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Preface

Experimental design is a subject that can be successfully taught at many levels, and good texthbooks have
been written for many different audiences. A few of the excellent and frequently cited texts on the
subject are by Cobb (1999), which assumes little or no mathematical or statistical background;
Hinkelmann and Kempthorne (2005), written primarily for advanced students of statistics; Box, Hunter,
and Hunter (2005), with specific appeal to engineers and physical scientists with some knowledge of
statistics; and Dean and Voss (1999) for more general audiences at the advanced undergraduate or
beginning graduate levels. Some texts such as the book by Wu and Hamada (2009) describe
experimental designs for several specific settings, while others such as Cox and Reid (2000) focus more
on general principles.

In graduate programs in statistics, courses in experimental design are often electives to be taken after
students have completed a few “core courses” in theory and methods. This is the audience for which this
book is primarily intended. In a course taught at this level, connections between the structure of an
experimental design and the performance of a data analysis can be made specific through connection of,
for example, the balance and blocking properties of the design, to the model matrices, to the form of a
noncentrality parameter, to the power of an Ftest. The fact that orthogonal blocks can be “ignored” in
the estimation of treatment contrasts can be explicitly discussed through the matrix form of the reduced
normal equations. Previous exposure to the basic general linear model allows a more unified
presentation of design ideas using, for example, design information matrices, than is practical at a more
elementary level. A brief review of some of the more relevant elements of general linear models is given
in Chapter 2.

But while the intent is to offer a presentation that takes advantage of about one year of graduate-level
“statistical maturity,” the goal is certainly nofto present a “theoretical” course. The ideas and methods
presented in a first year of graduate study, including introduction to general linear models, equip
students to understand the basic concepts and techniques of experimental design at a deeper level than
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“statistical maturity,” the goal is certainly nofto present a “theoretical” course. The ideas and methods
presented in a first year of graduate study, including introduction to general linear models, equip
students to understand the basic concepts and techniques of experimental design at a deeper level than
would have been possible one year earlier. The intent of this book is to use that background knowledge
to help students more fully appreciate the fundamental concepts and technicques of experimental design,
but not to reduce it to a theoretical exercise. To emphasize the “real world” value of design, most
chapters contain a short reference example to a relevant experiment described in the scientific or
technical literature.

Since many of the analysis methods used in experimental statistics are fairly elementary, second-year o
graduate students will have already been introduced to the most commonly used data analysis

techniques associated with basic designs. As a result, data analysis is not a central focus of this book.
Chapter 6 does review some fundamental technigques concerning residuals and a few methods of

particular value in experimental statistics, and later chapters develop specific forms of ANOVA
decompositions and standard errors, as appropriate. But the emphasis is on how design influences the
quality of basic data analysis that should already be familiar, through the resulting degrees of freedom,
noncentrality parameters, and the form of standard errors.

Statistical computing is an important component of almost any aspect of applied statistics, but it is a tool
to be knowledgeahly used, rather than a substitute for knowledge of methodology. Furthermore,
statistical computing can be accomplished in many ways, and none of the currently available options is
necessarily best or most relevant to a course in experimental design. Still, students who have minimal
experience with statistical computing tools may need some hints regarding how to get started. While not
a focus of the book, each demonstration calculation was performed using R, with details provided in
Appendix A along with a brief overview of the commands most often used here. These are referenced
throughout the text with parenthetical pointers “(R#.#)”. A few end-of-chapter exercises ask students to
write programs to perform small simulation studies or solve simple optimization problems; these can be
avoided in classes where students have not had programming experience.

The material in Chapters 1-13 forms the core of a second-year M.S.-level course. Material from Chapters
15 and 16 can be added, as time permits, as an introduction to design for regression models. Chapter 14



quality of basic data analysis that should already be familiar, through the resulting degrees of freedom,
noncentrality parameters, and the form of standard errors.

Statistical computing is an important component of almost any aspect of applied statistics, but it is a tool
to be knowledgeahly used, rather than a substitute for knowledge of methodology. Furthermore,
statistical computing can be accomplished in many ways, and none of the currently available options is
necessarily best or most relevant to a course in experimental design. Still, students who have minimal
experience with statistical computing tools may need some hints regarding how to get started. While not
a focus of the book, each demonstration calculation was performed using R, with details provided in
Appendix A along with a brief overview of the commands most often used here. These are referenced
throughout the text with parenthetical pointers “(R#.#)”. A few end-of-chapter exercises ask students to
write programs to perform small simulation studies or solve simple optimization problems; these can be
avoided in classes where students have not had programming experience.

The material in Chapters 1-13 forms the core of a second-year M.S.-level course. Material from Chapters
15 and 16 can be added, as time permits, as an introduction to design for regression models. Chapter 14
(Factorial Group Screening Experiments) is an optional topic that can be included if it matches the
interests of the class, and Chapter 17 (Introduction to Optimal Design) may be of particular interest to
students planning further study of experimental design.

Finally, I want to acknowledge the contributions made to this work by the 300 or so graduate students
who have taken Statistics 512 from me at Iowa State University over the last decade. As all educators
know very well, teaching is a two-way process. Through their feedback, questions, and discussion, my
students have taught me much about how to think and talk about experimental design, and I owe them
thanks for their resulting contributions to this effort. That having been said, I take full responsibility for
anything that could have been said better, and of course, for any errors in this presentation.

Max Morris
Ames, lowa

2010
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CHAPTER 1 Introduction

Statistical analysisis an approach to answering questions using data. In many contexts, this is done
through techniques designed to detect or understand interesting patterns or signal/shidden in, or masked
by, uninteresting noise. Empirical studies based on “observational” or “available” data are sometimes
inconclusive or misleading, because the noise component of such data may be very substantial and its
sources not well understood. In order to avoid these shortcomings, experiments are sometimes
performed with the intent of facilitating the separation of signal from noise, clarifying the first and
minimizing the ambiguity caused by the second, to an extent that cannot be achieved in observational
studies. As a result, experiments are usually carried out under circumstances that are at least somewhat
artificial, and must be interpreted carefully when inferences are to be drawn about the “real world.” But
where they are feasible and can be reasonably interpreted, carefully conducted experiments often
provide the best opportunity to understand complex phenomena of interest.

In experimental contexts, data usually result from measurement processes of one sort or another. The
questions of interest take various forms, and depending on their context may be addressed by statistical
“answers” in the form of estimates, hypothesis tests, decisions, or less formal analyses. The quality of the
statistical answers obtained through experiments, characterized by quantities such as the bias and
standard errors of estimators and the power of tests, depends on many things. Some of these, e.g., the
relative magnitudes of signal and noise in the system under study, usually lie outside of the influence of
the investigator. But choices gare often available concerning sample sizes, organization of experimental
material, specific experimental conditions included in the study, and other aspects of the planning and
control of the experiment. In experimental studies, “planning and control” includes the specification of
operational details that are usually unknown or ignored in observational studies. Experimental design is
an approach to arranging these operational details so that the quality of the statistical answers to be
derived from the data is as high as possible.

1.1 Example: rainfall and grassland

Fay et al. (2000) described an experiment performed to investigate how rainfall patterns associated with



1.1 Example: rainfall and grassland

Fay et al. (2000) described an experiment performed to investigate how rainfall patterns associated with
predicted global climate changes might affect prairie tallgrass. The study involved the use of fifteen 9 x
14 m “rainfall manipulation shelters” — open-air structures with translucent roofs, rainfall collection
systems, and sprinkler systems allowing for simulated rainfall on the grass and soil beneath the roof.
“Four rainfall manipulation treatments (three replicates) then were assigned to 12 of the plots ... The
three remaining plots [shelters with the roofs removed] serve as unsheltered controls for effects caused
by the shelters and irrigation systems.” The four experimental freatments (not counting the unsheltered
controls, which would sometimes also be called a treatment) are the artificial environments created
within the structures, described as follows:

1. “Natural quantity and interval. This treatment replicates the naturally occurring rainfall regime.
Each time a natural rainfall event occurs, the quantity of rain that fell is immediately applied to the
plots.

2. Increased interval. Rather than immediately applying rainfall as it occurs, rainfall is stored and
accumulated to lengthen the dry intervals by 50%. The accumulated rainfall is applied as a single
large event at the end of the dry interval. Over the season, the naturally occurring quantity of
rainfall is applied, but the timing of events is altered, repackaging the rain into fewer, larger events.

3. Reduced quantity. In this treatment, only 70% of the naturally occurring rainfall is immediately
applied. This imposes reduced amounts of rainfall without altering the timing of rainfall events.

4. Reduced quantity and increased interval. Rainfall intervals are lengthened by 50%, and only 70% of
the accumulated rainrall is applied, imposing both reduced quantity and altered timing of evenis.”

The authors report that 14 different kinds of measurements were made on a variety of timing schedules
to assess the productivity and other indicators of health of the grass within the area of each shelter.
Aboveground net primary productivity (ANPP) and soil CO, flux were two of these measurements or
responses: “Soil CO: flux was measured with a closed-flow gas exchange system ... ANPP was estimated
from dry weights of early November harvests of all aboveground vegetation.”
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Aboveground net primary productivity (ANPP) and soil CO, flux were two of these measurements or
responses: “Soil CO: flux was measured with a closed-flow gas exchange system ... ANPP was estimated
from dry weights of early November harvests of all aboveground vegetation.”

1.2 Basic elements of an experiment

In this or any experiment, and with any form of inference, some assumptions are necessary to enable the
drawing of general conclusions from specific observations. In the best case, assumptions may reflect
known physical facts about a particular experiment. In other settings, they reflect general knowledge of
what has often occurred in previous related experiments. The least desirable assumptions are statements
that are accepted primarily for reasons of convenience or practical necessity. A primary goal of
experimental design is to arrange the operational details of the experiment to be consistent with these
assumptions, and to the degree possible, to enhance the measurable quality of the analysis. The following
sections briefly describe a few of the operational issues that are most important in this regard, and are
common in some form to almost all experiments.

1.2.1 Treatments and material

The classical ideas in the study of statistical experimental design are formed around the management of
experimental treatments and experimental material Treatments generally represent the entities of
scientific interest in the study; the four experimental treatments included in the rainfall experiment are
specified by the quantity of rainfall delivered and time between rainfall events. However, these four
treatments really are justrainfall specifications (relative to natural precipitation during the experiment),
or “recipes.” They don't represent anything physical, and so cannot be “evaluated” through data analysis
until they are carried out using experimental material — in this case the tallgrass and soil beneath each
of the shelters. The language of experimental design has been developed using a general concept that
treatments are applied fo experimental material. Alternatively, it is sometimes convenient to say that
experimental material is allocared or assigned fo a treatment. Each application of a treatment to a
quantity of experimental material is called an experimental trial or sometimes a run. The effects of the
specific treatments on the responses are of interest; the effects of the specific quantities of material used
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experimental material is allocared or assigned fo a treatment. Each application of a treatment to a
quantity of experimental material is called an experimental trial or sometimes a run. The effects of the
specific treatments on the responses are of interest; the effects of the specific quantities of material used
in the experiment are not, but it is understood that the experimental material can also introduce
variation in the experimental process. This material-induced variability is a major component of the

“noise” in many experiments and so it must be managed carefully.

For purposes of statistical modeling, treatments can be represented in a number of different ways. In this
book, the treatment representations, or treatment structures, discussed are described as unstructured,
factorial, and functional. By unstructured, we mean a collection of treatments that are generally
represented by a single nominal variable, or by a collection of indicator variables, one associated with
each treatment. This is the most general treatment structure we discuss, but it is also the least physically
meaningful because the “coding” implies nothing about relationships among treatments. In other
instances, treatments are characterized by a set of factors, with any particular treatment defined by
selecting a /evel/for each factor. In the rainfall experiment, the four treatments of primary interest are
defined by setting the “quantity” factor to its “natural” or “reduced” level, and the “interval” factor to its
“natural” or “increased” level, where each of these terms is given precise definition in the referenced
paper. A factorial representation implies specific relationships among treatments that have physical
meaning, and leads to statistical designs and models that naturally address the most important aspects of
the experimenter's questions. By functional treatments, we mean treatments that are identified by a set
of (usually) continuous controlled variables. We might use this designation for the rainfall experiment
had the “quantity” characteristic been specified by inches of rainfall per event, and the “frequency”
characteristic been specified by days between events. Functional relationships potentially represent
substantial information about treatment structure; with appropriate selection of models, they can often
provide the basis for understanding treatments not included in the experiment. It is important to
understand that there is often a choice of how the treatments of a particular experiment will be
represented in statistical modeling. However, these three categories offer a convenient framework for
introducing and discussing the material in Chapters 3 to 8, 9 to 14, and 15 and 16, respectively.

When a treatment is physically applied to material, the specific quantity of material used in one
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introducing and discussing the material in Chapters 3 to 8, 9 to 14, and 15 and 16, respectively.

