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5.1 Introduction to Latin squares and related designs (LSD)
With Randomized Complete Block Designs, and the other
orthogonally blocked designs it is assumed that the single
classification variable associated with blocks accounts
for a substantial proportion of the unit-to-unit variation.

Row-Column Designs are used in settings where units can reasonably be
sorted by two characteristics rather than one, and the most commonly used of
these are Latin Square Designs (LSD).

Example: agricultural experiment in a square field, divided into „rows“ and
„columns“ of smaller squares. Treatments can be different strains of corn.
Units could absorb different amounts of rain water depending on north-south
position and different wind conditions depending on their east-west position.

There are two potential sources of nuisance variation, so the unit-to-unit
relationships cannot be described independently within rows ignoring
columns, or independently within columns ignoring rows.
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5.1.1 Row-Column Designs
In order to ensure treatment-block balance comparable to that found in CBDs,
it would seem minimally necessary that treatments should be associated with
units in such a way that:

the design is a CBD with respect to rows as blocks, ignoring columns,

the design is a CBD with respect to columns as blocks, ignoring rows.

So LSD are constructed as per

the number of row-blocks of units must be t, since each treatment must
appear exactly once in each column-block.

the number of column-blocks of units must be t, since each treatment
must appear exactly once in each row-block.

therefore, a LSD must contain a total of n = t2 units, t of which must be
assigned to each treatment.

each treatment appears once in each row and once in each column.
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Row-Column Designs (cont.)
A Latin square is said to be reduced (also, normalized or in standard form) if
both its first row and its first column are in their natural order.

Unique Latin squares are often represented in their standard form, equivalent
or isotopic Latin squares are obtained through reordering of rows, reordering
of columns, and/or permutation of the symbols.

Each entry of a t × t Latin square can be written as a triple (r, c, s), where r is
the row, c is the column, and s is the symbol (treatment). A LSD then is a set
of t2 triples called the orthogonal array representation of the square.

If we systematically reorder the three items in each triple, another orthogonal
array (and, thus, another Latin square) is obtained. E.g. replace each triple
(r, c, s) by (c, r, s) which corresponds to transposing the square. The 6
possible reorderings of (r, c, s) give us 6 Latin squares called the conjugates.

The number of different Latin squares grows exceedingly quickly with t.
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Row-Column Designs (cont.)
Since each experimental unit is contained in two blocks, randomization is
somewhat less straightforward for LSDs than with CBDs. For a selected
pattern of a LSD, randomization can be accomplished by:

randomly shuffling the rows of the Latin square, so that each of the t!
row orderings is equally likely,

randomly shuffling the columns of the Latin square, so that each of the t!
column orderings is equally likely, and

randomly shuffling the association of symbols to treatments, so that each
of the t! assignments is equally likely.

the starting standard-form LSD should be randomly selected from the
collection of unique Latin squares of the desired size
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5.2 Replicated Latin squares
Latin squares can be adjusted in size by adding additional replicates of the
entire basic design, i.e. by combining r basic (unique) Latin squares in a
design calling for a total of r · t2 units.

These replicates can be thought of as „superblocks“, each containing all the
experimental material for a single Latin square.

Where a replicated LSD is used, randomization should be performed
independently for each replicate in the experiment.
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5.3 A model
A LSD recognizes the possibility of three systematic sources of variation in
the data related to rows, columns, and treatments. So a three-way main effects
ANOVA model can be used to describe the structure of the data

yijk = α+ βi + γj + τk + εijk i, j, k = 1, . . . , t

εijk iid with E(εijk) = 0 and Var(εijk) = σ2 (5.1)

where yijk is the data value observed for the unit appearing in the ith row-block
and jth column-block. k is included in the indexing system to identify the
effect of the treatment assigned to that unit. Not all possible combinations of i,
j, and k are represented in any specific Latin square arrangement.

This additive model has 3t − 2 degrees of freedom (df), i.e. free parameters to
be estimated. With t2 observations we may always find unique estimates.
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A model (cont.)
Two-way interaction terms cannot be meaningfully accounted for in a Latin
square design (too many parameters to be estimated on the basis of just t2

observations).

A model containing an intercept α along with main effects and two-way
interactions for row and column (no treatment effect!) would have df = t2

(free parameters to estimate) - it is saturated - it represents all variation in any
data set of this form. The residuals would all be zero and an additional
treatment effect cannot improve the fit of this model.

