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The pioneer of design of experiments: Ronald A. Fisher

First works 1923

Ronald Fisher in
1956

Textbook 1935: Stained glass window
in Caius College,
Cambridge (removed)
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The lady tasting tea (1920)
The lady in question (Muriel Bristol) claimed to be able to tell whether the tea
or the milk was added first to a cup. Fisher proposed to give her eight cups,
four of each variety, in random order. One could then ask what the probability
was for her getting the specific number of cups she identified correct, but just
by chance.

The lady tasting tea is a randomized experiment devi-
sed by Ronald Fisher and reported in his book „The
Design of Experiments“. The experiment is the origi-
nal exposition of Fisher’s notion of a null hypothesis,
which is „never proved or established, but is possibly
disproved, in the course of experimentation“

Ronald Fisher in 1913
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1.2 Basic elements of an experiment
The following sections briefly describe a few of the operational notions that
are most important and are common in some form to almost all experiments.

1.2.1 Treatments and material

experimental units: generally represent the entities of scientific interest in the
study.
experimental trial (run): each application of a treatment to a quantity of
experimental material.
treatment factor: is an explanatory (independent) variable usually manipulated
by the experimenter. All factors together characterize the treatment.
factor levels: Each factor has two or more levels, i.e., different values of the
factor. Combinations of factor levels are called treatments.
functional treatments: treatments that are identified by a set of (usually)
continuous controlled variables.
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1.2 Basic elements of an experiment
1.2.2 Control and comparison

In controlled studies data are collected through a planned sequence of
activities. A study is comparative when it is focused on whether there are
differences between the output or response values that can be associated with
different treatments.

Experimental controls provide a comparison to what might have happened
without experimental manipulation. A control represents the „natural quantity
or natural interval“ treatment.

On their own, experimental controls usually represent conditions that are of
little real scientific interest, but including them in the experiment gives us the
ability to directly compare treatments that represent both well-understood and
novel conditions, to see how the differences affect responses.
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1.2 Basic elements of an experiment
1.2.3 Responses and measurement processes

In order to determine the effect of treatments applied to units, we need some
means of evaluating the result of that application. This is accomplished by
obtaining values of one or more responses - the data to be analyzed - for each
experimental unit.

Selection of appropriate response variables is as critical to the success of the
experimental program as any other decision made.

Response values don’t just appear, but must be determined by what we shall
call a measurement process.
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1.2 Basic elements of an experiment
1.2.4 Replication, blocking, and randomization

Replication, blocking, and randomization are aspects of statistical design that
are used to reduce extraneous variation in responses.

Replications are multiple trials that are executed under circumstances that are
nominally identical (not just the same treatment!).
Random measurement error is a source of variability in most real experiments,
replication reduces the random variation or noise in the comparisons
examined in the analysis, and provides an opportunity to estimate the typical
size of this random component in individual measurements.

If a potential source of systematic variation is known, the experiment can
sometimes be designed in blocks to minimize its effect.
The reason to organize an experiment in blocks follows from a recognition
that experimental units may be available in recognizable „batches“ such that
units from the same batch tend to be more similar than units from different
batches.
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1.2 Basic elements of an experiment
An analysis that accounts for potential systematic differences associated with
batches/blocks can ensure the validity of the conclusions.

Sources of undesirable variation may not be associated with patterns that can
be identified beforehand. Randomization is used to avoid any uncontrolled
systematic differences that may exist between units within a block.

Protection is sought from any unforeseen systematic differences other than the
differences intentionally introduced by applying the treatments. The
assignments are made randomly so that any of the possible combination of
treatments to units within a block is equally likely.

A general rule of thumb, attributed to the famous stati-
stician George Box, is to
„Block what you can, randomize what you cannot.“
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1.2 Basic elements of an experiment
1.2.5 Validity and optimality

The first goal of experimental design is that the anticipated analysis should be
valid, even if not entirely optimal.