When a treatment is physically applied to material, the specific quantity of material used in one
application is called an experimental unit, or usually simply a unit. In the rainfall experiment, the soil
and biomass beneath one shelter form an experimental unit; application of one of the treatments is the
physical process by which one of the rainfall recipes is simulated. This terminology fits the conceptually
simple rainfall experiment well, but it may not be so clear in other contexts. Sometimes there is also
physical material actually associated with each treatment, such as the addition of a fertilizer to a test plot
in an agricultural study. In other cases, the experimental material may not seem to be physical at all,
such as in an experiment to determine which of two computer programs executes more quickly in a
specified computing environment. There are also situations in which the most important component in
the definition of an experimental unit is the period of time in which the treatment is applied. These
considerations can introduce complications in the selection of experimental material, but in most
experiments the basic idea of the experimental unit is applicable in some form.

1.2.2 Control and comparison

The rainfall experiment described by Fay et al. is a confrolled study in which data are collected through a
planned sequence of activities. It is also a comparative study focused on whether there are differences
between the properties of the tallgrass plots that can be associated with the different treatments. (In
contrast, a study in which only one of the simulated rainfall recipes is used could not be comparative.)
These two properties are closely related. Experiments are controlled as carefully as possible so as to
isolate the differences between the treatments of interest, and to minimize extraneous variability so as to
enable the sharpest possible statistical analyses (e.g., narrow confidence intervals or powerful tests). In
many instances, this high degree of control means that the data collected are actually representative of
only a very special situation, reflecting the particular laboratory procedures, batch of experimental
material, et cetera, used in the performance of the experiment. As a result, meaningful inferences
usually need to be based on comparisons within an experiment, with the idea that anything unusual, but
common, to all trials in the experiment will “cancel out” in the analysis. This emphasis on comparative
structure and its implication for experimental design and analysis is a recurring theme throughout this
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usually need to be based on comparisons within an experiment, with the idea that anything unusual, but
common, to all trials in the experiment will “cancel out” in the analysis. This emphasis on comparative
structure and its implication for experimental design and analysis is a recurring theme throughout this
book. (See Youden's (1972) classic paper for a historical account of difficulties encountered in the
experimental estimation of “absolute,” rather than comparative, quantities.)

This emphasis on comparison often leads to the inclusion of one or more experimental controls, or
simply centrols, in the experimental plan. For example, in addition to the four carefully defined
“experimental treatments” in the rainfall experiment, three “sham shelters” were left open to natural
rainfall so as to provide a comparison to what might have happened without experimental
manipulation. In this context, the actual level of ANPP (say) in a given control area is not especially
interesting; it is simply a reflection of what happens to the tallgrass in the corresponding unit, during the
time period of the study, if there is no experimental interference. But the control is included in the
experiment so that there is an internal “benchmark” against which the more interesting experimental
treatments can be compared. In this case, the most important comparison to the control might involve
the “natural quantity, natural interval” treatment. A large difference between responses for these two
conditions could indicate unanticipated influences of the experimental procedure per se, a small or
negligible difference might be viewed as support for the investigators' intent that the “natural/natural”
treatment be a reasonable representation of the current environment. In an experiment involving the
growth of cell cultures in response to hormone exposure, the control might consist of cultures grown
without the addition of any hormones, while the more interesting cultures would be grown in the
presence of one or more hormones at specified concentrations. On their own, experimental controls
usually represent conditions that are of little real scientific interest, but including them in the
experiment gives us the ability to directly compare treatments that represent both well-understood and
novel conditions, to see how the differences affect responses.

1.2.3 Responses and measurement processes

In order to determine the effect of treatments applied to units, we need some means of evaluating the
result of that application. This is accomplished by obtaining values of one or more responses— the data
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In order to determine the effect of treatments applied to units, we need some means of evaluating the
result of that application. This is accomplished by obtaining values of one or more responses— the data
to be analyzed — for each experimental unit. If an experiment is well designed, the resulting response
values can be statistically analyzed to answer the questions that led to the study. Selection of appropriate
response variables is as critical to the success of the experimental program as any other decision made.
Units may be selected with the greatest care, and treatments defined and applied with precise control,
but unless the responses are relevant to the questions at hand the experiment will be of little or no
practical value. The 14 biological variables monitored by Fay et al. in the rainfall study reflect the
specific aspects of tallgrass growth and health of interest to them.

Having said this, we must also understand that in all but the simplest studies, response values don't just
appear, but must be determined by what we shall call a measurement process. These processes may be
relatively straightforward, such as the weighing of biomass to determine ANPP, or more complex, such
as the use of the closed-flow gas exchange system to determine CO; flux. However, the measurement
process, like the collection of experimental units used in the experiment, is generally of no real interest
to the experimenter; it is only an operational means to obtain response values that are of interest. Hence,
just as uninteresting units must be available if interesting treatments are to be applied, an uninteresting
measurement process will be required to produce interesting response data. And, just as selection of
units may have some influence on the experimental results, so the particular way in which the
measurement process is employed can have an effect on the data. (Of course, the collection or production
of good experimental units and good measurement techniques certainly are interesting in other contexts,
but these are different from the context of an experiment carried out to study the effects of treatments.)

1.2.4 Replication, blocking, and randomization

Control and comparison are two experimental devices used to reduce sources of variability that are
uninteresting or irrelevant in the context of the questions being asked. However, these strategies almost
never completely eliminate the undesirable noise in the data to be collected. Replication, blocking, and
randomization are aspects of statistical design that are used to further reduce extraneous variation in
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uninteresting or irrelevant in the context of the questions being asked. However, these strategies almost
never completely eliminate the undesirable noise in the data to be collected. Replication, blocking, and
randomization are aspects of statistical design that are used to further reduce extraneous variation in
responses. Experiments make use of replication when they contain multiple trials that are executed
under circumstances that are nominally identical. The word “nominally” refers to the degree of
experimental control that can actually be exerted in the study. For example, the rainfall experiment
contains replication because each specified rainfall condition (treatment) was simulated in three
different rainfall manipulation shelters. We know that the three areas of sod receiving any one
treatment are physically different and so are not likely to result in responses that are identical, butin a
well-controlled experiment they will be prepared in a manner and with material that is as homogeneous
as possible. Furthermore, collecting data from these three units will require three separate uses of a
measurement process; some degree of random measurement erroris a source of variability in most real
experiments, the effects of which may be minimized through good experimental design. Within this
degree of attainable control, replication reduces the random variation or noise in the comparisons
examined in the analysis, and provides an opportunity to estimate the typical size of this random
component in individual measurements.

Some other sources of uncontrolled variation might not be reasonably characterized as random. If a
potential source of systematic variation is known, the experiment can sometimes be designed in blocks
to minimize its effect. For example, the rainfall experiment was actually conducted in three complete
blocks of five shelters/plots. Within a block, the five shelters were physically located in close proximity,
and each of the treatments (four simulated conditions and one control) was applied to one unit in each
block. Distances between blocks were large relative to the distances between units within a block. The
blocking strategy was used to facilitate “correction” for any systematic differences associated with block
locations.

The decision to organize an experiment in blocks often follows from a recognition that experimental
units may be available in recognizable “batches,” such that units from the same batch tend to be more
similar than units from different batches. For example, in the cellular biology experiment mentioned
above it might be necessary to incubate the cell cultures in several blocks due to equipment limitations

on the number of cultures rthat can be nrocessed together. The nractical concern here is that when the



units may be available in recognizable “batches,” such that units from the same batch tend to be more
similar than units from different batches. For example, in the cellular biology experiment mentioned
above it might be necessary to incubate the cell cultures in several blocks due to equipment limitations
on the number of cultures that can be processed together. The practical concern here is that when the
same experimental treatment is applied to two units from the same batch, the corresponding responses
are likely to be at least somewhat more similar than when the same experimental treatment is applied to
two units from different batches. Ignoring such differences in the analysis of an experiment can call into
question any assumption that random effects are “independently and identically distributed.” An
analysis that accounts for potential systematic differences associated with batches/blocks — following an
experimental design arranged to make such an analysis efficient — can ensure the validity of the
conclusions. In still other cases, all the physical material needed to perform an experiment may be
relatively homogeneous, but each experimental trial may be time-consuming; it may be feasible to
complete (say) four trials in a day, leading to a 32-run experiment that requires 8 days of laboratory
time. If the measurement instruments used are calibrated at the beginning of each day, the laboratory
personnel are different each day, the temperature and/or humidity in the laboratory are different each
day, et cetera, it may be prudent to regard the four units processed in one day as a block so as to account
for any effects such systematic differences may have on the measured responses.

In still other cases, the sources of undesirable variation may not be associated with patterns that can he
identified beforehand. Fay et al. make use of randomization to avoid any uncontrolled systematic
differences that may exist between units within a block, by randomly pairing the five treatments to the
five shelters in each block. (This is an example of the Randomized Complete Block Design discussed in
Chapter 4.) Here, the physical identity of each unit is not necessarily the important point; protection is
sought from ganyunforeseen systematic differences among the shelters and their contents other than the
differences intentionally introduced by applying the rainfall recipes. The assignments are made
randomly so that any of the 5! possible pairings of treatments to units within a block is equally likely.
Most experimental designs we discuss will incorporate both blocking and randomization to control
possible patterns of variation that can or cannot, respectively, be anticipated when the experiment is
designed.

12 58 Validitv and antimalitv



possible patterns of variation that can or cannot, respectively, be anticipated when the experiment is
designed.

1.2.5 Validity and optimality

In a sense, one goal of experimental design is always to determine a specific plan for dealing with the
treatments of interest and the material that can be used, that is best or opfimal/in some sense that relates
to the study objectives. However, the firsf goal of experimental design — the one most often stressed in
introductory discussions about unit and block selection — is that the anticipated analysis be valid, even if
not entirely optimal. Randomization and blocking are employed firstto assure that the analysis to be
used accurately reflects the physical sources of variation, whether of interest or not, that may be present
in the data.

Given that the general structure of the design satisfies the goals of validity and is consistent with the
relevant operational constraints, the second goal of experimental design is to lead to a statistical analysis
that is optimal or near-optimal — for which tests of relevant hypotheses are as powerful as possible, or
confidence intervals of interest have the smallest possible expected lengths. In the simplest cases, design
optimality is addressed through controlling sample sizes, that is, determining the number of units
allocatedto each treatment so as to result in estimates of desired precision or tests of desired power.
Historically, much of the theory of optimal experimental design was developed after the fundamental
work on blocking and randomization was carried out. Still, the two objectives are not mutually exclusive.
For example, an experiment may be set up in blocks of homogeneous units to ensure validity, while the
number of units allocated to each treatment within a block might be chosen to minimize variability in
the estimation of the expected differences between a response under various treatments.

1.3 Experiments and experiment-like studies

In contrast to the carefully controlled rainfall experiment described in Section 1.1, suppose a health
research organization was interested in conducting a study to assess the effect of having experienced a
heart attack on certain indices of health, such as blood pressure, in adults. This might be done by
recruiting some people (who would take the role of “units” in experimental terms) who have had heart



In contrast to the carefully controlled rainfall experiment described in Section 1.1, suppose a health
research organization was interested in conducting a study to assess the effect of having experienced a
heart attack on certain indices of health, such as blood pressure, in adults. This might be done by
recruiting some people (who would take the role of “units” in experimental terms) who have had heart
attacks, and others who have not (the two “treatments” of interest) for comparison. In such studies, a
kind of blocking can sometimes be achieved by recruiting pairs of siblings, one of each category, to
reduce variability in the comparisons of interest.

Such a study might, if carefully conducted, yield valuable information on the connection between heart
attacks and subsequent health, but it would not be an experiment of the kind we are discussing because
it cannot allow for the randomized application of treatments to units. The individuals come to the study
already labeled as “previous heart attack” or “no previous heart attack.” This means that there is a
chance that unrecognized bias can be present in the comparisons of interest. For example, suppose that
individuals with a certain genetic trait were actually more likely to suffer heart attacks than those who
do not have the trait. If this were not known by the study designers, it is likely that the genetic trait
would be more prevalent in the members of the “previous heart attack” group, and tA7s might be
responsible for any observed differences we mistakenly interpret as being due to having had a heart
attack. Were it possible to randomly assign people to the two treatiments in a true experiment, systematic
biases of this kind could be avoided.

Epidemiologists who undertake nonexperimental studies are extremely careful to account for such
known or suspected patterns in the selection of individuals. Researchers in the social sciences who rely
on surveys often face similar challenges. In many cases, the kind of data analysis performed is very
similar to what would be used in the analysis of experimental data, and these analyses can often lead to
valuable information. Nevertheless, there is always more risk involved in the interpretation of data from
these “pseudo-experiments” than in the case of true experiments, because we can never be completely
sure that all potential confounders(a term used in epidemiology) have been accounted for or eliminated.