Moreover introducing any additional effect to a saturated model yields
ambiguous parameter estimates.

In a LSD, inferences can only be made about treatment effects under a model
in which the contributions of treatments, rows, and columns are assumed to be
additive (no interactions).
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Models for replicated Latin squares
For replicated LSD an augmented model is needed to represent the additional
sources of variation. If the replicate squares are (physically) unrelated, we
may use the model

yijkl = α+ ρl + βi(l) + γj(l) + τk + εijkl i, j, k = 1, . . . , t l = 1, . . . , r

εijkl iid with E(εijkl) = 0 and Var(εijkl) = σ2 (5.2)

where ρl is the effect due to replicate l. The effects of row-blocks βi(l) and
column-blocks γj(l) are nested within replicate l, i.e. we have different βi and
γj for each replicate l.

Treatment effects are not nested within replicates because they are assumed to
be the same in each replicate.

This model has df = (t − 1)(2r + 1) + r, i.e. free parameters to be estimated.
With t2r observations we may always find unique estimates.
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Models for replicated Latin squares (cont.)
In model (5.2) we assume that row-blocks and column-blocks may have
effects. If we assume that the effects of column-blocks are the same in each
replicate we get

yijkl = α+ ρl + βi(l) + γj + τk + εijkl i, j, k = 1, . . . , t l = 1, . . . , r

εijkl iid with E(εijkl) = 0 and Var(εijkl) = σ2 (5.3)

This model has df = (t − 1)(r + 2) + r, of course also here we may always
find unique estimates with t2r observations.

If we further assume equivalence of row-blocks in each replicate, we end up
with

yijkl = α+ ρl + βi + γj + τk + εijkl i, j, k = 1, . . . , t l = 1, . . . , r

εijkl iid with E(εijkl) = 0 and Var(εijkl) = σ2 (5.4)

This model has df = (t − 1)3 + r.
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Models for replicated Latin squares (cont.)
Note that the progression through models (5.2) to (5.4) actually represents a
strengthening of assumptions being made about the variation associated with
blocks.

The number of nuisance parameters decreases from model (5.2) to model
(5.4). Models with fewer df will provide more power for tests and narrower
confidence intervals. The statistical inferences based on these models - when
they are an accurate representation of the system being studied - will be
superior to those of models with more df.

It is important that the modeling must accurately represent the actual
(physical) experimental situation in order to assure a valid data analysis. At
the same time parsimonious modelling is important because fewer nuisance
parameters lead to more precision and power in the analysis of the data.
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5.3.1 Graphical logic
Because the data collected from a Latin square contains variation associated
with row-blocks, column-blocks, and treatments, graphical displays of data by
treatment should be „adjusted“ to remove both sets of nuisance effects.
Parallel boxplots of

y∗ijk = yijk − (ȳi.. − ȳ)− (ȳ.j. − ȳ)− ȳ i, j = 1, . . . , t

are appropriate means for comparisons of the responses associated with each
treatment. Expectation and variance for the adjusted response are

E(y∗ijk) = τk − τ̄ Var(y∗ijk) = σ2
(

1 − 1
t

)2

with replicated Latin squares adjustment works analogously.
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5.4 Matrix formulation
Beginning with model (5.1) for an unreplicated Latin square, and collecting
all nuisance parameters in the first model partition and those associated with
treatments in the second, we can write

y = X1β + X2τ + ε ε ∼ N(0;σ2I)

β is the (2t + 1)-vector of nuisance parameters α, β1, . . . , βt and
γ1, . . . , γt (note: only 2t − 1 free parameters, two zero-sum-conditions)
τ is the t-vector of treatment parameters (t − 1 free parameters)
y and ε are n-vectors of responses and random errors where n = t2

X1 =


1t 1t 0t · · · 0t It

1t 0t 1t · · · 0t It
...

...
...

. . .
...

...
1t 0t 0t · · · 1t It

 X2 =


P1
P2
...

Pt


where

∑t
i=1 Pi = J
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Matrix formulation (cont.)
Pi, i = 1, . . . , t are (t × t) permutation matrices containing zero elements at
every position except for a single 1 in each row and column.

The requirement that the permutation matrices sum to J implies that there is
exactly one application of each treatment in any column-block.

