reasonable, it can lead to additional
analysis options.

In some designs, such as the split-plot designs (see later), a full analysis of
experimental treatments cannot be made unless block effects can be treated as
random.
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8.2 Inter- and intra-block analysis
Suppose an experiment with b blocks of equal size k (so n = b k) of the form:

y = X1β + X2τ + ε E(ε) = 0 Var(ε) = σ2I

β is the b-vector of random effects with E(β) = µβ1 and Var(β) = σ2
βI

X1 =


1k 0k · · · 0k

0k 1k · · · 0k
...

...
. . .

...
0k 0k · · · 1k


If β is independent of ε, it follows

E(y) = µβ1 + X2τ Var(y) = σ2
βX1XT

1 + σ2I
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Inter- and intra-block analysis (cont.)
Var(y) = σ2

βX1XT
1 + σ2I:

each observation has the same variance σ2
β + σ2

pairs of observations associated with the same block have covariance σ2
β

So the best linear unbiased estimator of τ is the generalized least-squares
estimate, i.e. any solution of the normal equations:

XT
2 (σ

2
βX1XT

1 + σ2I)−1X2τ̂ = XT
2 (σ

2
βX1XT

1 + σ2I)−1y

with ρ =
σβ

σ we get

XT
2 (ρ

2X1XT
1 + I)−1X2τ̂ = XT

2 (ρ
2X1XT

1 + I)−1y

ρ is not known, so τ̂ can only be determined using iteratively reweighted
least-squares procedures:

τ is estimated using the normal equations with an estimated value of ρ2

in place of the true variance ratio.
ρ is estimated treating an estimated value of τ as the true parameter
vector.
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Inter- and intra-block analysis (cont.)
We now generate two uncorrelated linear transformations of the data vector y

y1 = UTy y2 = XT
1 y

with U being any (n × l) matrix with arbitrary l such that XT
1 U = 0. y1 is an

l-element vector.
Note that y2 is the b-element vector of block totals.

y1 = UTX1β + UTX2τ + UTε = UTX2τ + ε1

with E(ε1) = 0 and Var(ε1) = σ2UTU

y2 = XT
1 X1β + XT

1 X2τ + XT
1ε = k µβ1 + XT

1 X2τ + ε2

with E(ε2) = 0 and Var(ε2) = (k2σ2
β + kσ2)I

Hence the transformed data can be represented as two linear models, each
containing only a single random element.
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Inter- and intra-block analysis (cont.)
y1 and y2 are uncorrelated:

Cov(y1, y2) = UT(σ2
βX1XT

1 + σ2I)X1 = 0

so if all random elements are normally distributed, analyses based on the two
transformed models are statistically independent.

With this structure, the treatments should be assigned such that the interesting
linear combinations cTτ use a vector c with

c = cT
1 (U

TX2), with an l-vector c1 so that cTτ is estimable based on the
analysis of y1, or

c = cT
2 (Ib − 1

b Jb)(XT
1 X2) with a b-vector c2 so that cTτ is estimable

based on the analysis of y2.
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Inter- and intra-block analysis (cont.)
U should be such that XT

1 U = 0, so one possible choice is U = I − H1, the
projection matrix associated with the compliment of the column space of X1.
With this choice the model for y1 can be rewritten as:

y1 = (I − H1)X2τ + ε1 Var(ε1) = σ2(I − H1)

Analysis of this model leads to normal equations of the form:

XT
2 (I−H1)

(
σ2(I − H1)

)−
(I−H1)X2τ̂ intra = XT

2 (I−H1)
(
σ2(I − H1)

)− y1

eliminating σ−2 from each side and noting that the identity matrix is a
generalized inverse of (I − H1) we may rewrite the reduced normal equations
as:

XT
2 (I − H1)X2τ̂ intra = XT

2 (I − H1)y1 = XT
2 (I − H1)y

This is exactly the same reduced normal equations we have seen for the
fixed-block scenario.
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Inter- and intra-block analysis (cont.)
τ̂ intra is called the intra-block estimate of τ , because it relies on the data only
through linear combinations that are contrasts within each block (since
UTX1 = 0).