1.4 Models and data analysis

Our approach to experimental design is motivated largely by its relationship to the quality of data



1.4 Models and data analysis

Our approach to experimental design is motivated largely by its relationship to the quality of data
analysis that can be performed. In order to be specific about performance, we develop and examine
designs in the context of the general linear model. Forms of the model vary with different designs and
treatment structures, and depend on the nature of potential sources of variability. For most of the
designs we cover, a fixed effects model (i.e., only one random term) will be adequate, but split-plot
designs (Chapter 10) will require a mixed effects model. All designs are formulated with the idea that the
motivating questions can be answered through inferences about the fixed model effects. In many
chapters, we describe graphical summaries of experimental data that are primarily motivated by an
assumed linear structure in the data. Chapter 2 is a brief review of the results we will use from the
theory of linear models.

Having said this, it should also be noted that there certainly are many important questions for which
experimental information about variances, quantiles of distributions, and other statistical indices are
informative. There are also important experimental settings in which the most appropriate data models
are not linear. In fact, the designs we discuss here, and some variants of them, are often useful in these
situations also. We won't attempt to offer every statistical setting that might serve to motivate any one
design. But the general linear model provides a rich framework for studying how basic experimental
designs “work.”

1.5 Conclusion

The chapters of this book describe specific forms or c/asses of experimental designs. These differ in the
details of how units, blocks, replication, and randomization are managed, and how the effects of
treatments are represented. The scientific and operational characteristics of an experimental context
usually determine which class or classes of designs can best assure the validity of the intended analysis.
Within a class of designs, a particular design can often be selected by balancing statistical performance
(optimality) with operational demands (e.g., cost). While the details are always specific to the application,
the fundamental issues associated with these details are common to nearly all experiments. The intent of

a
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Within a class of designs, a particular design can often be selected by balancing statistical performance
(optimality) with operational demands (e.g., cost). While the details are always specific to the application, .
the fundamental issues associated with these details are common to nearly all experiments. The intent of ™
this book is to present an organized framework within which the statistical aspects of experimental

design can be understood as a “whole” within the structure provided by general linear models, rather

than as a collection of seemingly unrelated solutions to unique problems.

It should be admitted from the outset that many aspects of practical experimental design are nof covered
in this book. Coleman and Montgomery (1993) describe a useful approach to making many of the
decisions that must be made before a specific experimental design can be formatted, such as the
selection of variables and measurements to be considered. Barton (1999) also addresses some of these
issues, and describes ways that graphical representations can be helpful throughout the process of
planning an experiment. The designs and ideas discussed in this book have proven helpful in a wide
variety of experimental contexts, but successful experimentation in any specific case requires careful
communication involving all those involved. The statistical goal must always be to ensure that a design
has been formulated that fits the problem at hand, not the reverse.

1.6 Exercises

1. A classic and famous example of a hypothetical and simple, but illuminating, experiment was
offered by R.A. Fisher (1971):
“A lady declares that by tasting a cup of tea made with milk she can discriminate whether the milk
or the tea infusion was first added to the cup. We will consider the problem of designing an
experiment by means of which this assertion can be tested. For this purpose let us first lay down a
simple form of experiment with a view to studying its limitations and its characteristics, both those
that appear to be essential to the experimental method, when well developed, and those that are not
essential but auxiliary. Our experiment consists in mixing eight cups of tea, four in one way and four
in the other, and presenting them to the subject for judgment in a random order. The subject has
been told in advance of what the test will consist, namely that she will be asked to taste eight cups,
that these shall be four of each kind, and that they shall be presented to her in a random order, that



essential but auxiliary. Our experiment consists in mixing eight cups of tea, four in one way and four
in the other, and presenting them to the subject for judgment in a random order. The subject has
been told in advance of what the test will consist, namely that she will be asked to taste eight cups,
that these shall be four of each kind, and that they shall be presented to her in a random order, that
is in an order not determined arbitrarily by human choice, but by the actual manipulation of the
physical apparatus used in games of chance, cards, dice, roulettes, etc., or, more expeditiously, from
a published collection of random sampling numbers purporting to give the actual results of such
manipulation. Her task is to divide the 8 cups into two sets of 4, agreeing, if possible, with the

treatments received.”

(a) Carefully identify the units in this experiment.

(b) Carefully define the treatments in this experiment.

(c) Fisher mentioned several physical devices that might be used to determine a random temporal
order of treatments to the available units. Carefully describe exactly how this might be done 10
using any of these devices, while honoring the sample size constraints of the problem. "

(d) Suppose eight (physical cups) are available for the execution of this experiment, but they are
from two sets. Four are made from heavy, thick porcelain, while the other four are made from
much lighter china. If operational restrictions are such that each cup can only be used once, how
might this fact be incorporated into the experimental design?

2. Suppose you are interested in learning which of three “recipes” for making a paper airplane results
in (actual) paper airplanes with the greatest average length-of-flight when launched from a height of
five feet above the floor in a draft-free room. Design a simple, unblocked experiment, involving the
construction and testing of five airplanes of each kind, to address this question. Write one concise
paragraph (including rough sketches where this is helpful) to describe each of the following:

(a) The three experimental treatments you decide to compare.

(b) The experimental units you will need, and what you will do to see that these units are as
homogeneous as possible.

(c) Arandomization process for pairing units with treatments, and for determining the time-order
of the experimental trials, assuming you can only test one airplane at a time.

(d) A procedure for applying a given treatment to a given unit (remembering that paper airplanes
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(c) Arandomization process for pairing units with treatments, and for determining the time-order
of the experimental trials, assuming you can only test one airplane at a time.

(d) A procedure for applying a given treatinent to a given unit (remembering that paper airplanes
don't “just happen,” and that you want to introduce as little airplane-to-airplane “noise” as
possible).

(e) A measurement process, selected to be relevant to your experimental goal, offering as much
control (e.g., introducing as little measurement error) as reasonably possible.

3. Suppose you wish to conduct a study of three brands of gasoline to see which leads to the best
mileage in your car. You contemplate three different studies to accomplish this:

» Design A: Poll 100 persons drawn randomly from a phone book, asking each of them what brand
of gasoline they generally buy and what mileage they generally experience in their cars.

» Design B: Over a period of three months, use only one of the three brands each month and
record the mileage you experience in your car.

» Design C: Over a period of three months, rotate among Brand 1, Brand 2, and Brand 3 with each
fill-up and carefully read the mileage you experience in your car. (Assume you must buy

gasoline about once per week.)

(a) Compare the strengths and weaknesses of each of these study plans relative to the others.
(b) Which (if any) of the proposed studies is a “true experiment,” and why?

11

4. Suppose that a certain baseball league contains eight teams, and that each pair of teams plays the .

same number of games in a season. The season can be thought of as an experiment carried out to
determine which team is best. We might make this idea somewhat more precise (and artificial!) by
defining the “best” team to be the one that would have the greatest expected number of victories in a
single round-robin tournament. In this setting, identify the treatments and units, and describe what
it means for a treatment to be “applied to” a unit. (Remember that only one treatment can be applied
to a unit.) How might randomization and replication be used? Does blocking seem applicable in this
context, and if so, how?

5. As a home gardener, you would like to perform an experiment to determine which combination of
two kinds of fertilizer and three varieties of tormato plants vields the largest crop of tomatoes (per



possible).
(e) A measurement process, selected to be relevant to your experimental goal, offering as much
control (e.g., introducing as little measurement error) as reasonably possible.

3. Suppose you wish to conduct a study of three brands of gasoline to see which leads to the best
mileage in your car. You contemplate three different studies to accomplish this:

» Design A: Poll 100 persons drawn randomly from a phone book, asking each of them what brand
of gasoline they generally buy and what mileage they generally experience in their cars.

» Design B: Over a period of three months, use only one of the three brands each month and
record the mileage you experience in your car.

» Design C: Over a period of three months, rotate among Brand 1, Brand 2, and Brand 3 with each
fill-up and carefully read the mileage you experience in your car. (Assume you must buy
gasoline about once per week.)

(a) Compare the strengths and weaknesses of each of these study plans relative to the others.
(b) Which (if any) of the proposed studies is a “true experiment,” and why?

11

4. Suppose that a certain baseball league contains eight teams, and that each pair of teams plays the .
same number of games in a season. The season can be thought of as an experiment carried out to
determine which team is best. We might make this idea somewhat more precise (and artificial!) by
defining the “best” team to be the one that would have the greatest expected number of victories in a
single round-robin tournament. In this setting, identify the treatments and units, and describe what
it means for a treatment to be “applied to” a unit. (Remember that only one treatment can be applied
to a unit.) How might randomization and replication be used? Does blocking seem applicable in this
context, and if so, how?

5. As a home gardener, you would like to perform an experiment to determine which combination of
two kinds of fertilizer and three varieties of tomato plants yields the largest crop of tomatoes (per
plant, in weight of fruit over the entire growing season). Describe how you might conduct this
experiment. How might you use replication and randomization to make the experiment more
efficient? If you continued your experiment for a second season, what additional design principle(s)
discussed in this chapter would be relevant?



CHAPTER 2 Linear statistical models

In this book, much of the discussion about the properties of experimental designs is presented in the
context of the general linear statistical model, usually in partitioned form. It is assumed that the reader
has been introduced to the fundamental results and techniques associated with the matrix form of linear
statistical models. This chapter presents an overview of the main results and some notation used in this
text. Textbooks on linear models by Christensen (2002) and Ravishanker and Dey (2002) are good
references for readers who need a more thorough treatment of this subject. In addition, Graybill (1983)
and Harville (2008) are good resources for matrix algebra used in linear models.

2.1 Linear vector Spaces

Much of the structure and mathematics associated with experimental design and linear models is most
easily described and discussed in terms of linear vector spaces, usually of dimension A, the number of
response values obtained in the experiment. A specific A~dimensional linear vector space (or, in this
book, just “vector space”) is generally defined by a spanning set of p N-element vectors

{V1,¥2,¥3,. .43 Vp}

The vector space itself is the collection of all A-dimensional vectors that can be formed as a linear
combination of the vectors of the spanning set, that is, all vectors v that can be expressed as

v=ci+oava+caavat -+ v,

for any collection of real-valued constants &, &, 6, ..., ¢, When the vectors in a spanning set are /inearly
Independent—that is, when none of them can be formed as a linear combination of the others—the
spanning set is also called a basis. So, for example, the vector space spanned by the basis

1 1
L1
1 0



is the set of all 3-dimensional vectors in which the first element is the sum of the second and third

elements. When there are p= Nvectors in the basis the vector space contains all A~dimensional real- s
valued vectors, and is often denoted by 2. When there are fewer than Vlinearly independent "
M-dimensional vectors in the spanning set or basis, the vector space does not contain all vectors in R,

Two vectors w and v of the same dimension are said to be orthogonalif w'v = 0. Let $be a vector space in
RV, and let w be an A-dimensional vector such that w'v = 0 for every v € S. The set of all such vectors w is

a second vector space called the orthogonal complement of Sin RV, or sometimes just the complement of
S.

In most of our discussion, the vector spaces of interest will be those defined by spanning sets consisting
of the columns of model matrices, and the complements of these vector spaces. We will sometimes say
“the column space of X” to mean the vector space associated with the spanning set made up of columns
from that matrix.

2.2 Basic linear model

The basic form of a statistical linear model of Nrelated measurements or statistical observations is:

y=X0+¢€ (2.1)

where y is the A-element column vector of observable responses, X is an A by-Amodel matrix of (in our
context) controlled quantities representing the details of the experimental design, 0 is a /l~element
column vector of unknown parameters, and € is an Melement column vector of random variables, each
with mean zero. Except as noted, we assume that N = & The questions motivating the execution of an
experiment are generally answered, at least partially, by estimation of, or hypothesis tests about, the
elements of 0. The elements of € represent the statistical “noise” associated with their counterparts in y.
The simplest and most common assumption about the second moments of € is that the elements are
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experiment are generally answered, at least partially, by estimation of, or hypothesis tests about, the
elements of 0. The elements of € represent the statistical “noise” associated with their counterparts in y.
The simplest and most common assumption about the second moments of € is that the elements are
uncorrelated and have equal, generally unknown variance, i.e., Var(e) = o?I we take this assumption as
given in all that follows except where noted. Sometimes it is additionally assumed that the elements of €
follow a normal distribution. However, when ANis large, and under fairly general conditions, Central
Limit Theory can be used to asymptotically justify most finite-sample distributional results stemming
from the normal-errors assumption. In practice, equality of variance and independence between
ohservations are usually more critical than normality to the validity of the analysis.

2.3 The hat matrix, least-squares estimates, and design information
matrix

Given any experimental design and model, and the resulting model matrix X, the associated “hat” matrix
is defined as

H = X(X'X)"X'

where the superscript “~” denotes a generalized inverse of its matrix argument. In turn, a generalized »
inverse of a square, symmetric matrix A is any matrix A- that satisfies AA-A = A. The largest number of "
linearly independent columns of A is called the rank of A, denoted rank(A). When A is a matrix of full

rank, i.e., when rank(A) is the dimension of A, the only generalized inverse is the unique matrix inverse

A~1; when A is of less than full rank, A- is not unique. In our context, X'X is of less than full rank when

one or more of the columns of X can be expressed as a linear combination of the remaining columns. The
largest number of linearly independent columns of X, rank(X), is also rank(X'X). So, when rank(X) = rank
(X'X) = k&, (X’X)" is not unique. However, H isunique even in this case; that is, X(X'X) X’ is the same

matrix regardless of the choice of generalized inverse (X'X)~ used in evaluating it. The trace of a square
matrix such as X'X or H, denoted trace(-), is the sum of its diagonal elements.