Given that the general structure of the design satisfies the goals of validity, the
second goal of experimental design is to lead to a statistical analysis that is
near-optimal, i.e. for which tests of relevant hypotheses are as powerful as
possible, or confidence intervals of interest have the smallest possible
expected lengths.

In the simplest cases, design optimality is addressed through controlling
sample sizes.
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1.4 Models and data analysis
We develop and examine designs in the context of the general linear model.

For most of the designs we cover, a fixed effects model will be adequate.
Split-plot designs will require a mixed effects model.

All designs are formulated with the idea that the motivating questions can be
answered through inferences about the fixed model effects.
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2.1 Linear vector spaces
It is assumed that the reader has been introduced to the fundamental results
and techniques associated with the matrix form of linear statistical models.

A specific p-dimensional linear vector space in Rn is generally defined by a
spanning set of p n-element vectors

(v1, v2, . . . , vp)

When the vectors in a spanning set are linearly independent, the spanning set
is also called a basis.

Two vectors w and v of the same length are said to be orthogonal if wTv = 0.

The column space of X is defined as the vector space associated with the
spanning set made up of columns from the matrix X.
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2.2 Basic linear model

y = X · β + ε

where

y is the n-element column vector of observable responses,

X is an n × k model or design matrix of controlled quantities
representing the details of the experimental design,

β is a k-element column vector of unknown parameters, and

ε is an n-element column vector of random errors, each with mean zero.
ε represents the statistical „noise“.

σ2 = Var(ε) = Var(y) is the model variance.

E(y) = Xβ and E(ε) = 0
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2.3 The hat matrix, least-squares estimates, and information
matrix
The „hat“-matrix H associated with the design matrix X is defined as

H = X(XTX)−XT

where the superscript „−“ denotes a generalized inverse.

The generalized inverse of a square, symmetric matrix A is any matrix A−

that satisfies AA−A = A
The largest number of linearly independent columns of A is called the rank of
A, denoted rk(A).

H is unique, even though (XTX)− isn’t. H is a projection matrix and projects
on the column space of X. Special properties of H:

H is symmetric, i.e. HT = H
H is idempotent, i.e. H2 = H
rk(H) = rk(X) = tr(H)
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The hat matrix, least-squares estimates, and information
matrix (cont.)
Xβ lies in the column space of X. The least squares estimator for β is defined
as

β̂ = min
β

(y − Xβ)T(y − Xβ)

so β̂ must satisfy ŷ = Xβ̂ = Hy. Pre-multiplying this equation by XT yields
the usual form of the Gaussian normal equations for β̂

XTXβ̂ = XTy what yields the LS-estimator β̂ = (XTX)−XTy

I − H possesses the same properties as H, and projects on the orthogonal
complement of the column space of X.

As a consequence the residuals

ε̂ = y − ŷ = (I − H)y

are orthogonal to ŷ = Hy
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The hat matrix, least-squares estimates, and information
matrix (cont.)
Substituting the model expression for y in the normal equations gives

XTXβ̂ = XTXβ + XTε

We get immediately

E(XTε) = 0 Var(XTε) = σ2XTX = Var(XTXβ̂)

Hence the entire character of the information relevant to inference about β is
characterized by the unknown parameter σ2 and the known matrix I = XTX.
We shall refer to I as the information matrix for β.
I has the following special properties:

I is symmetric.
I is positive semi-definite, i.e. zTIz ≥ 0 for all k-element column vectors z.
rk(I) = rk(X)

I can be regarded as a kind of matrix-valued generalization of a sample size.
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(cont.)
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2.4 The partitioned linear model
It is common that some of the elements of β are not related to any of the
experimental questions of interest.
We partition β into two sub-vectors, β1 (k1 elements) and β2 (k2 = k − k1
elements) containing the nuisance parameters and those of interest,
respectively.
The columns of X are partitioned correspondingly, X = (X1|X2). The basic
linear model can then be rewritten as a partitioned linear model:

y = X1β1 + X2β2 + ε

X1β1 is generally viewed as an acknowledged component of the mean of the
observed data which must be accommodated in the model to assure that the
analysis concerning the parameters of interest β2 is valid.
(inferences about the effect of experimental treatments after correcting for the
effect of blocks represented by the nuisance parameters β1)
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2.5 The reduced normal equations
With the partitioned linear model the Gaussian normal equations can be
rewritten as a system of two matrix equations:

XT
1 X1β̂1 + XT

1 X2β̂2 = XT
1 y

XT
2 X1β̂1 + XT

2 X2β̂2 = XT
2 y

After some algebra we get the reduced normal equations in only β̂2

XT
2 (I − H1)X2β̂2 = XT

2 (I − H1)y

The reduced form is of value to us primarily because it eliminates the
estimates of nuisance parameters β1, providing a more focused expression of
the information. Substituting XT

2|1 = (I − H1)X2 we could rewrite the reduced
normal equations in the classical form

XT
2|1X2|1β̂2 = XT

2|1y
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The reduced normal equations (cont.)
X2|1 could be constructed as the set of residuals that would result from fitting
the corresponding column of X2 as „data“ to the linear model containing only
mean structure X1β1.
Substituting the partitioned model expression for y in the normal equations
gives

XT
2|1X2|1β̂2 = XT

2|1X2|1β2 + XT
2|1ε

We get immediately

E(XT
2|1ε) = 0 Var(XT

2|1ε) = σ2XT
2|1X2|1 = Var(XT

2|1X2|1β̂2)

So in the context of a model including both β1 and β2, the information about
β2 is characterized by σ2 and the information matrix I2|1 = XT

2|1X2|1.

Linear functions of parameters cTβ2 have unique least-squares estimates
ĉTβ2 = cT β̂2 so long as c can be represented as a linear combination of the
rows of X2|1, i.e. c is in the row space of X.
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(cont.)
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2.6 Linear and quadratic forms

L · y and yTQy

with the constant (m × n)-matrix L and the constant and symmetric
(n × n)-matrix Q are linear and quadratic forms of the output or response
vector y respectively.

With E(y) = µ and Var(y) = Σ we get

E(Ly) = Lµ
Var(Ly) = LΣLT

E(yTQy) = µTQµ+ tr(QΣ)
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Linear and quadratic forms (cont.)
If y has a normal distribution y ∼ N(µ;Σ) we have the additional properties

Var(yTQy) = 4µTQΣQµ+ 2tr(QΣ)2

Ly ∼ N(Lµ;LΣLT)

Ly and yTQy are stochastically independent iff LΣQ = 0

For Σ = σ2I and any positive semi-definite, idempotent and pairwise
orthogonal (n × n)-matrices Qi, i = 1, . . . , l we have

yTQiy/σ2 ∼ χ2(rk(Qi);
µQiµ
σ2 ) ; i = 1, . . . , l

yTQiy and yTQjy are independent for i ̸= j
where χ2(df;λ) is the noncentral chi-square distribution with df degrees of
freedom and noncentrality parameter λ.

If we have additionally µQjµ = 0 then
yT Qiy/rk(Qi)
yT Qjy/rk(Qj)

∼ F(rk(Qi); rk(Qj);µQiµ)

where F(df1;df2;λ) is the noncentral F-distribution with df1 and df2 degrees
of freedom and noncentrality parameter λ.
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2.7 Estimation and information
The least-squares estimates of the treatment-related model coefficients β2 is a
linear form of y

β̂2 = (XT
2|1X2|1)

−XT
2|1y

The same is true for estimable linear combinations of β2. With C = LX2|1 we
have

Ĉβ2 = Cβ̂2 = LH2|1y

If Var(y) = σ2I we have

Var(Ĉβ2) = σ2CI−
2|1CT

The functional form of this expression clearly separates the influence of the
noise characterized by σ2, the parametric functions of interest characterized
by C, and the design characterized by I2|1 on the precision of estimation
resulting from an experiment.
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Estimation and information (cont.)
The mean-squared error MSE is a quadratic form of y

MSE =
1

n − rk(X)
yT(I − H)y

If Var(y) = Var(ε) = σ2I and the form of the linear model is correct we have

E(MSE) = σ2

i.e. MSE is an unbiased estimate of σ2.