X1 corresponds to β, the (2t + 1)-vector of nuisance parameters which has
only 2t − 1 free elements - hence we have rk(X) = 2t − 1. Some algebra
shows that

XT
1 X2 =

(
t 1T

t
J(2t×t)

)
is the same as XT

1

(
1
t

J(t2×t)

)
=

(
t 1T

t
J(2t×t)

)
Using this equivalence, we have

H1X2 = X1(Xt
1X1)

− XT
1 X2 = H1

(
1
t

J(t2×t)

)
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Matrix formulation (cont.)
This is the same as H1X2 for a CRD with t units allocated to each treatment,
so an unreplicated LSD and a CRD with the same number of units assigned to
each treatment jointly satisfy Condition E. So the reduced normal equations
for a LSD are of form:

τ̂k − ¯̂τ = ȳ..k − ȳ k = 1, . . . t

The design information matrix and one of its generalized inverses can be
written as:

I = t I − J = t
(

I − 1
t

J
)

I− =
1
t

I
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Matrix formulation (cont.)
For replicated LSDs, these matrix arguments can be extended by adding the
necessary columns of indicator variables for each replicate, and additional
necessary columns if row-blocks or column-blocks are nested within
replicates, to X1.

Each of the three models (5.2) to (5.4) of replicated LSDs is Condition
E-equivalent to a CRD with rt units assigned to each treatment. The reduced
normal equations are then

τ̂k − ¯̂τ = ȳ..k. − ȳ k = 1, . . . t

The design information matrix and one of its generalized inverses can be
written as:

I = rt
(

I − 1
t

J
)

I− =
1
rt

I
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5.5 Influence of design on quality of inference
Because Latin square designs are balanced and orthogonally blocked, the
reduced normal equations for treatment effects take the same form as those
for complete block designs. So we may compare LSDs versus CRDs and
CBDs with the same number of runs.

The models of LSD, CRD and CBD differ in their model’s degree of freedom
df (number of free estimable parameters) and their residual sum of squares
SSE =

∑
i(yi − ŷi)

2 (the sum of squares associated with the error).

The residual degrees of freedom dfSSE are found by subtracting the model
degrees of freedom df from the number of runs n: dfSSE = n − df.
SSE and dfSSE are used to estimate the model variance and to test the
significance of the treatment parameters:

σ̂2 = MSE =
SSE
dfSSE

and F =
MST
MSE
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Influence of design on quality of inference (cont.)
F = MST

MSE is the test statistic for H0 : τ1 = τ2 = · · · = τt.

Also the mean of the sum of squares associated with the treatment
MST = SST

dfSST
= SST

t−1 differs from model to model.

We compare the following models:

a CRD with rt units assigned to each of the t treatments

a CBD with rt blocks

the unreplicated LSD (5.1)

the replicated LSDs (5.2), (5.3) and (5.4)

The number of runs is the same for all models: n = r t2

as is the degrees of freedom associated with the treatment: dfSST = t − 1
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Influence of design on quality of inference (cont.)

model dfSSE SST
CRD t(r t − 1)

∑t
k=1 r t(ȳk. − ȳ)2

CBD (r t − 1)(t − 1)
∑t

k=1 r t(ȳ.k − ȳ)2

(5.1) t(r t − 3) + 2 ∑t
k=1 r t(ȳ..k. − ȳ)2(5.2) (t − 1)[(t − 1)r − 1]

(5.3) (t − 1)(r t − 2)
(5.4) (t − 1)(r t + r − 3)

The Latin square design can be expected to yield better estimation
precision than a CRD with rt units assigned to each treatment if

σ2
LSD

σ2
CRD

<
t1−α

2
(t(rt − 1))

t1−α
2
(dfSSE(LSD))

and better estimation precision than a CBD in rt blocks if

σ2
LSD

σ2
CBD

<
t1−α

2
((t − 1)(rt − 1))

t1−α
2
(dfSSE(LSD))
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Influence of design on quality of inference (cont.)