H is an important factor in many statistical formulae, and it is a matrix that has a number of special
properties. including the following:
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matrix such as X'X or H, denoted trace(-), is the sum of its diagonal elements.

H is an important factor in many statistical formulae, and it is a matrix that has a number of special
properties, including the following:

« His symmetric, that is {H}; = {H}
« His idempotent, that is H2 = H.
* rank(H) = rank(X) = trace(H).

In thinking about the role of the hat matrix in statistical expressions, it is especially helpful to
understand that H is the projection operator associated with the column space of X. This means that for
any N-element vector v, w = Hv is as close as possible to v in the least-squares sense (that is, it minimizes
(w—v)"(w-v)) subject to the constraint that w must be expressible as a linear combination of the columns
of X (that is, w = Xz for some A-element vector z, or w is in the column space of X). This, in fact, is where
the “hat” designation has its origin. Letting the data vector y play the role of v, the least-squares estimate
of Hy)is¥ = Hy, and any vector w for which ¥ = XW is a least-squares estimate of @. This implies that
the vector of least-squares coefficient estimates, @, must satisfy X6 = Hy Pre-multiplying this equation
by X’, and realizing that X"H must be X’ (since multiplying by H does not change vectors already in the
column space of X) yields the usual form of the normal equations for 6

X'X0 = X'y. (2.2)

The matrix complement of H, I-H, also possesses the special properties listed above, and is the projection
operator associated with the complement, within R, of the column space of X. This means that for any
vector v, w = (I-H)v is as close as possible to v in the least-squares sense, subject to the constraint that w
must be orthogonalto every column in X (that is, X'w = 0). In linear statistical modeling,

(I - H)y =y — ¥ = ris the vector of residuals from the least-squares fit.

The normal equations (2.2) can be further rewritten by substituting the model expression (2.1) for y:

X'X0 = X'(X0 + €) = X'X0 + X'e



The normal equations (2.2) can be further rewritten by substituting the model expression (2.1) for y:

X'X0 = X'(X0 + €) = X'X0 + X'e
or, letting 6 = X’ &, "

X'X0 =X'X0+6
E(6) =0, Var(6)=02X'X.

Hence the entire character of the information relevant to inference about 0, at least through statistical
moments of second order, is characterized by the (usually) unknown scalar o* and the known matrix

I -=X'X.

We shall refer to /as the design information matrix for 0, to distinguish it from Fisher's information
matrix Jo? appears in formulae for the power of hypothesis tests and variances of estimates, and so is a
critical link between the experimental design and the quality of statistical inference that can be drawn
from the experimental data collected. Among its special properties are the following:

« [is symmetric.
« [is positive semi-definite, that is, v’/ = 0 for all conformable v.
» rank (J) = rank(X).

Ican be regarded as a kind of matrix-valued generalization of a sample size. In single-sample inferences
about means, hypothesis tests are generally more powerful, and estimates more precise, when o?/NVis
relatively small. Our context is complicated by the fact that multiple parameters are of interest, but
hypothesis tests are generally more powerful when the elements of 7are large and the value of o® is
small, and parameter estimates are generally more precise when the elements of F or 7! are small
(roughly coinciding with “large” J) and the value of o? is small. Information matrices also generalize an
intuitive additivity property of sample sizes. If two independent random samples of size A, and N; are
drawn from a common population for which the variance is o, the power and precision associated with
pooled-sample inferences about the mean are characterized by o%/(NV;+ ;). Similarly, if two independent



(roughly coinciding with “large” J) and the value of o? is small. Information matrices also generalize an
intuitive additivity property of sample sizes. If two independent random samples of size N, and A; are
drawn from a common population for which the variance is o2, the power and precision associated with
pooled-sample inferences about the mean are characterized by o?/(N;+MN5). Similarly, if two independent
experiments are conducted for which the values of © and o® are the same, and for which the design
information matrices are  and £, respectively, inference about 0 based on the combined data is

characterized by the information matrix 2 + £.

2.3.1 Example

A small study is designed to compare means associated with conditions that can be regarded as cellsin a
two-way table:

As indicated in the figure, three cells contain two observations each, and the remaining cells contain only
one each. Denote by yg the Ath observation from row 7and column ;. If it is assumed that rows and !
columns have additive effects on the response, i.e., that there is no row-column interaction, we might

consider a model of form:

(.Hn]\ (1 01 0 [}\ (f”,\
Y112 1 01 0 0 €112
Y121 1 0 01 0 (n,\ €121
Y122 1 001 0 g €122
a1 =11 0 0 0 1 Gy | + | @13
Y211 01 100 2 €211
Y212 01100 \.':i,-;) €212
Y221 01010 o

\!ﬂﬁ]) \ﬂ 1 0 0 1) \ €231 /
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Y212 01 1 00 33 €212
Y221 0O 1 01 0 €221
Y231 01 0 01 €231

In this case,

0

=

|

S

|

[
- b = O
o o B NN
S D = b
KD D =

2
\1 )
It is easy to see that neither X nor X'X is of full rank because, for either matrix, the sum of the first two

columns equals the sum of the last three. Since any four columns of X (or of X'X) are linearly
independent, but all five columns do not have this property, rank(X) = rank(X'X) = 4.

There are infinitely many generalized inverses of X’X in this case. Here is one numerical technique for

computing a generalized inverse of a square symmetric matrix M:

1. Identify a maximal set of linearly independent columns in M. “Maximal” means that this set should
contain as many columns as possible; when more than one such set exists, any one of them may be
selected. Let Z be the set of column numbers of these columns. Note that the number of elements of Z
is rank(M).

2. Form a new matrix M~ starting with M, and removing columns androws with numbers not in Z.
Note that M* will also be square and symmetric, and will be of dimension rank(M).

3. M*is of full rank, and so M*! exists and is unique. Compute M*-*. Now add rows and columns of
zeros to M™1, corresponding to the rows and columns removed from M in step (2). For example, if
the second and third rows/columns had been deleted from M to form M?, insert two rows and
columns of zeros between the first and remaining rows and columns of M*-1. The resulting

symmetric matrix is a generalized inverse of M.



e SeCona ana wnira rows/comumns naa peen aeleieq irom M to Iorm M-, Insert tiwo rows ana
columns of zeros between the first and remaining rows and columns of M*™-1. The resulting
symmetric matrix is a generalized inverse of M.

For our example, any four rows/columns of X'X are linearly independent; suppose we select L = {2,3,4,5}.
Then (R2.1):

4 2 1 &
2 4 00
.I'x ® =
W) 1 9 & 0
1 0 0 2
0.4615 —0.2308 —0.1538 —0.2308

—0.1538  0.0769 03846  0.0769
-0.2308  0.1154  0.0769  0.6154

(0.0000  0.0000  0.0000  0.0000  0.0000)
0.0000 0.4615 —0.2308 —0.1538 —0.2308
(X'X)” = | 0.0000 —0.2308 0.3654 0.0769 0.1154
0.0000 —0.1538  0.0769  0.3846  0.0769
\0.0000 —0.2308 01154  0.0760  0.6154

Pre-multiplying (X'X)- by X, and post-multiplying by X’, yields the unique hat matrix H, in this case:

0.3654 03664 00769 00769 0.1154 0.1346 0.1346 —0.1538 —ﬂ,llﬁ-i\
0.36564 03654 00768 00769 0.1154 0.1346 0.1346 -0.1538 -0.1154
00769 00769 03846 03856 0.0769 -0.0769 —-0.0769 0.2308 —-0.0769
0.0769 00769 03846 03856 0.0769 -0.0769 -0.0769 0.2308 -0.0769
0.1154 01154 007689 00768 06154 —0.1154 —0.1154 —-0.1538 0.3846
0.1346  0.1346 -0.0769 -0.0769 -0.1154 03654 03654 0.1538 0.1154
0.1346 0.1346 —0.0769 —-0.0769 —0.1154 03654 03654 0.1538 0.1154
-0.1538 —0.1538 02308 0.2308 -0.1538 0.1538 0.1538 05385 0.1538
k—ﬂ.llﬁd —-0.1154 —-0.0769 —-0.0769 03846 0.1154 0.1154 0.1538 (Lﬁl.’idl)
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0.1346 0.1346 —-0.0769 -0.0769 -0.1154 03654 03654 0.1538 0.1154
-0.1538 —0.1538 0.2308 02308 -0.1538 0.1538 0.1538 0.5385 0.1538
—=0.1154 -0.1154 -0.0769 -0.0769 03846 0.1154 0.1154 0.1538 0.6154

2.4 The partitioned linear model

In experimental contexts, it is common that some of the elements of @ are not related to any of the
experimental questions of interest, but are necessary nuisance parameters such as those associated with
the blocks in the design. In such cases, it is useful to think of the model structure as partitioned. We
partition 0 into two sub-vectors, 0, (/4 elements) and 0, (& elements, &+4 = &) containing the nuisance
parameters and those of interest, respectively, and partition the columns of X into two corresponding
sets of columns, X = (X, | X;). The basic linear model can then be rewritten as a partitioned linear model:

y = X0, + X203 + €. (2{])

The partitioned linear model is perhaps most often used in discussing the analysis of covariance (e.g., ”5'
Searle, 1971; Wildt and Ahtola, 1978; Milliken and Johnson, 2002), where the elements of X, are
covariates, collected as observations along with the elements of y. These are included in the analysis to
account for some of the variability in the response, in order to improve the quality of inferences about
the parameters of interest. The data analysis is sometimes said to focus on inferences about 0, affer
correcting forthe effects represented by 0,. In our context, the motivation is somewhat different. X, is
known in advance because it represents part of the structure of the selected experimental design, and X,
0, is generally viewed as an acknowledged component of the mean of the observed data which must be
accommodated in the model to assure that the analysis concerning the parameters of interest (0,) is
valid. However, the development of the analysis generally parallels that of analysis of covariance, and
leads to inferences about the effect of experimental treatments afier correcting forthe effect of blocks.

2.5 The reduced normal equations

Recalling that the basic and partitioned models are related by X = X; | X,) and 0’ = (0,"|0,’), and using the

same pattern to express the vector of least-squares estimates 0 = {9 |91) the normal equations



2.5 The reduced normal equations

Recalling that the basic and partitioned models are related by X = X, | X;) and 8" = (8,"|0,"), and using the

same pattern to express the vector of least-squares estimates @' = (01]6; ), the normal equations
X'X0 = X'y
can be rewritten as a system of two matrix equations:

X(X10; + X[ X20, = X}y
X5X 10, + X5X00; = Xhy. (2.4)

By pre-multiplying the first of these equations by X,'X, (X;'X;)-, and then subtracting it from the second
equation, we have:

X451 — X3 (X)X,) "X 1X46, + X5[1 — X, (X[ X)X/ X120,
= XE{[ == X] (X';xl)“xa]y

or:

X5 — Hy X, 0; + X451 — Hy X260, = X451 - Hyly, (2.5)

where H, = X, (X,'X;) X’ is the hat matrix for the model containing only terms associated with 0,. Here it
1s convenient to recall the interpretation of H; as the projection operator associated with the column
space of X;. Because H; projects the columns of X; “into themselves,” i.e., H;X; = X;, the first term in
equation (2.5) is zero regardless of the value of 6, leading to the reduced normal equationsin only 0.

X5 — H, | X202 = X451 - Hyly. (2.6)

It is important to understand that equation (2.6) is completely consistent with equation (2.2). For any X
data vector y, the estimate or estimates of 0. derived from solving the reduced normal equations are
precisely the same as the second segment of the estimate or estimates of 0 derived from solving the full
normal ecquations. The reduced form is of value to us primarily because it eliminates the estimates of

- L -~ " a~
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data vector y, the estimate or estimates of 9, derived from solving the reduced normal equations are
precisely the same as the second segment of the estimate or estimates of 0 derived from solving the full
normal equations. The reduced form is of value to us primarily because it eliminates the estimates of
nuisance parameters, providing a more focused expression of the information available concerning the
parameters of interest. The reduced normal equations can be written in the same form as eguation (2.2)
if we define a “corrected” version of X;:

Xopn = (I-H;)Xa. (2.7)
Given our earlier discussion of complementary hat matrices, each column of X, |, could be constructed as
the set of residuals that would result from fitting the corresponding column of X; as “data” to the linear
model containing only mean structure X, 6,. X, ; can be thought of intuitively as what remains of X, after

everything that could be explained by X; has been removed or accounted for. Using this notation,
equation (2.6) can be rewritten as:

xallx;még - szlly- {28]

Following our introduction of a design information matrix in Section 2.3, substituting equation (2.3) into
equation (2.8) yields:

Xy Xa)102 = Xhy, (X140 + X20, + €) = Xb;; X202 + X €
with the simplification due to the fact that the columns of X,,; are orthogonal to those of X,. Furthermore,
since

21 X2 = X5(I — Hy)Xa = X5(I - Hy )(I - Hy)Xa = X, Xap

we have

X Xop 02 = X5, X010z + X €

orletting 6 = X;," &,

v/ v _a. . _¥' W _ o K



XEIIXQHQ;; = x;“x?“ﬂg + x;“E

orletting & = X,;" &,

x'fﬂ[lx'.!“g.'l = X-;“xguﬂ'g + 8.
E(6) =0, Var(8) = 0®Xjy,Xap.