The model for y2 can be written as:

y2 = k µβ1 + XT
1 X2τ + ε2 Var(ε2) = k(kσ2

β + σ2)I

Analysis of this model is a regression of the vector of block totals y2 on a
design matrix

(
k 1n|XT

1 X2
)

and a parameter vector
(
µβ, τ

T
)T , resulting in the

inter-block estimate τ̂ inter (via reduced normal equations corrected for µβ):

XT
2 X1

(
Ib −

1
b

Jb

)
XT

1 X2τ̂ inter = XT
2 X1

(
Ib −

1
b

Jb

)
y2
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Inter- and intra-block analysis (cont.)
The analysis is based on two different statistical models, so we can think of
the design as having two different design information matrices. The
intra-block analysis information matrix is as we have previously defined it for
fixed-block analysis:

Iintra = XT
2 (I − H1)X2

The „left side“ matrix of the inter-block reduced normal equations is

XT
2 X1

(
Ib −

1
b

Jb

)
XT

1 X2

which might be regarded as the design information matrix for this analysis.
The variance of estimable functions ĉTτ and noncentrality parameters each
depend on both the information matrix and a variance, specifically

Var(τ ) = σ2cTI−c and
1
σ2τ

TIτ
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Inter- and intra-block analysis (cont.)

Var(τ ) = σ2cTI−c and
1
σ2τ

TIτ

Hence simultaneously multiplying I and also the variance element with 1
k

doesn’t change the result. So we define the inter-block information matrix to
be

Iinter =
1
k

XT
2 X1

(
Ib −

1
b

Jb

)
XT

1 X2

relative to the variance element

1
k

(
k2σ2

β + kσ2) = kσ2
β + σ2

This adjustment yields inter- and intra-block variance elements (kσ2
β + σ2)

for y2 and σ2 for y1 that are directly comparable, because the coefficient of σ2

is 1 in each case.
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8.3 Complete block designs (CBDs) and augmented CBDs
Consider a randomized CBD, with e.g. k = t = 4 treatments in each block
and b = 8 blocks. The information matrix would be

I = XT
2 (I − H1)X2 = b

(
I − 1

t
J
)

= 8
(

I4 −
1
4

J4

)

Sometimes it might be reasonable to think of block-to-block differences as
being random, i.e., there is a second source of unexplainable random „noise“.

In the above example the intra-block information matrix would be the same as
the total information matrix Iintra = I and there is no additional information
due to the inter-blocks model.
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CBDs and augmented CBDs (cont.)
The matrix of „regressors“ associated with τ in the model for block totals
(inter-block model), is XT

1 X2 = J(8×4), so that the matrices in both sides of
the reduced normal equations:

XT
2 X1

(
I8 −

1
8

J8

)
XT

1 X2τ̂ inter = XT
2 X1

(
I8 −

1
8

J8

)
y2

have only zero elements. This would always be true for complete block
designs in which each treatment is applied to one unit in each block.

In this case no informative inter-block estimator is available. A minimal
requirement for recovery of some inter-block information is that the pattern of
treatment assignments not be the same in each block.
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8.4 Balanced incomplete block designs (BIBDs)

Frank Yates (1902 -
1994)

Yates (1940) first demonstrated how inter-block analy-
sis can increase the information available in BIBDs with
random blocks.

Inter-block estimates can be of more practical value in
BIBDs, when there are many blocks and blocks are small
relative to the number of treatments.

The value of an inter-block analysis will always be limi-
ted, regardless of the design, if σβ is large relative to σ.

Recall that BIBDs are characterized by five related design „parameters“:
b . . . # blocks, t . . . # treatments, k < t . . . # units in each block, r . . . # units
allocated to each treatment, and π . . . # blocks in which any two treatments are
both applied to units.
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BIBDs (cont.)
The intra-block analysis for BIBDs was developed in Chapter 7 (unit 4), the
reduced normal equations are:

π t
k

(
I − 1

t
J
)
τ̂ intra = T − 1

k
XT

2 X1B

where T is the t-vector of treatment totals and B is the b-vector of block
totals. The associated design information matrix is:

Iintra =
π t
k

(
I − 1

t
J
)

Inter-block analysis again depends fundamentally on the matrix XT
1 X2, which

for general BIBDs has

only elements of 0 and 1

r ones and (b − r) zeros in each column, and

π rows in which both entries in any two columns are 1.
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BIBDs (cont.)
Some algebra is needed to see that the reduced normal equations for
inter-block analysis are

(r − π)

(
I − 1

t
J
)
τ̂ inter = XT

2 X1(B − B̄ 1)

where B̄ is the average block total.