The variance of an estimable function (i.e., contrast) of treatment
parameters is

Var(ĉTτ ) =
σ2

r t

t∑
k=1

c2
k =

σ2cTc
r t

For a given estimable function cTτ and signal-to-noise ratio ψ, a desired
Ψ = cTτ√

Var(ĉTτ )
= ψ

√
r t

cT c can be obtained with

r ≥ Ψ2

ψ2
cTc

t
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Influence of design on quality of inference (cont.)
The form the noncentrality parameter for the F-test of

H0 : τ1 = τ2 = · · · = τt

is identical to that of a CRD and CBD with r t units assigned to each treatment
or r t blocks

λ =
1
σ2τ

TIτ =

t∑
k=1

r t
σ2 (τk − τ̄)2

and the power of this test at level α for given values of τ and σ2 is

1 − β = Pr(W > F1−α(t − 1;dfSSE)) where W ∼ F(t − 1;dfSSE;λ)
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5.6 More general constructions: Graeco-Latin squares
Consider two Latin squares of order t over two
sets L and G each consisting of t symbols. These two Latin
squares are orthogonal if, when superimposed, every pair
(l, g) from the Cartesian product L × G occurs exactly once.
If the symbols stand for different treatments each treatment
symbol in one Latin square is paired with every treatment
symbol in the other Latin square in exactly one cell.

Orthogonal Latin squares were studied in detail by
Leonhard Euler, who took the two sets to be L = {A,B,C, . . .}, the first t
upper-case letters from the Latin alphabet, and G = {α, β, γ, . . .}, the first t
lower-case letters from the Greek alphabet -
hence the name Graeco-Latin square.

Graeco-Latin squares exist for all orders t ≥ 3 except t = 6.
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More general constructions: Graeco-Latin squares (cont.)
Orthogonal Latin squares
have been known to predate Euler. In 1725
Jacques Ozanam published a puzzle involving
playing cards. The problem was to take
all aces, kings, queens and jacks from a standard
deck of cards, and arrange them in a 4 × 4 grid
such that each row and each column contained
all four suits as well as one of each face value.

The Graeco-Latin Square Design (GLSD) is
a direct generalization of the LSD. Suppose we
have three sources of „nuisance“ variation with which we must deal, rather
than the two accounted for by the rows and columns of a Latin square.

GLSD are Condition E-equivalent to a CRD of the same size with units
divided equally among treatments. More general, any blocking arrangement
for which the units in each block are evenly divided among the treatments is
an orthogonally blocked design and satisfies Condition E.
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More general constructions: Graeco-Latin squares (cont.)
A GLSD recognizes the possibility of four systematic sources of variation in
the data related to rows, columns, and letters associated with the second Latin
square pattern and treatments. So we use a four-way main effects ANOVA
model

yijkl = α+ βi + γj + δk + τl + εijkl i, j, k, l = 1, . . . , t

εijkl iid with E(εijkl) = 0 and Var(εijkl) = σ2 (5.5)

The model has df = 4t − 3 free estimable parameters and t2 observations, so
unique parameter estimates exist only for t ≥ 3.

All blocks in the GLSD are of size t, and contain each treatment exactly once.
It is an orthogonally blocked experimental design, and the reduced normal
equations and design information matrix for treatments take the same form as
those for CRDs, CBDs, and LSDs in the same number of units for each
treatment.
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More general constructions: Graeco-Latin squares (cont.)
The form of the full model determines the precision with which the variance
of ε can be estimated.

The above model has df = 4t − 3 model degrees of freedom and t2

observations, hence the residual degrees of freedom are
dfSSE = (t − 1)(t − 3). This number of degrees of freedom is available for
estimating σ2.

A GLSD can be randomized by randomly selecting a pair of orthogonal Latin
squares in normalized form, independently randomizing each of the two
LSDs.
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6.1 Introduction to Some data analysis for CRDs and
orthogonally blocked designs
We are studying the impact of the design on the precision of estimators and
power of hypothesis tests in the context of linear models. Since the properties
of analysis are the foundation for our motivation to study experimental
design, we should discuss the ideas upon which some of these analytical
techniques are based.

The quality of the results of our analysis depends largely upon how the
assumptions of the linear model are satisfied.

The classical linear model and the generalized linear model (GLM) are
extensively studied in the lectures „Verallgemeinerte Lineare Modelle“ from
our Bachelor studies and „Advanced Regression Analysis“ from our Master’s
program. Here we present just a very brief summary of a few
widely-applicable techniques. For details we refer to the above lectures.
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6.2 Diagnostics
6.2.1 Residuals

Many of the model assumptions may easily be checked with residual plots
that indicate whether the residuals have the appearance of an i.i.d. sample
from a normal distribution of mean zero and unknown variance.