S0 in the context of a model including both 0, and 0., the information about 6, is characterized by o? and
the design information matrix:

.I-g”_ = X;“ x-}_“. {2}”

As with information matrices for an unpartitioned model, the quality of the inferences we can draw

about 6,, when 8, is also included in the model, is determined by the amount of random “noise” in the o
data characterized by o? and by the experimental design characterized by %,; The complete analogy to 2
sample size described in Section 2.3 does not always hold because design information matrices for
partitioned models are not always additive for combined experiments. However, the general role of £,

in statistical formulae derived from the partitioned linear model is basically the same as that of X'X in

the context of the basic linear model; other things begin equal, hypothesis tests are generally more

powerful when the elements of %, are large and the value of ¢? is small, and parameter estimates are

or I}

generally more precise when the elements of Lo 2|1 are small and the value of o2 is small.

When X, is of full rank, the least-squares solution of the reduced normal equations is unique and can be
» T i 1w
- [leix"“) X‘JEIF When X;; is not of full rank, a
02 = (X5, X2n)” K;lly; this can be

demonstrated by substituting this expression back into the reduced normal equations form:

. : ) . 9.
written in terms of a unique matrix mverse as L

similar expression characterizes the nonunique solutions,

xfznxil i[xfzulel}_x:a;l}’ = be,“y

or

Xy Hopy = X5,y



or

X Hopy = X,y

where H; ; = X;,(X;1"X;,1)7X;,," 18 the projection operator associated with the column space of X; ;. It is

clear that this holds for any vector y because X, 'Hz ;1 = X5 ;.

When X;,, is of less than full rank, 02 s of relatively little practical value in its own right because
estimates specified by different generalized inverses have different expectations — that is, they don't
even unbiasedly estimate the same vector quantity. On the other hand, linear functions of parameters ¢’

0; have unique least-squares estimates Cﬁaﬂ =c'f250 long as ¢’ can be represented as a linear
combination of the rows of X, 4, L.e., ¢’ =1'X;; for some A-element vector L, because in this case

02 = VX1 (X, Xopn) " X5,y = 'Hapy. (2.10)

equation (2.10) shows that such estimates are unique because H,, is invariant to the generalized inverse
chosen.c’0, is said to be estimablein this case. An analogous result holds in the simpler case of
unpartitioned models; ¢'0 is estimable if and only if ¢’ can be written as 1'’X for some A-element vector L

2.5.1 Example

Continuing the example of subsection 2.3.1, suppose that the rows of the table represent two batches of
material used in the experiment, and that the three columns represent the treatment conditions of

interest to the experimenter.
21

We would partition the previous matrix X as:

(1 0) (1 0 0)
1 0 1 00
1 0 0 1 0
1 0 010
X;=|1 0] Xp=|0 01




11 U 1 U v
1 0 M S
1 0 0 1 0
Xi1=1]1 0 X=10 0 1
0 1 1 00
0 1 1 0 0
0 1 ) 1. 0
\0 1) \0 0 1)
In this case,
' -1 ('11"; 'U) ; -1 (%Jsxa Dax-l)
(X1Xy) " = 4 H, =X (X} Xy)" X, = 1
0 3 O0uxs  gJaxa

where J and 0 are matrices of the indicated dimension in which each element is 1 or 0, respectively.
Further,

[ 060 -0.40 -0.20)
0.60 —0.40 —0.20
~0.40  0.60 —0.20
~0.40  0.60 —0.20
Xop = (I-H))Xs =X -H;Xa = | 040 —0.40  0.80 |,
0.50 —0.25 —0.25
0.50 -0.25 -0.25
~0.50 075 —0.25
\-0.50 —0.25 0.75)

and the design information matrix for 0;, recognizing that 8; must also be included in the model, is

220 -1.30 -0.90
I.'!!l = x;“inl - —1.30 1.95 —0.65
-0.90 —-0.65 1.55



220 =130 -0.90
Igi; = x;“x;ﬂl = —1.30 195 —ﬂﬁ!}
-0.90 -0.65 1.55

£y 1s not of full rank because the sum of the three rows or columns is a vector of zeros; this should not be
surprising, since we have already “accommodated” 6,, and know from the discussion in subsection 2.3.1 ..
that the sum of the columns in X; equals the sum of columns in X,. Hence, the reduced normal equations: =

220 -1.30 —0.90
~1.30  1.95 —0.65 | 8, = X,y
-0.90 -0.65 1.55

have infinitely many solutions. However {0,}; — {0-}. (for example) is uniquely estimable because the
coefficients of this linear combination can be written as a linear combination of the rows of X;,,; one of
the infinitely many such linear combinations is:

[ 0.60 —0.40 -0.20)
0.60 —0.40 —0.20
—-0.40  0.60 -0.20
~0.40  0.60 —0.20
(+1,-1,0) = (0,0,0,0,0,+1,0,-1,0) | —=0.40 —0.40  0.80
0.50 —0.25 -0.25
0.50 —0.25 -0.25
-0.50 075 —0.25
\-0.50 —0.25 0.75)

2.6 Linear and quadratic forms

Many of the statistics with which we deal in experimental design and analysis of variance are linear and
quadratic forms in the Melement vector of data, y, i.e., functions of form:

Ly and y'Qy



Many of the statistics with which we deal in experimental design and analysis of variance are linear and
quadratic forms in the Melement vector of data, y, i.e., functions of form:

Ly and y'Qy

respectively, where L (/m = N) and Q (V= N) are specified constant matrices. Here we limit attention to
symmetric Q. The properties of statistics of these forms are used repeatedly, and we review a few of
these here. In particular, if Ay) = m and Van(y) = £, then

e F(Ly) = Lm
e Var(Ly) = LXL/
e E(y'Qy) =m'Qm + trace(QX).

If it is also the case that y has a multivariate normal distribution (we use notation y ~ Mmn, X) to indicate
this), additional statements can be made about the properties of these statistics. In particular,

o Var(y'Qy) = 2 trace(QX)? + 4m'QEQm,

e Ly ~ N(Lm, LEXL'),

e Ly and y'Qy are statistically independent if and only if LXQ = 0.

If in addition to multivariate normality, the elements of y are independent with the same variance, X = 23
0’1, then for any two positive semi-definite symmetric Nx A matrices Q; and Q-, if: =

* Q, and Q, are both idempotent, i.e., ;Q, = @, and Q,Q. = Q,, and
+ QiQ:=0,

then:
e ¥'Qiy/0? ~ x¥ (rank(Q; ). m'Q,m/c?).

* ¥'Qay/o* ~ x*'(rank(Qz), m'Qzm/c?), and
e y'Q,y and y'Q.y are independent statistics,



e y'Qiy/o? ~ x¥(rank(Q;). m'Q,m/c?),
e y'Quy/0? ~ x¥(rank(Q3), m'Qam/o?), and
e y'Q,y and y'Qzy are independent statistics,

where y*'(-,-) denotes the noncentral chi-square distribution with degrees of freedom specified by the
first argument and noncentrality parameter specified by the second. Finally, if m’Q.m = 0, an additional
result is:

e [¥'Quy/rank(Q,)]/[y'Qzy/rank(Q2)]
~ F'(rank(Qy), rank(Qz), m'Q;m/c?)

where F(-,—,-) denotes the noncentral Fdistribution with degrees of freedom specified by the first two
arguments and noncentrality parameter specified by the third. In subsequent chapters, we shall often
refer to the noncentrality parameter as A; when this parameter is zero, the distribution is said to be a
central Fdistribution (or just “ Fdistribution”). In particular, this last result is the basis for the ANOVA
test for equality of treatments, where y'Q,y and y'Q.y are the sums of squares for treatments and
residuals (error), respectively.

2.7 Estimation and information

For our purposes, the linear forms of greatest interest are the least-squares estimates of the treatment-
related model coefficients, and estimable linear combinations of them. For the partitioned linear model
in which 0; is associated with treatments and the elements of @, are nuisance parameters, these can be
written as:

0, = (X511 X21) " X5y,

and

CO, = C(X5; Xa1) X5,y = LHyy where C = LXgy),,



and

Co, = C( f}“}(g“}'}[’?“y = LH,;y where C = LX),

respectively. Since estimable functions have unique least-squares estimators, these estimators have
unique sample variances. If Varnly) = ¢°1, then

Var(C82) = Var(LXz1 (X5, X2)1) ™ X5,¥)
= 02 LX g1 (X5, Xoy1) ™ X5 Xy (X5, Xgp1) X5, L
= o LX) (X X1 )~ X5, L
= 0°C(X5; X21)~C’

= J?CIE_I ,C'

24
where the generalized inverse is replaced by a unique matrix inverse if X;; is of full rank. The functional =
form of this expression clearly separates the influence of the noise characterized by o?, the parameiric
functions of interest characterized by C, and the design characterized by 4 on the precision of

estimation resulting from an experiment.

The quadratic form of greatest interest in estimation is the residual, or error, mean square from the fit of
the full model:

3 e
MEE = F—ramk() Y~ H:

If Vare) = o?l and the form of the linear model is correct, then from the general results for quadratic

forms,

2

- 0'X'(1 - H)X0 + e

Bl = N — rank(X) N — rank(X)

trace(I — H).

The first term is zero, regardless of the value of 0, because H projects the columns of X “into themselves,”
that is, HX = X. The second term can be written as



L W ke A

- N-rank(X) ° 7 = N-rank(X) 7

The first term is zero, regardless of the value of 0, because H projects the columns of X “into themselves,”
that is, HX = X. The second term can be written as

L

o

N — rank(X)

\trace(I) — trace(H)|.

Because H is idempotent, trace(H) = rank(H) = rank(X), and it immediately follows that MSEis an
unbiased estimate of o?:

E(MSE) = o>.

When £ is normally distributed, CO2 and MSE are independent statistics because

. 1
[LHa) ("1 [;\r renk(X) ' H}]
a? F .
T~ N- rank(X) LX 21 (X1 Xopn )™ X5(T = Hy ) (T - H)J,

and the last three matrix factors on the right side of this equation can be written as:

X4 - H, - H+ H;H] = X431 -H|] =0,
because H;H = H,.

Under the assumption of normality for &, the quality of MSE as an estimator of o? is affected by the design
only through the value of N-rank(X), the associated degrees of freedom. The estimator is more precise

and, other things being equal, leads to narrower confidence intervals (on average) and more powerful
hypothesis tests when N-rank(X) is large. Once the model has been established, this value is determined

by the size of the data set collected in the experiment; as usual, larger NVis better. In most experimental
settings, estimation of o? is (in its own right) not of primary interest, since it is often more related to the
homogeneity of experimental material and precision of measurement processes than to the experimental .-
treatments. But the precision of MSE also influences the quality of inference that can be made about =
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settings, estimation of o? is (in its own right) not of primary interest, since it is often more related to the
homogeneity of experimental material and precision of measurement processes than to the experimental .
treatments. But the precision of MSE also influences the quality of inference that can be made about =

estimable functions of 0;. For example, the expected squared length of a (1 — a)100% confidence interval
for estimable ¢’ 0, is:

4 t‘;’_% (N — rank(X)) .:r?c‘qlc.

(We square the length of the confidence interval to avoid dealing with the expectation of VMSE ) As
noted above, precision is enhanced (or, the expected squared interval length is made small) for designs
leading to relatively small values of EIIL‘_I 1 However M-rank(X) also plays a role since for given level (or
type I error probability) a, the #quantile decreases with increasing degrees of freedom. When competing
experimental designs all lead to relatively large but different values of V- rank(X), this influence is
relatively small. But for smaller experiments, changing the design to increase the residual degrees of
freedom from, say, 2 to 5, can make a substantial difference in the quality of formal inferences that can

be drawn.

2.7.1 Pure error and lack of fit

Validity of MSE as an estimate of o2 relies primarily on two assumptions: (1) the homogeneity of variance
and independence of the elements of £, and (2) the assumed functional form of Ely) = X 0. However,
there are situations, such as in diagnostic analysis, where it is desirable to have an estimate for which
validity requires fewer assumptions. For designs that contain replicate runs — groups of trials that are
“coded” with identical rows in X — such an estimate can be formed based on what is sometimes called a
pure errorsum of squares.