The corresponding design information matrix for the inter-block analysis is

Iinter =
1
k

XT
2 X1

(
I − 1

b
J
)

XT
1 X2 =

r − π

k

(
I − 1

t
J
)
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8.5 Combined estimator
Because intra- and inter-block estimators are uncorrelated, a weighted average
of the two, with weights proportional to the inverse of their respective
variances, is their optimal (minimum variance) linear combination.

ĉTτ = w ĉTτ intra + (1 − w) ĉTτ inter

To get the weights we have to minimize

Var(ĉTτ ) = w2 Var(ĉTτ intra) + (1 − w)2 Var(ĉTτ inter)

with respect to w. For BIBD the estimator variances are proportional to

Var(ĉTτ intra) ∝ σ2 k
π t

and Var(ĉTτ inter) ∝ (kσ2
β + σ2)

k
r − π

Hence we get w =

kσ2
β+σ2

r−π

kσ2
β+σ2

r−π + σ2

π t
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Combined estimator (cont.)
In practice the values of the variance components are not known and so the
weights have to be estimated.

σ2 can be estimated unbiasedly by MSEintra, the mean square error for the
fixed-block analysis of y1.

kσ2
β + σ2 can be estimated by MSEinter, the mean square error for the

regression analysis of block totals y2, divided by the block size k.

Substituting these estimates for their parameter counterparts leads to the
estimated weight:

ŵ =
MSEinter

r−π
MSEinter

r−π + MSEintra
π t
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8.6 Why can information be „recovered“?
Why should an assumption of random block effects permit the recovery of
more information about τ ?.

An increase in information that leads to decreases in expected standard errors
and more powerful tests requires an increase in the strength of assumptions
(for a fixed amount of data).

the random-β assumption is actually „stronger“ than a fixed-β assumption.
Saying that block effects are „fixed“ is really saying nothing at all about them.

The intra-block analysis is not affected by what the values of β might be
because it relies only on linear combinations of data that are contrasts within
each block, so that the elements of β „cancel out“ in the expectations of these
contrasts.

A random-blocks assumption can lead to more informative inference if it is
justified, but to invalid inference if it is not.
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8.7 CBD reprise
The assumption of random block effects does not yield additional information
with a CBD.

There is an additional advantage to assuming random blocks with an CBD if
we add treatment-by-block interactions to the model:

yij = α+ βi + τj + θij + εij

εij iid with E(εij) = 0 and Var(εij) = σ2

βi iid with E(βi) = 0 and Var(βi) = σ2
β

θij iid with E(θij) = 0 and Var(θij) = σ2
θ

This model is exactly the same as a random-blocks model without interactions
(just apply ε∗ij = θij + εij). So using random-blocks models covers even the
situation of treatment-by-block interactions.
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9.1 Introduction to factorial treatment structure
Up to now our mathematical description and handling of treatments have
included no assumptions about relationships between any pair of them.

Many experiments are designed to compare treatments defined by selecting a
level related to each of a collection of factors.

We describe any experiment in which the treatments have factorial structure
as a factorial experiment.
In general, if f factors are used to define a treatment, and the ith of these
factors has li levels, the number of different treatments is t =

∏f
i=1 li.

We restrict our attention to situations in which all possible combinations of
factor levels are meaningful. In this chapter we will consider the structure of
full factorial experiments, i.e., those in which all possible combinations of
factor levels are represented.

In factorial experiments, the most interesting experimental questions are
framed in a way that do not treat relationships between treatments
symmetrically.
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9.2 An overparameterized model
It is possible to frame the analysis of data from a factorial experiment within
the context of unstructured linear models.
Let (i, j, k) be a set of 3 indices for 3 factors representing the levels of each
factor, i.e. i = 1, 2, . . . , l1; j = 1, 2, . . . , l2 and k = 1, 2, . . . , lf . Then, a cell
means model and an effects model for an unblocked experiment in which
each treatment is replicated r times (t = 1, 2, . . . , r) can be written as:

yijkt = µijk + εijkt or yijkt = α+ τijk + εijkt

εijkt iid with E(εijkt) = 0 and Var(εijkt) = σ2

Here a collection of f=3 subscripts is used to identify the treatment through
the selected factor levels.