When y is normally distributed then also ε and then Ĉβ2 and MSE are
independent.

In this case the quality of MSE as an estimator of σ2 is affected by the design
only through the value of n − rk(X), the associated degrees of freedom.
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Estimation and information (cont.)
The precision of MSE also influences the quality of inference that can be
made about estimable functions of β2.

The expected squared length of a (1 − α)-confidence interval for estimable
cTβ2 is:

4 t21−α
2
(n − rk(X)) σ2 cTI−

2|1c

Here the degrees of freedom n − rk(X) play a role only for smaller
experiments, because the (1 − α

2 )-quantile of the t-distribution decreases with
increasing degrees of freedom.
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2.7.1 Pure error and lack of fit
Imagine a design that contains replicate runs, groups of trials then are coded
with identical rows in the (n × k)-matrix X. The unique rows of X are
collected in the (n∗ × k)-matrix X∗ (n∗ < n). X and X∗ are connected through
the (n × n∗)-indicator matrix Z indicating which row of X∗ to write into X.
We have X = Z X∗.

We now propose a more general model for y:

y = Zϕ+ ε with E(ε) = 0 and Var(ε) = σ2I

With HZ = Z(ZTZ)−1ZT the error sum of squares SSE can be split up into
Pure Error sum of squares SSPE and Lack Of Fit sum of squares SSLOF:

SSE = yT(I − H)y = yT(I − HZ)y + yT(HZ − H)y = SSPE + SSLOF
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Pure error and lack of fit (cont.)
If ε is normally distributed then SSPE and SSLOF are independent, each is
independent of the treatment sum of squares, SST = yT(H − H1)y. SSPE

σ2 and
SSLOF

σ2 then follow a central χ2-distribution with (n − n∗) and (n∗ − rk(X))
degrees of freedom.

MSPE =
SSPE
n − n∗

and MSLOF =
SSLOF

n∗ − rk(X)

MSPE is an unbiased estimate of σ2 even if E(y) is actually different from
the form specified in the model, so long as the expectation of the response is
the same for all trials within a „replication group“.

If rk(X) < rk(Z) = n∗ the experimental design has more „estimation
capacity“ than is minimally required to fit the assumed model, and if n∗ < n
the design provides information about σ2 that does not depend upon the
assumed form of E(y).
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2.8 Hypothesis testing and information
In most experimental design settings X1 represents an intercept or constant
and/or block effects. The overall test for differences among treatments then
corresponds to:

H0 : y = X1β1 + ε against

H1 : y = Xβ + ε = X1β1 + X2β2 + ε

if the errors ε are independent and normally distributed, the test statistic is the
ratio of the treatment mean square MST and the error mean square MSE:

MST =
yT(H − H1)y

rk(X)− rk(X1)
and MSE =

yT(I − H)y
n − rk(X)
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Hypothesis testing and information (cont.)
Under H0, F = MST

MSE has a central F-distribution with rk(X)− rk(X1) and
n − rk(X) degrees of freedom.

Under H1, F has a noncentral F-distribution with noncentrality parameter

λ =
1
σ2 βT

2 XT
2 (H − H1)X2β2

The power of an F-test increases with λ.
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(cont.)
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2.9 Blocking and information
Blocking can be regarded as a representation of unavoidable systematic
differences between „sections“ of an experiment. From this perspective, we
account for blocking in design and data analysis so as to ensure validity of our
results, e.g., to eliminate estimation bias.

Another view of blocking is that it represents an opportunity to reduce
uncontrolled variation (represented by σ2) through experimental control.
If we use blocking the units can be expected to be more alike in the
experiments within smaller blocks. It is reasonable to expect that uncontrolled
variation caused by unit-to-unit differences within blocks is smaller. In this
sense, selection of an experimental design may also influence the value of σ2,
the divisor in Fisher’s information.
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