Formally, suppose the Nrows of X are actually each copies of one of the &* uniguerows of X*, N* < \.
Now propose a more general model for y:

y =Z¢ + €,
E(€) =0, Var(e)=o’I



NOW propose a more genera/model 10T y:

y =Zgo + €,
E(e)=0, Var(e) =o’1

where each column of Z contains values of an indicator variable associated with one of the unique rows
of X. For example, consider again the unbalanced, partially replicated two-way ANOVA example of
subsection 2.3.1, with no interaction term in the model:

/1 0 1 0 0) /1 0 0 0 0 0)
1 01 00 100000
1 0010 ) 1.0 0 00
1 00 1 0 010000
X=]100 01 Z=|0 010 0 0],
01 100 000100
01100 000100
0101 0 000010
\0 1 0 0 1/ \0 0 0 0 0 1)

for which =9 and N =6.

Define H; = Z(Z'Z)'Z’, noting that by its definition Z must be of full rank (V), and so Z'Z must have a
unique inverse. It should be clear that each column of X can be expressed as a linear combination of
those of Z; in fact X = ZX*. This immediately implies that the columns of X lie in the space spanned by
those of Z:

HzX = HzZX"* = ZX" = X.

where “LOF’ and “PE” stand for Lack of Fit and Pure Error, respectively. The corresponding mean
squares are

y(I-H)y=y'(Hz —H)y + y'(I1-Hz)y
SSE = SSLOF + SSPE

Using the results described in Section 2.6, it can be quickly verified that when € is normally distributed,

CCTrMConAd CCOC avo indonandant oorh o inAonandant nf tha tvoatmont o nf ormiarae CCT— M IT i



- k] Fw - b _ F Y - k| _——rw

SSE = SSLOF + SSPE

Using the results described in Section 2.6, it can be quickly verified that when € is normally distributed,
SSLOFand SSPE are independent, each is independent of the treatment sum of squares, S57= y'(H-H,)y,
and each, if divided by ¢?, would have a chi-squared distribution. If the model assumptions are correct,
both SSLOFo* and SSPHa? follow central chi-squared distributions because (H,-H)X = (I-HpX = 0.
However, MSPFEis an unbiased estimate of o even if £y) is actually different from the form specified in
the model, so long as the expectation of the response is the same for all trials within a “replication
group.” In fact, the functional form of SSPEis simply a within-group sum of squares for these groups of
runs which, according to our model, have common expectation.

Continuing our example, suppose that Ay) actually includes a two-factor interaction, so that a “true”
model could be written using:

, 1 —
MSLOF = S SSLOF

We have already seen that HzX = X, and since in this case (but not always) the new columns of X, are
the same as those in Z, it should be clear that HzX ;- = X, and E(MSPE) = 2. In this example,

2

4 T
SSPE =Y (vi — #12) + D _ (¥ — 53.4)* + ) _(vi — Flor)?
=6

i=1 i=J

where indexing refers to row number in X, and averages are over the indicated ranges of response
values. However (H;-H)X,... = X, H(X | Z) = (X | Z) - (X|HZ) = (0| (I-H)Z). But HZ, the projection of Z into
the space spanned by the columns of X, is northe same as Z, so A{MSLOF) can be greater than o?.

Intuitively, if rank(X) < rank(Z) = & the experimental design has more “estimation capacity” than is
minimally required to fit the assumed model, and if A < Nthe design provides information about o? that
does not depend upon the assumed form of £ZJ). Under these circumstances, MSPEis an alternative
estimator of o which is generally less precise than MSEwhen the assumed model is correct (since the
former is associated with fewer degrees of freedom than the latter), but is not biased when the assumed
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does not depend upon the assumed form of £ ). Under these circumstances, MSPEis an alternative
estimator of o which is generally less precise than MSE when the assumed model is correct (since the
former is associated with fewer degrees of freedom than the latter), but is not biased when the assumed
model form is incorrect. A diagnostic test for adequacy of the model (or conversely, for model “lack of
fit”):

Hyp, : E(y) = X@

Hyp, : E(y) # X0

can be carried out by comparing MSLOF MSPEt0 F_(N*-rank(X), N - NF).

2.8 Hypothesis testing and information

In most experimental design settings where X; represents an intercept or constant and/or block effects,
the overall test for differences among treatments corresponds to:

Hypy: y=X,0, + €
Hypy :y=X0 + € = X0, + X120, + €.

When the elements of £ are independent and normally distributed, the test is based on a statistic
comprised of the ratio of the treatment mean square (given all effects represented by X,):

—— 1 '
= rank(X) — rank(X;) y(H-H)y

and the residual mean square:

1
MSE = _y'(1- H)y.
N —rank(x) ¥ B

The central matrices of these quadratic forms are both idempotent, and aside from scalar factors, their
product is:

H-H)(I-H)=H-H,-H’+HH=H-H, -H+H, =0,

2R



The central matrices of these quadratic forms are both idempotent, and aside from scalar factors, their
product is:

(H-H;))I-H)=H-H;-H’+HH=-H-H,-H+H, =0,

proving that the two quadratic forms are independent as required for construction of the Fstatistic.
Under Hyp,, £F= MSTIMSEhas a central Fdistribution with rank(X)-rank(X,) and NM-rank(X) degrees of
freedom, so the critical value of the test at level a is £ _.(rank(X)-rank(X;), N~rank(X)). Under Hyp., Fhas
a noncentral Fdistribution with noncentrality parameter

A= E(y)'(H-H,;)E(y)/o?
= (0,X] + 0,X5)(H — Hy)(X,0, + X20,)/0? = 0,X4(H — H,)X,0./0?

because HX; = H;X, = X;. Furthermore, since HX, = X,, A can be written more simply as:

A= 05X5(1 - H)X202/0% = 0,15,0,/0°.

For an a level test, the power is

Prob{W > F,_,(rank(X) — rank(X,), N — rank(X))}

where

W ~ F'(rank(X) — rank(X,;), N — rank(X), A).

The noncentrality parameter plays an important role in experimental design because, other quantities
being equal, the power of an Ftest increases with A. As in estimation, the design information matrix 4,
is critical to the performance of the hypothesis test. Intuitively, we want 4,; to be as “large” as possible
(in some sense), because this leads to relatively large A when Hyp, is false and hence relatively large
power, with the understanding that this cannot be said more precisely until the potential values of 0,/c
have been characterized.

2.8.1 Example



Have Decll ClialalleEl 1LAe .

2.8.1 Example

Recall that for the numerical example discussed in subsections 2.3.1 and 2.5.1, the design information
matrix for the column parameters, adjusting for the row parameters, in the two-by-three table is (R2.2):

220 -1.30 -0.90
Ig“ — Xfmx-;“ = —1.3“ IHE.I —[}ﬁ")
-0.90 -0.65 1.55

Should it be the case that 0," is actually (-2,1,1), and o is actually 1.25, the noncentrality parameter
associated with the Ftest for equality of column effects is:

220 -1.30 -0.90\ /-2
A=(-211)] =130 195 -0.65 1] /1.25% =12.672.
-0.90 —-0.65 1.55 1

If the test is performed at level 0.05, the critical value of the test will be £ 4:(2,5) = 5.786 and the
probability with which the null hypothesis would be rejected is Prob( W > 5.786), where Whas a F (2, 5,
12.672) distribution, or 0.6348 (R2.3).

£y 1s not of full rank, but since any two rows/columns of this matrix are linearly independent, a
generalized inverse can be constructed as described in Section 2.3, by removing the last row and
column, inverting the resulting 2 = 2 submatrix, and “padding” the result with a row and column of
Zeros:

0.7500 0.5000 0
Iz_u = | 0.5000 0.8462 0
0 0 0

We demonstrated in subsection 2.5.1 that (+1, —1,0) 0, is estimable under this design; the least-squares
estimate of this quantity would have variance:

30
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We demonstrated in subsection 2.5.1 that (+1, —1,0) 0, is estimable under this design; the least-squares
estimate of this quantity would have variance:

0.7500 0.5000 0\ [+1
1.25% x (+1,—1,0) | 0.5000 0.8462 0 —1 | =0.8584.
0 0 0 0

2.9 Blocking and information

There are at least two different but closely related ways to think about blocking in the context of the
linear model. One is to regard blocking as a representation of unavoidable systematic differences
between “sections” of an experiment. From this perspective, we account for blocking in design and data
analysis so as to ensure validity of our results, e.g., to eliminate estimation bias that would damage our
inference if these differences were ignored. Here a primary goal of blocking is to protect the unbiased

nature of C82 although blocking can also have an effect on the form of %, and so also on the formulae
for standard errors of these estimates.

Another view of blocking is that it represents an opportunity to reduce uncontrolled variation
(represented by ¢?) through experimental control. For example, suppose a biologist plans a study in
which mice are the experimental units. The biologist can choose one of three designs:

1. An unblocked design in &= 30 mice,
2. A Dblocked design in 3 “segments,” each containing 10 mice, or
3. ADblocked design in 10 “segments,” each containing 3 mice.

If plan 1 is adopted, units will be randomly selected from the colony of all mice (of a certain strain)
available to the investigator. If plan 2 is used, each group of 10 units corresponding to a single block can
be selected from a set of animals of the same age, raised in the same cage. If plan 3 is implemented, the
three mice in each block can be selected from the same litter of mice (i.e., born at the same time to the
same animal). Because the units can be exnected to be more alike in the experiments with smaller



available to the investigator. If plan 2 is used, each group of 10 units corresponding to a single block can
be selected from a set of animals of the same age, raised in the same cage. If plan 3 is implemented, the
three mice in each block can be selected from the same litter of mice (i.e., born at the same time to the
same animal). Because the units can be expected to be more alike in the experiments with smaller
blocks, it is reasonable to expect that uncontrolled variation caused by unit-to-unit differences within
blocks (often a large portion of what is represented by ¢) is smaller. In this sense, selection of an
experimental design may also influence the value of o2, the divisor in Fisher's information.

2.10 Conclusion

The influence of the experimental design on the performance of formal inference concerning the
parameters representing treatments is summarized by the design information matrix,

= ! = i i —i ’ - N . "
Top = Xo(I = H1)X2 = X5, X211 gooqd designs are structured so that, to the extent possible and with

respect to a statistical model that realistically describes the system under study,

A — 3;12”323"!72

1s as large as possible for realistic nonzero values of 6,, and

Var(c'83) = rrjc’I,mc

1s as small as possible for interesting estimable functions ¢’ 9,.

Given a model, 4, is determined entirely by the experimental design selected. A goal of experimental
design is that %, should be “large” and £;,~ should be “small” in such a way as to provide powerful tests
and precise estimates concerning treatment effects. This use of the words “large” and “small” is vague,
because one design may have larger A than another design for one value of 0., but not for different
values of the parameters. The situation is a little clearer for estimation since we often have some idea of
the contrasts of interest (c) before the study begins. The practical problem is often identification of a
class of designs that are “good” for many possible values of 0; and contrasts ¢, rather than a single design
that is “best” for only one test or estimate.
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the contrasts of interest (c) before the study begins. The practical problem is often identification of a

class of designs that are “good” for many possible values of 0; and contrasts ¢, rather than a single design
that is “best” for only one test or estimate.

2.11 Exercises

1. Consider a small experiment and partitioned model for which:

(11 0y /1 0 0)
1 1 4 ¥ 1 1
fow |11 .o |PE
1 0 1 1 0 0
1 8 1 ¥ 1
\1 0 1) \0 0 1/

(a) Compute the hat matrix for a model containing only the mean structure described in the first
partition, Hj. a1
(b) Compute the “corrected” model matrix associated with the second partition of the model, X; ;. =

(c) Using your answer to part (b), characterize the estimable functions of 0, given that 8; must also
be modeled.

2. Continue using X; and X, from exercise 1.

(a) Compute the design information matrix for 0. given that 0, is to be simultaneously considered
for this experiment of &= 6 observations.

(b) Show that if this entire experiment is repeated rtimes (i.e., X; and X, are as described above,
but enlarged to contain r“copies” of each row), that the resulting information matrix would be r
times the matrix you computed in part (a).

(c) Show that the result you proved in part (b) is true for any design and partitioned linear model.
1

That is, if I3n 1s the information matrix for a given design and model, the information matrix for

A |
rreplicates of that design and model is IEI' N ijEIl

3. SupposeY ™ N(pIn, EnxnN)-



That1is, if *2/1 i3 the information matrix for a given design and model, the information matrix for

, . . Ir. =rZ}
rreplicates of that design and model is 21 21

3. SupposeY ~ N(uln,Enxn).

(a) Suppose X = ¢2I. Using properties of linear and quadratic forms, prove that the sample mean
and sample variance of the elements of y are independent statistics.

(b) Suppose now that

(1 B e PN

p 1 B s P
B=c*lp p 1 ... p|

\p » p ... 1)

—1 . ;
where # € (=1 Uprove or disprove that the sample mean and sample variance of the

elements of y are independent statistics.

4. Consider two competing designs, denoted A and B, of the same size (number of runs) which could be
used in collecting data to fit a given partitioned model. The design information matrices for these
two designs, for the set of parameters of interest 0,, correcting for the nuisance parameters 0,, are:

8 8 0 6 0 0
It =18 8 0 =10 6 0
0 0 4 0 0 6

Assume that the value of o would be the same for an experiment conducted using either design.