In most applications, however, a mathematically equivalent factorial model is
more useful.
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An overparameterized model (cont.)
A factorial model (3 factors) for a CRD might be written as:

yijkt = µ+ α̇i + β̇j + γ̇k + ˙(αβ)ij +
˙(αγ)ik +

˙(βγ)jk +
˙(αβγ)ijk + εijkt

In this parameterization, the collection of l1 parameters α̇1, α̇2, . . . , α̇l1
describe the main effect associated with the first factor.
˙(αβ)ij is the two-factor interaction associated with levels i and j of factors 1

and 2, respectively, and represents the nonadditive component of the joint
contribution of these two factors etc. etc.

In factorial models with f factors the interactions of highest order are f -factor
interactions, and there are f groups of (f − 1)-factor interactions etc.

Let e.g. l1 = 2, l2 = 3 and l3 = 4. Then we have to estimate the expected
response for t = 24 different treatments. But the above model has 60
parameters which is a heavy over-parametrization.
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9.2.1 Graphical logic
A major benefit of full factorial experimentation is that it is fully efficient for
investigating the effects associated with each factor.

An n-run full factorial experiment in f factors provides the same information
about main effects as f single-factor experiments, each of size n. But further,
the factorial experiment provides information on how the factors affect the
response in combination through interactions, something that cannot be
learned from one-factor-at-a-time (OFAT) studies.

Suppose we do an unreplicated (r = 1) factorial experiment as an experiment
designed to estimate the effects associated with changing factor 1 across its l1
levels.
We could think of the experiment as a CBD with t = l1 treatments (the levels
of factor 1), and b = l2 · l3 · · · · · lf complete blocks (within which the levels of
factors 2 through f are fixed).
As with CBD, we might then propose plotting block-corrected values for each
level of factor 1.
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9.2.2 Matrix development for the overparameterized model
The above model is severely overparameterized, i.e., there are far more
parameters than experimental treatments. Hence the set of solutions to the
reduced normal equations is especially ambiguous, and without external
constraints offers little insight to the structure of the cell means.

In the design matrix of the three-factor example above, there would be groups
of columns in X2 corresponding to each main effect group and each
interaction group. A matrix model for the entire experiment could then be
written as

y = 1µ+ X2 ϕ̇+ ε =

= 1µ+
(

Xα̇ Xβ̇ Xγ̇ X ˙(αβ)
· · · X ˙(αβγ)

)


α̇

β̇
γ̇
˙(αβ)
...
˙(αβγ)


+ ε

E(ε) = 0 Var(ε) = σ2I
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Matrix development for the overparameterized model (cont)
In the above model ϕ̇ is used for the parameter vector instead of τ to reflect a
parameterization motivated by factorial structure, rather than the unstructured
treatment coding employed in previous chapters.

The over-dots are used here to distinguish this parameterization from a
different one for the full rank model (later).

The design matrix is partitioned into blocks corresponding to the parameter
groups in ϕ̇ and we will develop a systematic characterization of the model
matrix and the various submatrices of X2 and XT

2 X2 based on the use of the
Kronecker product ⊗.
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Matrix development for the overparameterized model (cont)
If A is an (m × n)-matrix and B is a (p × q)-matrix, then the Kronecker
product A ⊗ B is the (mp × nq) block matrix:

A ⊗ B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB


Kronecker products have many interesting properties, we need here just:

⊗ is non-commutative, i.e. in general A ⊗ B ̸= B ⊗ A
transposition is distributive over ⊗, i.e. (A ⊗ B)T = AT ⊗ BT

mixed-product property of ⊗: (A ⊗ B)(C ⊗ D) = (AC)⊗ (BD)
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Matrix development for the overparameterized model (cont)
We will show the development of the submatrices of X2 on the basis of the
above 3-factor example with l1 = 2, l2 = 3 and l3 = 4. Let the response
vector be ordered, s.t. the index for the first factor changes most slowly, and
that for the third factor changes most quickly, in lexicographical order:

yT = (y1111 · · · y111r, y1121 · · · y112r, y1211 · · · y121r, · · · , y2341 · · · y234r)

