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3.1 Introduction to Completely randomized designs (CRD)
We are comparing t treatments, using n experimental
units and will be considering experimental designs in
the context of unstructured treatments, by which we simply
mean a discrete collection of experimental conditions.

We determine a priori the number of experimental
units to be assigned to each treatment, n1, n2, n3, . . . nt,
such that their sum is n, without any additional restrictions.

CRD does not contain blocks of units purposefully selected
to be especially similar, any pair of units is viewed as being related in the
same way as any other pair.
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3.1.1 Example: radiation and rats
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3.2 Models
CRD-models may be seen as models used in one-way analysis of variance.
The cell means model can be written as:

yij = µi + εij i = 1, . . . , t j = 1, . . . , ni

εij iid with E(εij) = 0 and Var(εij) = σ2

ε often represents variation associated with multiple sources and we assume
that the ε’s are independent, so the experiment should

assure that treatment-to-unit assignments are made randomly and
independently for each unit,

apply each treatment individually and independently to each of its
allocated units,

carry out any material handling or subsampling processes required for
response evaluation independently for each unit, and

apply the measurement process independently for each unit.
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Models (cont.)
Experimental runs receiving the same treatment are actually artificially
similar, the data collected in an experiment are realizations of random
variables conditioned on all the specific circumstances.

Hence, µi actually represents the expectation of responses associated with
treatment i, collected under very special, controlled circumstances.

Because the experimental treatments, and not the particular circumstances of
experimental execution, are of primary interest, the effects model has
interpretive advantages:

yij = α+ τi + εij i = 1, . . . , t j = 1, . . . , ni

εij iid with E(εij) = 0 and Var(εij) = σ2

α is a nuisance parameter reflecting the contributions of the relatively
uninteresting circumstance-details of the experiment, and τi is the deviation
from α associated with treatment i.
τi represents information only about treatment i relative to the other
treatments.
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3.2.1 Graphical logic
Because CRDs with unstructured treatments are relatively simple, the form of
a graphical analysis to present experimental results can also be simple.

The main question is whether the distributions of data from the various
treatment groups, especially their means or other measures of central
tendency, are different. A set of parallel boxplots of the measured data, one
boxplot generated from the data from each treatment group, is a useful
presentation for this purpose.
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3.3 Matrix formulation
A matrix expression of the cell means model representing all data in the
experiment can be written as:

y = Xµ+ ε

where y is the n-vector of responses, X is the (n × t)-design matrix, µ is the
t-vector of treatment-means and ε is the n-vector of errors with E(ε) = 0 and
Var(ε) = σ2I.

The effects model may be written in partitioned matrix form to represent data
from the entire experiment as:

y = X1α+ X2τ + ε

where X1 is a n-vector of ones, α is the nuisance parameter, τ is the t-vector
of treatment effects and X2 is the (n × t)-design matrix associated with the
parameters of interest. X2 is exactly X from the cell means model -
(overparametrization!), so there is no new „structure“ added to the data
analysis with the effects model.
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estimable contrasts
A linear combination cTτ of treatment parameters of the effects model is
estimable only if c can be written as a linear combination of the rows of
X2|1 = (I − H1)X2.

In the CRD we have H1 = 1
n J where J is a n × n-matrix of ones, hence

X2|1 = X2 −
1
n

(
n11 n21 · · · nt1

)
X2|1 is a „column-centered“ version of X2, i.e. the sum of the elements of
each column of X2|1 is zero. Also each row of X2|1 has a zero sum, so this
must also be true of c for any estimable cTτ .

Hence, the only linear combinations of τ ’s that are estimable (in the effects
model) are contrasts for which cT1 = 0.
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estimable contrasts (cont.)
In the cell means model, cTµ is estimable if c is a linear combination of the
rows of X. This is no restriction at all because any real-valued vector c can be
formed as a linear combination of the rows of X.

In order to eliminate any experiment-wide effects common to the means of all
observations, the only estimable functions of treatment-specific parameters
are contrasts, because these are the only linear functions that eliminate the
common nuisance parameter α in the expectation through cancellation.

For information matrices from now on we drop the subscript „2|1“ used for
partitioned models, all subsequent information matrices I presented will be
for parameters associated with treatments (here τ ), controlling for nuisance
parameters (here α)
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estimable contrasts (cont.)
With the t-vector n =

(
n1 n2 · · · nt

)T the information matrix for the
effects model is

I = XT
2|1X2|1 = diag(n)− 1

n
n nT

In the special case of equal sample sizes for each treatment
(ni =

n
t , i = 1, . . . , t), this reduces to I = n

t (I −
1
t J).