(a) Give a vector value for 0, for which the noncentrality parameter associated with the test for 22
Hypy : y = X460, + €, Hyp, : y = X0 + €5 larger under design A than under design B. -
(b) Give a value for 0, for which the reverse is true, i.e., the non-centrality parameter is larger
under design B.

(c) Note that in parts (a) and (b), you were nor asked for values of 0, that would lead to greater
power for one of the designs. What additional information would you need if the question had
been posed in this way?

5. Continue to use the two design information matrices from exercise 4:



power for one of the designs. What additional information would you need if the question had
been posed in this way?

5. Continue to use the two design information matrices from exercise 4:

(a) Identify a linear combination of parameters that is estimable under either design, ¢ 0., that can
be more precisely estimated under design A than under design B.

(b) Identify a linear combination of parameters that is estimable under either design for which the
opposite is true, i.e., that can be more precisely estimated under design B.

(Hint: In Section 2.5 we noted that estimable functions ¢ 0, are those for which ¢’ can be written as
a linear combination of the rows of X, ;. Equivalently, ¢’ 0, is estimable if ¢’ can be written as a
linear combination of the rows of 7

6. The paired-sample £test is a popular analysis technique for comparing two experimental treatments
In situations where units are available in natural pairs (or blocks of size 2). The experimental layout
can be thought of as a prow (for pairs) by two-column (for treatments) table, and the two-sided #test
1s equivalent to the Ftest for equal column effects, after accounting for rows, assuming no row-by-
column interaction. For an unspecified value of p> 1:

(a) write a partitioned model for this situation
(b) fully characterize X; and X,
(c) compute Hy, X;;, and 4);.

7. A tby-rsymmetric, positive semi-definite matrix M has feigenvalues {A, Ay, As, ..., Ad, and ¢

corresponding ~dimensional eigenvectors {e;, e, es, ..., ;4. Some of their properties are:
>0, eo;=1, €e;=0, iandj=1,28,....8,i#3J

The eigenvalue-eigenvector decomposition of M is:
i
M = Z Aie;e;.
i=1
Also, if M is of full rank,

M-! = E A lee!
i=l

and if M is not of full rank, a generalized inverse is given by the same sum including only terms for



Also, if M is of full rank,
i
M_] = Z ,\'_le,-e:
i=1

and if M is not of full rank, a generalized inverse is given by the same sum including only terms for =

A B
I?!l and IEI 1 for

the parameters of interest, and that these matrices have the same eigenvectors. Suppose also that

which A; # 0. Suppose that two designs, denoted A and B, have information matrices

Var(e) = o would be the same for either design. Finally, note that a given linear contrast of the
treatment parameters is estimable under a given design if and only if the vector of coefficient
weights can be expressed as a linear combination of the eigenvectors of %, associated with nonzero

eigenvalues.

(a) What must be true of the two sets of eigenvalues if design A offers precision that is at least as
good as design B for all estimable functions of the parameters of interest? Prove this.
(b) What must be true of the two sets of eigenvalues if, under design A, the noncentrality parameter
associated with the test:
Hypy: ¥y =X,0, + €
Hyp,:¥y=X0 + ¢

is at least as large as it is for design B, regardless of the value of 8? Prove this.

Recall R.A. Fisher's tea-tasting experiment (Chapter 1, exercise 1, part (d)). Suppose that, rather than
stating her guess as to which ingredient was put into the cup first, the lady responded to each cup
with a real-valued number (a response) reflecting her judgment of the tea's taste, and that we are
willing to adopt the model:
Yijk = 04 + B4 + €55k

where

i = 1 for poreelain cups

2 for china cups
j = 1 for milk-before-tea preparations

2 for tea-belore-milk preparations

and kindexes the first (= 1) or second (= 2) beverage made for the indicated values of 7and /.
Assuming that inferences about ; and [; are of greatest interest:



8. Recall R.A. Fisher's tea-tasting experiment (Chapter 1, exercise 1, part (d)). Suppose that, rather than
stating her guess as to which ingredient was put into the cup first, the lady responded to each cup
with a real-valued number (a response) reflecting her judgment of the tea's taste, and that we are
willing to adopt the model:

Vijk = 04 + B + €45k
where
i = 1 for porecelain cups
2 for china cups
j =1 for milk-before-tea preparations
2 for tea-before-milk preparations
and kindexes the first (= 1) or second (= 2) beverage made for the indicated values of 7and /.
Assuming that inferences about §; and [, are of greatest interest:

(a) construct a partitioned model for the experiment,

(b) compute H,, the hat matrix for the model including only cup-type parameters and random
noise, and

(b) compute X, ; and £,;.

9. Continuing exercise 8, suppose now that one of the china cups was broken, and one of the tea-
before-milk preparations was not made. For the resulting seven-trial experiment, find:

(a) H,

(b) X2|1 and irz|1
(b) the expected squared length of a 90% confidence interval for ,—p, (in terms of o?).

10. Once again, continuing exercise 8, suppose only three beverages are prepared:

» china cup, with milk-before-tea
= porcelain cup, with milk-before-tea
» porcelain cup, with tea-before-milk

Show that the data value collected from the beverage prepared in the china cup is not used in
estimating [;—[p,. Explain clearly, and without using mathematics, why this is reasonable.



8. Recall R.A. Fisher's tea-tasting experiment (Chapter 1, exercise 1, part (d)). Suppose that, rather than
stating her guess as to which ingredient was put into the cup first, the lady responded to each cup
with a real-valued number (a response) reflecting her judgment of the tea's taste, and that we are
willing to adopt the model:

Vijk = 04 + B + €45k
where
i = 1 for porecelain cups
2 for china cups
j =1 for milk-before-tea preparations
2 for tea-before-milk preparations
and kindexes the first (= 1) or second (= 2) beverage made for the indicated values of 7and /.
Assuming that inferences about §; and [; are of greatest interest:

(a) construct a partitioned model for the experiment,

(b) compute H,, the hat matrix for the model including only cup-type parameters and random
noise, and

(b) compute X, ; and £,;.

9. Continuing exercise 8, suppose now that one of the china cups was broken, and one of the tea-
before-milk preparations was not made. For the resulting seven-trial experiment, find:

(@) H,
(h) X;and &,
(b) the expected squared length of a 90% confidence interval for ,—p, (in terms of o).

10. Once again, continuing exercise 8, suppose only three beverages are prepared:

» china cup, with milk-before-tea
» porcelain cup, with milk-before-tea
» porcelain cup, with tea-before-milk

Show that the data value collected from the beverage prepared in the china cup is not used in
estimating [;—[p.. Explain clearly, and without using mathematics, why this is reasonable.
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CHAPTER 3 Completely randomized designs

3.1 Introduction

The simplest of the experimental designs we shall discuss are the Completely Randomized Designs (CRD)
for comparing ftreatments, using AVexperimental units. Here (and through Chapter 8) we will be
considering experimental designs in the context of unstructured treatments, by which we simply mean a
discrete collection of experimental conditions, not necessarily related by factors, nesting relationships,
specification by common controlled variable values, et cetera. Some of the treatments may be “special”
from the standpoint of the experimental context, such as a condition regarded as a contro/ against which
other treatments are to be compared, but these particulars are generally not used in our characterization
of the treatment structure. The name of this class of designs stems from the idea that the particular
experimental units identified for application of any one of the treatments are selected from the available
units in an unrestricted (or “completely”) random manner. More precisely, we generally determine a
priorithe number of experimental units to be assigned to each treatment, 2, 1, Iz, ... 11, such that their
sum is V, the number of units we plan to use. Then we may randomly select 2, of the units for allocation
to the first treatment, n, of the remaining units for the second treatment, et cetera, without any
additionalrestrictions on the process of random assignment. In particular, unlike the designs to be
described in Chapters 4 and 5, a CRD does not contain blocks of units purposefully selected to be
especially similar; rather all units are viewed as having been selected from a single collection of
available units, and while we know they cannot be exactly identical, any pair of them is viewed as being
related in the same way as any other pair.

3.1.1 Example: radiation and rats

As part of a study designed to investigate the effects of whole-body X-irradiation on the nervous system
of rats, Matsuu et al. (2005) carried out a small experiment involving four experimental treatments. The
units in this study were 20 Wistar-Kyoto rats. Treatments numbered 2 through 4 were defined as
exposure to a standard dose of radiation, followed by 4, 8, or 24 hours, respectively, before sacrifice and
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of rats, Matsuu et al. (2005) carried out a small experiment involving four experimental treatments. The
units in this study were 20 Wistar-Kyoto rats. Treatments numbered 2 through 4 were defined as

exposure to a standard dose of radiation, followed by 4, 8, or 24 hours, respectively, before sacrifice and
analysis. Group 1 was a control group;- rats in this group were housed and handled as those in groups -
P-4, but they received no radiation. Upon sacrifice, the adrenal gland of each rat was removed, and the =
amount of epinephrine in the gland determined, resulting in one data value per rat. Interest in this
experiment lay in comparing the groups — especially the control group with each of groups 2 through 4

— for possible differences in the response that could be attributed to the treatments. Table 3.1 contains
hypothetical data consistent with the results reported from this experiment. (The table entries were

actually reconstructed from graphs of summary statistics published in the paper; as is often the case in
research papers, the individual data values were not reported.) Proper experimental practice would call

for randomized application of the four treatments to the 20 available rats in such a manner that every
group of five rats has the same probability of being assigned to any of the treatments. One way this could
have been done in this study is through arbitrary labeling of rats with numbers 1-20, and random

selection without replacement of 20 tags from a container, where five of the tags are labeled “treatment

1,” five labeled “treatment 2,” et cetera. The ith tag drawn determines the treatment to be applied to rat %

In experiments of this type the technicians performing the necropsies often do so “blinded,” that is,

without knowing the treatment applied to each rat, so as to avoid intentional or unintentional technician
bias. As an additional precaution, the temporal order in which the 20 adrenal glands are processed might
also be randomized.

TABLE 3.1 Epinephrine Levels (Grams, g) in Rats Treated with
Whole Body X-Irradiation, from Matsuu et al. (2005)

Treatment




1 2 3 4
§.934 8.675 10.509 8.829
§0.819 10.720 3.067 10.484
10.693 10.040 9.027 8.632
10.106 9.894 9.680 8.352
9.139 11.9172 8.967 §.323
L 4 >
3.2 Models

In describing the structure of data from a CRD, models used in one-way analysis of variance are often

appropriate. The cell means modelsometimes used in this setting can be written as:

Yij = i T €5,
tm it g=l...0u,

€i; iL.id. with E(e;;) =0 and Var(e;) = o2

for the response recorded from the jth unit allocated to the ith treatment. p;is the fixed-but-unknown

expectation of responses associated with treatment 7 and e represents the independent, random

component of each data value. In fact, £ often represents variation associated with multiple sources,

including:

&
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expectation of responses associated with treatment 7 and e represents the independent, random
component of each data value. In fact, € often represents variation associated with multiple sources,

including:

« unique and generally unknown physical characteristics of each unit,

« unreproducible “errors” associated with application of a treatment to a unit,

« any subsampling of experimental material for analysis, such as selection of an aliquor,

» sources of “error” associated with each application of the measurement process, or unrepeatable
“noise” associated with the measurement instruments and techniques.

A more extensive model might express these sources of variation individually with multiple terms in
place of &, but there is little practical reason to do this in analyzing data from a CRD because these effects
cannot be meaningfully separated. Because we want to use an analysis based on an assumption that the
e's are independent, it is important that the experiment be carried out so that this assumption is
physically realistic, by:

« assuring that treatment-to-unit assignments are made randomly and independently for each unit
(within the constraint imposed by the fixed sample sizes),

« applying each treatment individually and independently to each of its allocated units,

« carrying out any material handling or subsampling processes required for response evaluation
independently for each unit, and

« applying the measurement process independently for each unit.

The cell means model has intuitive appeal and simple form, but also has an interpretive shortcoming
when viewed from the standpoint of controlled experimentation. Recall that, in order to eliminate as
much variation as possible, an experiment is performed under conditions that are as closely controlled
as possible, so that any differences due to the intentionally varied treatment conditions may be detected.
Often, this means that experimental runs receiving the same treatment are actually artificially similar
compared to what might be expected in nonexperimental settings. For example, an industrial
experiment may be carried out to compare quantities of chemicals produced under different versions of



as possible, so that any differences due to the intentionally varied treatment conditions may be detected.
Often, this means that experimental runs receiving the same treatment are actually artificially similar
compared to what might be expected in nonexperimental settings. For example, an industrial

experiment may be carried out to compare quantities of chemicals produced under different versions of

a process in a tightly controlled development laboratory, when the rea/interest is in understanding how
these quantities would differ in a much larger and more variable production environment. In statistical
language, the data collected in an experiment are realizations of random variables conditioned on all the
specific circumstances held constant in the process of controlling the experiment. Hence, p;actually
represents the expectation of responses associated with treatment i, collected on the specific day of the 29
experiment, using the specific batch of raw material employed in the experiment, by the single “
laboratory technician who carried out the experiment ..., that is, with far more detail specified than

would be involved in realistic questions about the treatments.