Given this ordering, the submatrices of X2 can be written as:

Xα̇ = 1r ⊗ 14 ⊗ 13 ⊗ I2 Xβ̇ = 1r ⊗ 14 ⊗ I3 ⊗ 12

Xγ̇ = 1r ⊗ I4 ⊗ 13 ⊗ 12 X(α̇β) = 1r ⊗ 14 ⊗ I3 ⊗ I2

X(α̇γ) = 1r ⊗ I4 ⊗ 13 ⊗ I2 X(β̇γ) = 1r ⊗ I4 ⊗ I3 ⊗ 12

X( ˙αβγ) = 1r ⊗ I4 ⊗ I3 ⊗ I2
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Matrix development for the overparameterized model (cont)
Given these representations, the diagonal blocks in XT

2 X2 corresponding to
any parameter group are multiples of the identity matrix. For our example:

XT
α̇Xα̇ = l2l3r Il1 = 12r I2 XT

β̇
Xβ̇ = l1l3r Il2 = 8r I3

XT
γ̇Xγ̇ = l1l2r Il3 = 6r I4 XT

(α̇β)
X(α̇β) = l3r Il1l2 = 4r I6

XT
(α̇γ)X(α̇γ) = l2r Il1l3 = 3r I8 XT

(β̇γ)
X(β̇γ) = l1r Il2l3 = 2r I12

XT
( ˙αβγ)

X( ˙αβγ) = r Il1l2l3 = r I24

Off-diagonal blocks of XT
2 X2 can be calculated in a similar way (exercise).

One has to distinguish between off-diagonal blocks for which the parameter
groups associated with rows and columns do reference common factors (e.g.
XT
α̇X(α̇β)) and such which do not reference common factors (e.g. XT

γ̇X(α̇β)).
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9.3 An equivalent full-rank model
Given the above structure, an overwhelming variety of solutions to the
least-squares problem exist. Some are of simple form while others are quite
complicated, reflecting the particular generalized inverse selected for XTX.

An alternative full-rank parameterization that eliminates many of these
complications, at the cost of some interpretative simplicity will be presented
now.

We now consider independent variables other than binary-coded indicator
variables, and write:

E(y) = µ+ xϕ+ ε or in matrix form E(y) = 1µ+ X2ϕ+ ε

where the row vector x and model matrix X2 can contain elements other than
0 and 1, and ϕ represents a set of treatment-related parameters that are related
to, but not the same as, those denoted by ϕ̇.
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An equivalent full-rank model (cont.)

factor level x1 x2

1 −
√

3
2 − 1√

2

2 0
√

2

3
√

3
2 − 1√

2

We need to define a set of li − 1 „regressors“
for the i-th factor, i = 1, 2, . . . , f :

For example, the levels of a three-level factor
can be „coded“ using x1 and x2 defined as
beside.

The new regressors x1 and x2 have 3 import-
ant characteristcs:

x1 and x2 are orthogonal, i.e. xT
1 x2 = 0 MOST IMPORTANT!

the length of x1 and x2 equals the number of factor levels, i.e.
xT

1 x1 = xT
2 x2 = li

the sum of the elements of x1 and x2 is zero, i.e. 1Tx1 = 1Tx2 = 0

Similar codings can be easily constructed for factors with any number of levels.
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An equivalent full-rank model(cont.)
Suppose the tabulated coding was for the second factor of our above example.
We could combine the new regressors to the matrix Fβ and denote the i-th row
of Fβ by fβi . In the same way we get matrices for the first and second factor:

Fα =

(
−1
1

)
Fβ =


−
√

3
2 − 1√

2

0
√

2√
3
2 − 1√

2

 Fγ =


− 3√

5
1 − 1√

5

− 1√
5

−1 3√
5

1√
5

−1 − 3√
5

3√
5

1 1√
5


With this, we may write a model for data from a three-factor experiment as:

yijkt = µ+ fαi α+ fβj β + fγkγ + (fαi ⊗ fβj )(αβ) + (fαi ⊗ fγk )(αγ)+

+ (fβj ⊗ fγk )(βγ) + (fαi ⊗ fβj ⊗ fγk )(αβγ) + εijkt
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An equivalent full-rank model(cont.)
Note that the parameter groups for main effects and interactions now contain
fewer (only linear independent) parameters.