The standardized and studentized residuals help to circumvent the problem of
heteroscedastic residuals. However there remains the problem of correlation
among the residuals.

The analysis methods described in the remainder of this section are useful for
detecting inequality of variance in CRDs, and interaction between blocks and
treatments in CBDs.
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6.2.2 Modified Levene test

Howard Levene
(1914 - 2003)

The modified Levene test
for equality of group variances, introduced by Levene
(1960) is very simple and is performed as follows:

For each group
i = 1, . . . , t, compute the median of data values, ỹi

For
each data value, compute the absolute difference
between yij and the associated group median:

zij = |yij − ỹi| i = 1, . . . , t j = 1, . . . , ni

Perform an F-test (one-way ANOVA) for
equality of means, using the transformed data zij.
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6.2.3 General test for lack of fit
A key assumption in all blocked experiments we have discussed is that blocks
and treatments do not interact. In most of these designs, the information
available to check this assumption is limited.

Only designs that have been enlarged to include „true replication“ yield data
in which the variation of model residuals can be compared to the variation
within groups of runs with common treatment and block, via a formal test for
lack of fit.

The test is presented in section 2.7.1 Pure error and lack of fit in Unit 01 and
is based on the decomposition of the error sum of squares SSE into the Pure
Error sum of squares SSPE and the Lack Of Fit sum of squares SSLOF
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6.2.4 Tukey one-degree-of-freedom test
Without „true replications“ the general test for lack of fit described above is not
available.

One test for interaction, introduced by Tukey (1949), partitions the SSE into one
single degree of freedom component associated with one particular kind of possible
interaction, and the remaining (t − 1)(b − 1)− 1 degree-of-freedom component
which is assumed to represent random noise.

John W. Tukey
(1915 - 2000)

compute an interaction mean square

MSI* = (
∑

i,j yij(ȳi.−ȳ)(ȳ.j−ȳ))
2∑

i(ȳi.−ȳ)2
∑

j(ȳ.j−ȳ)2

where yij denotes the observation associated with
treatment j in block i.

and an adjusted error mean square:
MSE* = SSE−MSI*

(t−1)(b−1)−1

compare the ratio MSI*
MSE* to F1−α(1; (b − 1)(t − 1)− 1)

for selected α.
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6.3 Power transformations
In many cases where data values are strictly nonnegative, and the variance is
inhomogeneous, the variance and mean are related.

A response transformation that equalizes variances over experimental groups,
and preserves the desired additive structure for the response mean as a
function of treatments and blocks is useful in such situations.

Suppose that our response variable y is actually such that the mean and
variance are related through a power law

Var(y) = E(y)q

Then the approximate variance of y p variate is

Var(y p) ≈ p2 · E(y)q+2p−2

Hence, selecting p = (2−q)
2 would provide a scale on which the variance of y p

is approximately constant with respect to the mean of y
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Box-Cox transformations

George Box
(1919 - 2013)

David Cox
(1924 - 2022)

Since

y p = exp(p ln(y)) = 1 + p ln(y) +O((p ln(y))2)

we have
y∗p =

y p − 1
p

= ln(y) +O(p)

and everything but ln(y) becomes negligible for p sufficient-
ly small. The above y∗p is the one-parameter Box-Cox trans-
formation of y.

This power transform is a useful data transformation techni-
que used to stabilize variance and make the data more normal
distribution-like.

The only question is how to actually choose the value of p.
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Box-Cox transformations (cont.)
The optimal value of p can be numerically found as follows:

Compute the geometric mean of the untransformed data, i.e.,
ỹ = n

√∏n
i=1 yi

For a collection of values of p, fit y∗∗p =
y∗p
ỹ p to the intended model.

Choose the value of p that minimizes SSE
In practice, values of p between 0 and 2 are generally of most interest, but
many investigators limit attention to p ∈ {0, 1

2 , 1, 2} unless the data set is
large enough to support accurate resolution over a finer grid.

Interpretation of estimates derived under power-transformed data require
more attention. We have to use the reverse transformation. The data model
implies that

E
(

y p
i − 1

p

)
= x1iβ + x2iτ

where i indexes the i-th observation. The approximation E( y p
i −1
p ) ≈ E(yi)p−1

p
leads to

E(yi) ≈ p(x1iβ + x2iτ + 1)
1
p
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6.4 Basic inference
Up to now the two basic analysis tools discussed in motivating the structure of
experimental designs are the F-test for equivalence of treatments, and t-based
confidence intervals for specified linear contrasts of treatment effects.