Solving the reduced normal equations for the CRD we get(
diag(n)− 1

n
n nT

)
τ̂ = XT

2 y − ȳ n

where ȳ is the mean of all elements of y.
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estimable contrasts (cont.)
For the i-th scalar equation of the above set we get

τ̂i − ¯̂τ = ȳi − ȳ

where ¯̂τ = 1
n

∑
niτ̂i and ȳi is the mean of the ni elements of y associated with

treatment i.

For estimable functions cTτ the sum of the elements of c has to be zero.
Hence the constants ¯̂τ and ȳ are eliminated in

ĉTτ = cT τ̂ =
t∑

i=1

ciτ̂i =
t∑

i=1

ciȳi

so the least-squares estimate of any contrast of treatment parameters is the
same contrast in the corresponding treatment data averages.
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3.4 Influence of the design on estimation
The estimate cT τ̂ is a linear combination of independent sample means with
known variances, hence

Var(ĉTτ ) = σ2 cTI−c

Since diag(n)−1 is a generalized inverse of I = XT
2 (I − H1)X2, for estimable

cTτ we get

Var(ĉTτ ) = σ2 cT diag(n)−1 c = σ2
t∑

i=1

c2
i

ni

the expected squared length of a (1 − α)-confidence interval for estimable
cTτ is

4 t21−α
2
(n − rk(X)) σ2 cTI−c = 4 t21−α

2
(n − t) σ2

t∑
i=1

c2
i

ni
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3.4.1 Allocation
We would prefer designs that lead to relatively small values of the above
length

2 t1−α
2
(n − t) σ

√√√√ t∑
i=1

c2
i

ni

either through large overall sample size (and so a relatively small t-quantile),
or through allocation of relatively more units to groups for which the
corresponding |ci| is large for contrasts of interest.

We often have the freedom to select the number of units to be used in each
treatment group ni. The CRD with equal group sizes has good overall
properties, and is in fact optimal for many - but not all - experimental goals.

Allocation problems are formulated as constrained optimization problems in
which the quantity to be optimized is, e.g. the variance of an estimator or
some function of it. The constraint most often reflects the total number of
units allowed.
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Method of Lagrangian multipliers
Suppose we want to estimate p linear contrasts of τ , C τ where C is a
(p × t)-matrix of coefficients. The variance matrix of the least-squares
estimate is:

Var(ĈTτ ) = σ2 CT I− C = σ2 CT diag(n)−1 C

If we want to minimize the average variance of these estimates, this is
equivalent to minimization of:

tr(CT diag(n)−1 C) = tr(CTC diag(n)−1)

With unconstrained optimization we would simply choose the largest possible
value for each ni. The more realistic constrained problem can be solved using
the Method of Lagrangian Multipliers.

Optimal design problems are often solved as if n1, . . . , nt were actually
continuous variables, and the resulting solution is „rounded“ to integer values
if necessary.
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Method of Lagrangian multipliers (review)
Suppose we wish to maximize or minimize a differentiable function f (n) with
respect to n, a real-valued vector of t arguments, subject to the constraint
g(n) = G for a specified differentiable function g and scalar value G. Now
introduce a new scalar variable L, and define a function of t + 1 arguments:

h(n,L) = f (n) + L (g(n)− G)

The technique calls for solving the gradient of h:

∇h =
(

∂h
∂n1

· · · ∂h
∂nt

∂h
∂L

)T
= 0

The „Lagrangian Multiplier“ L introduces the desired constraint through

∂h
∂L

= g(n)− G = 0
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3.4.2 Overall experiment size
The allocation problem is to find optimal values of ni, i = 1, . . . , t, under the
constraint of a specified value for n.

Now suppose the proportion of units to be used with each treatment has been
determined, and call these pi, i = 1, . . . , t,

∑
pi = 1. How large would n have

to be, to assure that some experimental objectives are met?

With a known information matrix I the per-observation information matrix is
defined as I1 = 1

nI.