A main effect associated with factor i (li levels) corresponds to a group of
(li − 1) parameters, an interaction between factors i and j corresponds to a
group of (li − 1)(lj − 1) parameters etc.

The (overall) number of model parameters used to describe the mean
structure, including µ, is now exactly the same as the number of treatments.

the interpretation of the parameters of this full-rank model is sometimes a
little tricky but there is a one-to-one linear relationship between the t cell
means µijk of and the t elements of the parameter vector (µ,ϕT)T .
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9.3.1 Matrix development for the full-rank model
The full-rank model may be written as:

y = X
(

µ
ϕ

)
+ ε = 1µ+ X2ϕ+ ε

E(ε) = 0 Var(ε) = σ2I

where X contains n = r ·
∏f

i=1 li rows and t =
∏f

i=1 li columns.

We now connect the matrices F associated with the factors to the design
matrix X:

For each factor we define a square matrix appending a vector of ones to the
associated F, e.g.

Gα = (1|Fα)

This matrices are orthogonal, i.e.

GαTGα = l1 Il1
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Matrix development for the full-rank model (cont.)
The complete design matrix may be written as:

X = 1r ⊗ Gγ ⊗ Gβ ⊗ Gα

Because of the orthogonal structure of each G we get

XTX = r
f∏

i=1

li It = n It

Because all pairs of columns in X are orthogonal, matrix forms associated
with estimation are especially simple. X2 equals X without the first column of
ones. In this case, X2|1 = X2, and so the reduced normal equations are:

XT
2 X2ϕ̂ = XT

2 y

But since XT
2 X2 = n I, this leads immediately to the unique least-squares

estimator:
ϕ̂ =

1
n

XT
2 y
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9.4 Estimation
The experiment offers equal information about each parameter in ϕ, as
reflected by the fact that:

I = XT
2 X2 = n It−1

Under the full-rank model questions associated with the „overall“ effect of
e.g. factor 1 may be addressed by linear contrasts of form cTFαα

The unique least-squares estimator is (note that cT1 = 0):

ĉTFαα = cTFαα̂ = cTFα 1
n
(1T ⊗ 1T ⊗ 1T ⊗ FαT)y =

=
l1
n

l1∑
i=1

ciyi... =

l1∑
i=1

ciȳi...

Since the information matrix for any subset of ϕ is I = nI of appropriate
dimension, the variance of the estimate is simple

Var(ĉTFαα) =
l1
n
σ2 cTc
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9.5 Partitioning of variability and hypothesis testing
The ANOVA decomposition is especially simple in the case of the full-rank
model, and facilitates the examination of variability that can be associated
with each parameter group. The general from of the treatment sum of squares
can be written as:

SST = yT H2|1 y =
1
n

yT X2XT
2 y = n ϕ̂

T
ϕ̂

where H2|1 projects on the linear space spanned by X2|1 which in our case
equals X2. This expression can be further reduced to individual sums of
squares of estimates from each parameter group.
In our three-factor example we have

SST = n
(
α̂Tα̂ + β̂

T
β̂ + γ̂T γ̂ + (α̂β)T(α̂β) + (α̂γ)T(α̂γ)+

+ (β̂γ)T(β̂γ) + (α̂βγ)T(α̂βγ)
)

If ε has a multivariate normal distribution the seven terms in this sum are
independent sums of squares because they are orthogonal contrasts in the data.
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Partitioning of variability and hypothesis testing (cont.)
Because of the orthogonality of X2 the treatment sum of squares SST can be
split up as sums of squares in ANOVA in the case of balanced data, e.g.

SSTα = n α̂Tα̂ = n
(

1
n

Xαy
)T (

1
n

Xαy
)

=
1
n

yTXαXT
αy =

=
1
n

(
y1... y2... · · · yl1...

)
FαFαT


y1...
y2...

...
yl1...

 =
1
n

yT
1 FαFαTy1

where Xα is the submatrix of X2 corresponding to the parameter group α and
yi... are the response totals of the i-th level of the factor corresponding to the
parameter group.