Formulae are simple because CRD is based on one-way ANOVA, and CBDs
and LSDs share much of this simplicity of analysis.

In experiments performed to compare a large number of treatments, there may
be a need to estimate or test hypotheses about a large number of estimable
parameter contrasts.

Whenever we have a multiple testing problem or the dual problem of
constructing simultaneous confidence intervals or confidence regions the
question of the simultaneous confidence level arises. The way out is the
probability of experiment-wise error.

Also this topic is addressed in the lectures „Verallgemeinerte Lineare
Modelle“ from our Bachelor studies and „Advanced Regression Analysis“
from our Master’s program.
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6.5 Multiple comparisons
If we have to test multiple hypotheses the probability for rejecting at least one
null hypothesis by mistake is defined as the probability of the
experiment-wise error αE.

If we compute 95% confidence intervals for all 45 pairwise differences of two
treatment parameters in a 10-treatment example, the probability that at least
one interval for a treatment difference will fail is approximately 0.64. This
would be the simultaneous confidence level for the multiple 45 comparisons.

There are several procedures for confidence intervals that maintain a selected
experiment-wise type I error probability (Bonferroni method, maximum
modulus method, Tukey’s method, Fisher’s least significant difference (LSD),
Scheffé method, Dunnett intervalls etc.).

Here we give only a very brief summary of some methods and refer again to
the above lectures.
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6.5.1 Tukey intervals
Let Ti be the average of all observations associated with treatment i and T the
t-vector of the Ti.

Tukey uses quantiles from the studentized range (q) distribution
q1−αE(t;dfSSE) for the construction of the simultaneous pairwise confidence
intervals (αE is the experimentwise error rate, t is the number of treatments,
dfSSE are the residual degrees of freedom for the model fit, ni is the number of
observations for each treatment)Ti − Tj ± 1√

2
q1−αE(t,dfSSE)

√
2

MSE
ni


The quantiles for q are tabulated or may be computed with the R-function
qtukey.

The coverage probability of the above intervals for all possible differences
Ti − Tj is at least 1 − αE
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6.5.2 Dunnett intervals

Charles Dunnett
(1921 - 2007)

Dunnett intervals
are a special case of Tukey intervals, they compare every
mean to one control mean, e.g. T1 − Ti for i = 2, . . . , t.

Notice that for these comparisons
the number of parameter estimates is just t − 1 which
increases the dfSSE by one. The quantiles of Dunnett’s
multivariate t-distribution d1−αE/2(t,dfSSE) are tabulated.
Apart from that the simultaneous pairwise confidence
intervals have the same form as Tukey’s intervalsTi − Tj ± d1−αE/2(t,dfSSE)

√
2

MSE
ni


The intervals may be computed with the R-function simint from the
package multcomp. Dunnet intervals are smaller than Tukey intervals.
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6.5.3 Simulation-based intervals for specific problems
We may generalize Tukey’s and Dunnett’s idea of simultaneous intervals for a
set of c special contrasts cT

i τ for i = 1, . . . , c where all elements of ci are zero
except one 1 and one −1.

Let u1, . . . , ut and v1, . . . , vdf+1 be independent random variables following a

common normal distribution, say N(0; 1), and let S =
√

1
df
∑

i(vi − v̄)2 be the
sample standard deviation of the second sample. Let further u be the t-vector
of the ui.

Simulating the distribution of C = maxi=1,...,c

(
|cT

i τ |
S
√

cT
i ci

)
gives the quantiles

f1−αE/2(t,df) of the distribution of C.

the simultaneous confidence intervals for all c linear contrasts cT
i τ are[

cT
i T ± f1−αE/2(t,df)

√
cT

i ci
MSE

r

]
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6.5.4 Scheffé intervals

Henry Scheffé
(1907 - 1977)

Scheffé intervals are for simultaneous estimation
of a collection of any contrasts - not just differences.

For any one contrast cT
i τ , the Scheffé

interval is yet another modification of the t-interval form:[
cT

i T ±
√
(t − 1)F1−αE(t − 1,df)

√
cT

i ci
MSE

r

]
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