For CRDs with fixed proportions of units assigned to each treatment, I1

would be the same matrix regardless of the value of n used to compute I. The
per observation information matrix for the effects model is

I1 =
1
n

XT
2|1X2|1 =

1
n
(diag(n)− 1

n
n nT) = diag(p)− p pT
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per-observation information matrix
A generalized inverse of the per-observation information matrix is:
(I1)− = diag(p)−1

Then, for any value of n we have I− = 1
n (I1)− = 1

n diag(p)−1

The variance of the estimate of a particular linear contrast cTτ is a function of
n:

Var(ĉTτ ) = σ2 cTI−c =
σ2

n
cTdiag(p)−1c

If we want a design for which the square root of this variance will be small
relative to cTτ , n should be large enough to make

cTτ√
Var(ĉTτ )

=
√

n
cTτ/σ√

cTdiag(p)−1c

acceptably large.
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3.5 Influence of design on hypothesis testing
Tests of hypotheses on the treatment parameters τ are based on the variance
decomposition

TSS = SST + SSE

where TSS is the total sum of squares, SST is the sum of squares associated
with the treatment and SSE is the sum of squares associated with the error,
i.e. the sum of squares not explained by the treatment. For this model we have

TSS =
∑

i,j

(yij − ȳ)2 SST =

t∑
i=1

ni(ȳi − ȳ)2 SSE =
∑

i,j

(yij − ȳi)
2

The decomposition also holds for the associated degrees of freedom

dfTSS = n − 1 dfSST = t − 1 dfSSE = n − t

The mean squares are just the sum of squares divided by their degrees of
freedom

TMS =
TSS

n − 1
MST =

SST
t − 1

MSE =
SSE
n − t
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Influence of design on hypothesis testing (cont.)
We want to test the variation associated with τ , i.e. the null hypothesis

H0 : τ1 = τ2 = · · · = τt

Under H0 the F-test-statistic

F =
MST
MSE

=
1

t−1
∑t

i=1 ni(ȳi − ȳ)2

1
n−t

∑
i,j(yij − ȳi)2

has a central F-distribution with t − 1 and n − t degrees of freedom.
Under H1 F has a noncentral F-distribution depending on the value of τ , the
noncentrality parameter for this test is

λ =
1
σ2τ

TIτ =
1
σ2τ

T
(

diag(n)− 1
n

n nT
)
τ

The power of this test of equal treatment effects, for given values of τ and σ2,
is

Pr (W > F1−α(t − 1; n − t)) where W ∼ F(t − 1; n − t;λ)
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4.1 Introduction to randomized complete blocks and related
designs (CBD)
The fundamental assumption
of CRD is that the available
collection of experimental
units is homogeneous -
no predictable or systematic
differences are expected in
the collected data other than those that are attributable to the treatments.

The CRD is simple, popular, and frequently used, but its application is
unrealistic or impractical in many settings.

Experimental units made from special subpopulations often regarded as being
more similar than a collection of units made from the whole population.
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Introduction to CBD (cont.)
With Complete Block Designs the experiment is executed in blocks, or
„sub-experiments“, each using only the experimental material from one
subpopulation. Each treatment is applied once using the material in each
block, making a complete unreplicated sub-experiment, and this pattern is
repeated using b such blocks.

In a Randomized CBD, treatments are randomly applied to units within each
block, but these assignments are not completely random as in a CRD because
they are restricted to balance across the units within each block.
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4.1.1 Example: structural reinforcement bars
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4.2 Model
CBD suggests two potential systematic patterns in the data. The pattern of
primary interest is associated with the applied treatments, the other is
associated with blocks of units. An effects model for t treatments and b blocks
is

yij = α+ βi + τj + εij i = 1, . . . , b j = 1, . . . , t

εij iid with E(εij) = 0 and Var(εij) = σ2

In CBD blocks are treated as fixed effects (random block effects are discussed
later).

The effect of blocks is additive, i.e. CBD include no block-by-treatment
interaction terms.
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4.2.1 Graphical logic
Parallel boxplots of response values from a CBD should be constructed with
care because each data value contains a contribution from a specific block as
well as a specific treatment.
Instead we could use boxplots of „block-corrected“ observations for each
treatment group. For treatment j, summarize data by a boxplot of b values:

y∗ij = yij − ȳi i = 1, . . . , b

Using the model equation above we get ȳi = α+ βi + τ̄ + ε̄i and

y∗ij = (τj − τ̄) + (εij − ε̄i)

y∗ij reflects only the contribution of treatment j, relative to the average effect of
all treatments. y∗ij has smaller variance than yij:

Var(y∗ij) = σ2
(

1 − 1
t

)
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Graphical logic (cont.)
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Graphical logic (cont.)
We may check the assumed additive effects of treatments and blocks using
block-and-treatment-corrected data (residuals)

rij = yij − ȳi − ȳj + ȳ = yij − ŷij

with

E(rij) = 0 and Var(rij) = σ2 (t − 1)(b − 1)
t b

The residuals are correlated, however, any outliers appearing in a boxplot of
these values may be indicators of model inadequacy, such as possible
treatment-block interaction.
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4.3 Matrix formulation
We use a partitioned model for all data from the experiment:

y = X1β + X2τ + ε ε ∼ N(0;σ2I)

β is the (b + 1)-vector of nuisance parameters α, β1, . . . , βb

τ is the t-vector of treatment parameters

y and ε are n-vectors of responses and random errors where n = b · t

X1 =


1t 1t 0t · · · 0t

1t 0t 1t · · · 0t
...

...
...

. . .
...

1t 0t 0t · · · 1t

 X2 =


It

It
...
It


where 1t, 0t, and It refer to t-vectors of ones and zeros, and the
(t × t)-identity matrix, respectively.
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Matrix formulation (cont.)
The reduced normal equations for the treatment parameters τ are

XT
2 (I − H1)X2 τ̂ = XT

2 (I − H1)y

Some of these matrices have different structure than their counterparts in the
CRD.

With some matrix algebra we get

X2|1 = (I − H1)X2 = X2 −
1
t

1(n×t)

where 1(n×t) is an (n × t)-matrix of ones.

rk(X1) = b, so the nuisance part of the model is overparametrized. For the
purpose of inferences about t, we might have omitted α or one of the β’s from
the model to get exactly the same X2|1.
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Matrix formulation (cont.)
For this model, X2 and X2|1 are the same as with a CRD with b units in each
treatment group. So the reduced normal equations for the CBD take the same
form as those for the CRD:

τ̂j − ¯̂τ = ȳj − ȳ j = 1, . . . , t

The least-squares point estimators of estimable functions of treatment effects
can be constructed for CBDs by simply ignoring the blocks. This is due to
symmetry properties of the CBD, specifically, that each treatment is applied to
exactly one unit in each block (balanced design).

So the CBD is a specific case of a CRD with ni = b, i = 1, . . . , t.

The generalized inverse of the information matrix is I− = 1
b I and for

estimable linear combinations cTτ the vector c must satisfy cT1 = 0
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4.4 Influence of design on estimation
The least-squares estimator of any set of estimable functions CTτ is

ĈTτ = C

 ȳ1
...
ȳt

 with Var(ĈTτ ) =
σ2

b
C CT

This variance function has the same form as those for the CRD with ni = b.

BUT: σ2 represents uncontrolled variation among all units in a CRD, while it
represents only uncontrolled variation among units from a common block in a
CBD.

Hence the sampling variance of treatment contrasts may be substantially
smaller for a CBD than for a CRD of the same size if blocking is „effective“,
i.e. if it results in greater homogeneity among units-within-blocks than can be
expected within a larger collection of unblocked units.
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Influence of design on estimation (cont.)
An experiment can be executed as either a CRD or a CBD and sometimes
CBD has to be chosen because of operational requirements. But especially for
small designs the CRD can be expected to yield more precise confidence
intervals even if σ2

CBD < σ2
CRD.

For any particular estimable contrast cTτ , the expected squared length of the
associated confidence intervals with fixed n are

4 t1−α
2
(n − t) σ2

CRD cTc
t
n

and

4 t1−α
2
(n − b − t + 1) σ2

CBD cTc
t
n

respectively. So the CBD can only be expected to yield more precise intervals
if

σ2
CBD

σ2
CRD

<
t1−α

2
(n − t)

t1−α
2
(n − b − t + 1)
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4.4.1 Experiment size
for any estimable function cTτ , the variance of the estimate is

Var(ĉTτ ) =
σ2

b

t∑
j=1

c2
j =

σ2cTc
b

For any treatment contrast the value of

Ψ =
cTτ√

Var(ĉTτ )

=
cTτ

√
b

σ
√

cTc
= ψ

√
b

cTc

should be acceptably large. Notice that the true signal-to-noise ratio ψ = cTτ
σ

is unknown. For a given desired value of Ψ and signal-to-noise ratio is ψ, we
can solve for the required number of blocks

b ≥ Ψ2

ψ2 cTc
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4.5 Influence of design on hypothesis testing
The variance decomposition for this model is