So in the above example y1 is the vector of the data totals specific to the levels
of factor 1.
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Partitioning of variability and hypothesis testing (cont.)

Noting that FαFαT = GαGαT − 11T = l1Il1 − Jl1

the above sum of squares may be written

SSTα =
1
n

yT
1 FαFαTy1 =

1
n

yT
1 (l1Il1 − Jl1)y1 =

l1
n

l1∑
i=1

y2
i... − nȳ2

.... =

=
n
l1

l1∑
i=1

(ȳ2
i... − ȳ2

....) =
n
l1

l1∑
i=1

(ȳi... − ȳ....)2

Independent sums of squares can be written for each of the (2f − 1) parameter
groups, although tests for these groups are not independent because each
relies on the same denominator sum of squares SSE =

∑
ijkt(yijkt − ȳijk.)

2.
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Partitioning of variability and hypothesis testing (cont.)
Testing the main effect parameters of factor 1, i.e. H0: α = 0 in the above
example assuming r replications of each treatment can be carried out by
comparing

MSTα

MSE
=

SSTα
dfα
SSE
dfSSE

=

12r
∑2

i=1(ȳi...−ȳ....)2

2−1∑
ijkt(yijkt−ȳijk.)2

24(r−1)

=
288r(r − 1)

∑2
i=1(ȳi... − ȳ....)2∑

ijkt(yijkt − ȳijk.)2

with the (1 − α)-quantile of F (1; 24(r − 1)). Since the information matrix for
α is 24r I1, the noncentrality parameter associated with this test is

λ =
24r
σ2 αTα

So for nonzero α the power of the test performed at level 0.01 is

P (W > F0.99(1; 24(r − 1))) where W ∼ F
(

1; 24(r − 1);
24r
σ2 αTα

)
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9.6 Factorial experiments as CRDs, CBDs, LSDs, and
BIBDs
The three fundamental experimental design plans (CRD, CBD, LSD) can be
employed in factorial settings by simply ignoring the factorial structure.

Hence a three-factor treatment structure with l1 = 2, l2 = 3 and l3 = 4 can be
examined via a CRD with 24r unblocked units, a CBD in r blocks of 24 units
each, or a Latin square design (LSD) in 576 units organized in 24 rows and 24
columns in which each treatment is applied r = 24 times.

The degrees of freedom available to estimate this residual variability is
24(r − 1) for the CRD, 23(r − 1) for the CBD and 22(r − 1) = 506 for the
LSD.

Experiments for factorial structures can also be implemented using BIBD
plans, again by ignoring the factors and using randomization of treatments to
units as in the unstructured case.
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9.7 Model reduction
The substantial and practical difficulty that often arises with factorial
experiments is the potentially very large number of parameters.

However, in most practical situations it turns out that interactions of higher
order are zero or close to zero. There are substantial statistical advantages to
reducing the number of parameters in the model used in analyzing data from a
factorial experiment.

We rewrite the full-rank model in further partitioned form as:

E(y) = 1µ+ X2ϕ = 1µ+ W1ϕ1 + W2ϕ2

where the columns of W1 and W2 form a partition of those in X2, and ϕ1 and
ϕ2 form the corresponding partition of ϕ.

Let’s now assume that ϕ2 = 0. The least-squares estimate of ϕ1 then is:

ϕ̂1 =
1
n

WT
1 y

and these estimates are exactly the same functions of y as they would be under
the full model.
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Model reduction (cont.)
Now, any contrast in cell means is estimated by lTX2ϕ̂ under the full model,
or lTW1ϕ̂1 under the reduced model.

The estimation variance based on the reduced model can be no more than that
based on the full model, and depending on the specific vector l of interest and
partitioning of ϕ, may be much less.

The questions that must be answered are whether the full model can be
reduced, and if so, which terms can be eliminated.

Model selection can be done by a procedure similar to backward elimination
in classical ANOVA and requires a hierarchical model structure. This can lead
to a remarkable reduction in the number of parameters in the model required
to summarize the systematic differences in observed responses.
Reduced models provide more precise estimates of treatment contrasts, and
more degrees of freedom for estimating error variance.

This is the main advantage of experiments with factorial treatment structure
against unstructured treatment experiments.
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