TSS = SST + SSB + SSE

where SSB is the sum of squares associated with the blocks. In detail we have

SST =

t∑
j=1

b(ȳj−ȳ)2 SSB =

b∑
i=1

t(ȳi−ȳ)2 SSE =
∑

i,j

(yij−ȳi−ȳj+ȳ)2

The associated degrees of freedom are

dfSST = t − 1 dfSSB = b − 1 dfSSE = n − t − b + 1

So the entire analysis of data from a CBD cannot be carried out ignoring
blocks although the form of the least-squares estimates of estimable functions
of treatment effects is the same for CRDs and CBDs. The reason is in the
different error sum of squares: SSECRD > SSECBD!
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Influence of design on hypothesis testing (cont.)
However the form the noncentrality parameter for the F-test of

H0 : τ1 = τ2 = · · · = τt

is identical to that of a CRD with equal numbers of units assigned to each
treatment (ni = b), just σ2 differs from the CRD:

λ =
1
σ2τ

TIτ =
1
σ2τ

T
(

bI − b2

n
1 1T

)
τ

We may compare a CRD and a CBD of the same size in the context of the
power (1 − β) of the above test:
1−βCRD = Pr(WCRD > F1−α(t−1; n− t)) WCRD ∼ F(t−1; n− t; τ

TIτ
σ2

CRD
)

1 − βCBD = Pr(WCBD > F1−α(t − 1; n − t − b + 1))
WCBD ∼ F(t − 1; n − t − b + 1; τ

TIτ
σ2

CBD
)

Again, the trade-off is between the degrees of freedom (favoring the CRD)
and the size of the noncentrality parameter
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4.6 Orthogonality and „Condition E“
Normal equations and design information matrices for the CBD and CRD
with nj = b are equivalent. This equivalence can be generalized if two
conditions are satisfied - we will call them „Condition E“.

We consider two designs with t treatments and n runs each, which can be
modeled with a partitioned linear model y = X1β + X2τ + ε.
X1 may have a different number of columns for the two designs.

Then the two designs satisfy Condition E if, for some ordering of rows

X2 is the same matrix for each design, and

H1X2 is the same matrix for each design

As a consequence X2|1 = (I − H1)X2 is the same for the two designs.
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Orthogonality and „Condition E“ (cont.)
For CRD and a CBD that assign the same number of units to each treatment,
the estimable contrasts in the elements of τ can be estimated in a CBD
ignoring blocks, just as they can be estimated in a CRD ignoring α.

We may express this by „treatments are orthogonal to blocks“ in a CBD.

But this is also true for any other blocked design which, together with a CRD,
satisfies Condition E. CBD are not the only arrangements for which
treatments and blocks are orthogonal.
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Orthogonality and „Condition E“ (cont.)
Consider a design with b blocks, and the blocks are of size m1,m2, . . . ,mb

units. Also the number of units to which any treatment is applied may be
different in each block. We may express Condition E for such a design and a
CRD of same size as follows

the number of units associated with the various treatments n1, . . . , nt has
to be the same in each design, and

in the block design any specific treatment must be applied to the same
proportion of units in each block (although these proportions do not need
to be the same for each treatment).

Note that this condition cannot be met for all possible integer values of
t,m1, . . . ,mb, however, it can be easily satisfied when all blocks contain the
same number of units. If this common block size is greater than t, we call the
design an augmented complete block designs.

Orthogonally blocked designs are attractive because they result in simple
reduced normal equations.
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Orthogonality and „Condition E“ (cont.)
Are orthogonally blocked designs really statistically superior to other blocked
arrangements? YES!

Consider a CRD and a blocked design, each of which assigns nj units to
treatment j = 1, . . . , t. Also the error variance shall be the same for both
designs: Var(y) = σ2I.

Then for the CRD the variance of ĉTτ is Var(ĉTτ ) = σ2 ∑t
j=1

c2
j

nj

For a general blocked design we have Var(ĉTτ ) = σ2 ∑t
j=1

c2
j

nj
+ cTQ c

where Q is a positive semidefinite (t × t)-matrix.

Hence, apart from its effect on the value of σ2, blocking cannot improve the
variance properties of a design, and can make them much worse.

On the other hand, the variance properties are not degraded for blocked
designs which, together with a CRD of the same size, satisfy Condition E.
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