Because only the experimental treatments, and not the particular circumstances of experimental
execution, are of primary interest, the effects model

Yij = a+ T; + €5,
i=]1...5, 3=1...n4,
€i; iL.id. with E(e;;) =0 and Var(e;) = o3, (3.2)

has some interpretive advantages. In the effects model, a is a nuisance parameter reflecting the
contributions of the relatively uninteresting constant details imposed on the experiment to create a
controlled setting, such as the effects of being collected on the specific day of the experiment, using the
specific batch of raw material employed in the experiment, by the single laboratory technician who
carried out the experiment ..., and 1;1s the deviation, from «, of the mean response associated with
treatment £ If we assumethat this deviation would have been the same regardless of the
day/batch/technician and the effects of all other operational details represented by a, then t; represents
information on/y about treatment 7relative to the other treatments.

3.2.1 Graphical logic

Because CRDs with unstructured treatments are relatively simple, the form of a graphical analysis to



3.2.1 Graphical logic

Because CRDs with unstructured treatments are relatively simple, the form of a graphical analysis to
present experimental results can also be simple. The fundamental questions are generally about whether
the distributions of data from the various treatment groups, especially their means or other measures of
central tendency, are different. A set of parallel boxplots (introduced by Tukey (1977) and further
described by Frigge, Hoaglin, and Iglewicz (1989)) of the measured data, one boxplot generated from
the data from each treatment group, is a useful presentation for this purpose. It is an easy way to
compare the location and shape of the distributions associated with the various treatments, and so can
be helpful in discovering treatment differences that are more subtle than those easily detected with the
standard analysis of variance. An example of such a plot is displayed in Figure 3.1 for the data from the
example of subsection 3.1.1 (R3.1). Note that, following the logic used in modeling the data, only the
relative distances along the vertical axis are meaningful. Since the common component of all the data is
the experiment-specific a, the parallel boxplot should be viewed as a device for comparing groups — as
the formality of estimable functions described in the next section suggests. Hence, the shapes of the
distributions and relative vertical positions are taken as meaningful, but the direct comparison of any

boxplot to the vertical axis is not.

If the boxplots are reordered by increasing or decreasing means, the plot can be helpful in diagnostic
checking for a relationship between the means and variances of data from each treatment group. In

many instances, the practical concern is for detecting increases in spread associated with increases in 50
location, suggesting the need for a data transformation to satisfy the equality-of-variance assumption of
the standard analysis of variance as discussed in Chapter 6.

Boxplots of Data from Matsuu et al.
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Figure 3.1 Boxplots of reconstructed data of Matsuu et al. (2005)(R3.1).

3.3 Matrix formulation

A matrix expression of the cell means model representing all data in the experiment can be written as:

[ Y11
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or in more compact form, y = Xu + &, where A=) = 0 and Var(e) = 0’1, and
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The effects model may be written in partitioned matrix form to represent data from the entire
experiment as:

(na) [ 1) (1 0 ... 0) [ €11
h.ny 1 1 () P— (0 €1,n4
Y2,1 1 0 1 ... 0 T €2,1
- FH i LT T2 e _34)
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o o wace e e Ti .
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or more compactly, y = X;a + X; T + g, with

(11’11\ (ll‘u D'ﬂ], "ae Bnl\
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or more compactly, y = Xya + X; T + g, with

1n, Ly, Ony 0. Oy
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xl s 2 i xz - L 2 na
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Note that X; in the partitioned effects model is exactly the same matrix as X in the cell means model.
Clearly there is no new “structure” added to the data analysis with the second model. The single column
in X, is, in fact, the sum of columns in X, and so the two models are exactly equivalent mathematical
statements about the data. However, by framing our analysis around the partitioned model, we force
ourselves to consider what information is actually available about the treatments, apart from, or
“correcting for,” the collection of influences that are common to all data throughout the experiment.

Recall (Section 2.5) that any linear combination of treatment parameters estimable under the effects
model must be ¢’t such that ¢’ can be written as a linear combination of the rows of X;|; = (I-H;)X;. For a
CRD:

) o, 1 1
X{Xl = i‘"'l,, (K‘;Kl) 1 = F. H1 - EJN::."-\

1
x;ﬂl = xz - ?(ﬂ.] 1N|ﬂ.21N| R [ﬂ.!].N].
Notice that X;; is a “column-centered” version of X,, that is, each column of X;; is formed as the
corresponding column of X, minusthe average of elements in that column. Notice also that each row of
X1 has a zero sum, that is, Rt Jed ndliiak “, and it immediately follows that this must also be
true of ¢’ for any estimable ¢"t. Hence, the only linear combinations of t's that are estimable are contrasts

— those for which ¢’1 = 0.

42

It is worth spending a bit more effort carefully comparing this simple result to the functions of =
parameters that are estimable under the cell means model. Since there are no nuisance parameters in
the cell means model, ¢’p is estimable if ¢’ is a linear combination of the rows of X. It is immediately
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It is worth spending a bit more effort carefully comparing this simple result to the functions of
parameters that are estimable under the cell means model. Since there are no nuisance parameters in
the cell means model, ¢'p is estimable if ¢’ is a linear combination of the rows of X. It is immediately
obvious that this is no restriction at all; anyreal-valued vector ¢’ can be formed as a linear combination
of the rows of X. But why, if X = X, are there vectors ¢ for which ¢’u is estimable, but ¢’t is not? The
answer to this question is that p and t, while closely related sets of parameters, are not the same. The
relationship between these two vectors is

=T+ axl.

Let ¢ be any felement vector; ¢’u is estimable, and so is the equivalent expression ¢’t+ ac’l, but the latter
is not ¢'t unlessc’1 = 0, the condition for estimable functions of T derived above. Put more intuitively, in
order to eliminate any experiment-wide effects common to the means of all observations, the only
estimable functions of treatment-specific parameters are contrasts, because these are the only linear
functions that eliminate the common nuisance parameter (a) in the expectation through cancellation.

Continuing the derivation of the design information matrix for the effects model, we drop the subscript
“2|1” used for partitioned models, with the understanding that all subsequent design information
matrices presented will be for parameters associated with treatments (here 1), controlling for nuisance
parameters (here a), and find:
T = X% Xy = di A 3.5

= Xy X2 = diag(n) — E;nn (3.5)
where n = (1, 1., ..., n1)’, and diag(n) is the square diagonal matrix defined by this vector. In the special
case of equal sample sizes for each treatment (n;= n, 7= 1,2,3,..., 0, this reduces to:

IT=n (I— I?J)

Substitution of the specific matrix forms given above yields the reduced normal equations for the CRD:

diag(n) —

1 - . :
N nn’] T =Xy —ng,, (3.6)



Substitution of the specific matrix forms given above yields the reduced normal equations for the CRD:

1 X 5 _ .
diag(n) — ¥nn’] T = X5y —njj._, (3.6)

where . is the average of all elements of y. Further reduction shows that the ith scalar equation in this
set is equivalent to:

1::‘ — ;m = I};. = E_." {3.'-)

- 3 : . 1 &, 1 .
where 7w is the weighted average of treatment parameter estimates N 2 iTi and yj-, is the average of
the n;data values associated with treatment 7z For estimable functions ¢'t, the least-squares estimate is -
formed as the linear combination of these scalar equations in which the jith equation receives weight ¢; #

since the sum of these weights must be zero if ¢’t is to be estimable, both 7wand Y. are eliminated from
the resulting equation:

e L
Z CiTi = E Cil '[:3-8)
i=1 i=1

so that the least-squares estimate of any contrast of treatment parameters is the same contrast in the

corresponding treatment data averages.

3.4 Influence of the design on estimation

The variance of the estimate displayed in equation (3.8) is especially simple to derive because the
estimate is a linear combination of independent sample means with known variances (apart from the
value of o), but it is instructive to see how it follows the general form discussed in Section 2.7:

o?¢'I" ¢ = o?c[X5H(I — Hy )X, .

In this case, we can simplify the expression by demonstrating that diag(n)-! is a generalized inverse of
7 = [X5(I — H,)X2] Using equation (3.8),



2¢'IT7c = o/ [ X451 - Hy) X3 "¢

In this case, we can simplify the expression by demonstrating that diag(n)-! is a generalized inverse of
7 = [X5(I - H,y)X2], Using equation (3.8),

Zdiag(n)~'Z = {diag{n} ~ %nn'l diag(n) ™! [{liag(n) - %nn’]

oo T T
—(hag(n)f-QEnn +—nn 1n

= diag(n) — %nn’

=T (3.9)

Hence for estimable ¢'t,

t
Var(c't) = o2c'diag(n) " 'c = o? erfnl
i=1

Similarly, for any collection of estimable functions Cr, the variance matrix is:

Var(C7) = o*Cdiag(n) ' C". (3.10)

Following the general form discussed in Section 2.7, the expected squared length of a (1 — a)100% two-
sided confidence interval for estimable ¢t is

f
4??_% (N = rank(X))o?c'I ¢ = 4!‘.'{_%{:\? —t)o* Z ¢l /n;

in this case. Ordinarily, one would want to design the experiment so that the square root of this quantity
1s small relative to anticipated values of ¢'t, 1.e., so that

2t1-g(N —t)o
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2t,_g(N —t)o

t t
Zcff[n, < Zt‘.‘if,-.
i=1 =]

There are obvious practical limitations in doing this, because the parameter values are not known in

t
advance. However, for any (even unknown) value of 2 i=1 CiTifO (what might be called a signal-to-noise
ratio), designs that lead to relatively small values of

f1_.-d.(j\r

either through large overall sample size (and so a relatively small #quantile), or through allocation of
relatively more units to groups for which the corresponding | ¢;| is large for contrasts of interest, are
generally preferable.

3.4.1 Allocation

Because the CRD is a relatively simple and flexible experimental design, it is a good setting in which to
introduce the idea of optimal allocation. While good experimental practice requires that treatments be
applied to individual units randomly, we often have the freedom to select the number of units to be used
in each treatment group (1) so long as the operational constraints such as limits on total number of units
or cost are satisfied. It is often assumed that a CRD that allocates equal numbers of available units to each
treatment must necessarily be optimal. A more careful consideration of the allocation problem requires
that we take experimental goals into consideration. Specifically, what estimate or test properties are we
trying to optimize through allocation? The CRD with equal group sizes has good overall properties, and is
in fact optimal for many — but not all — experimental goals.

Allocation problems are formulated as constrained optimization problems in which the quantity to be
optimized is, for example, the variance of an estimator, or a reasonable function of more than one such
variance. The constraint most often reflects the total number of units allowed. So, for example, if an
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Allocation problems are formulated as constrained optimization problems in which the quantity to be
optimized is, for example, the variance of an estimator, or a reasonable function of more than one such
variance. The constraint most often reflects the total number of units allowed. So, for example, if an
experiment involving five treatments is being conducted with the sole aim of estimating t; - 1,
(admittedly not very realistic), and 50 units may be used altogether, we may wish to select the five
sample sizes so as to:

«71 1 .
minimize o (— - —) subject to Z ny = 90.
ny N2 —

With a little thought, it should be clear that the solution to this problemism=mn=25and n;=n,=n;=0
for any positive value of o°.

Most realistic experiments involve estimation of more than one quantity. Suppose the goal of the
experiment is to estimate plinear contrasts of T, C t. The variance matrix of the least-squares estimate is:

Var(Ct) = 0°CI~C’ = 0*Cdiag(n)~'C’ (3.11)
from equation (3.10). If we elect to minimize the average variance of these estimates (not the only
sensible summary measure, but one that is often useful), this is equivalent to minimization of:
trace(Cdiag(n) " !C’) = trace|(C'C)diag(n)~!] (3.12)
regardless of the (in practice, unknown) value of ¢°. Note that the matrix product in the last expression
represents a partitioning of the objective into two factors, the first (C'C) determined by the experimental

goals, and the second (diag(n)-!) determined by the design. The objective function we want to minimize
can also be written in scalar terms as:

rp
Y Y {c ”t. (3.13)

k=1 i=1

Unconstrained optimization of this quantity is obvious; simply choose the largest possible value for each
n;. The solution of the more realistic constrained problem is not so obvious, but can be found using the
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Unconstrained optimization of this quantity is obvious; simply choose the largest possible value for each
n;. The solution of the more realistic constrained problem is not so obvious, but can be found using the
Method of Lagrangian Multipliers.

Method of Lagrangian multipliers

The allocation of units in a CRD is summarized by the values of integer-valued quantities, m, 1, ..., . In
practice, it is often easier to solve an optimization problem expressed in terms of continuous variables,
because this allows the use of standard techniques from calculus. Hence, optimal design problems are
often solved as if m, m,, ..., n,were actually continuous variables, and the resulting solution is “rounded”
to integer values if necessary. There is no guarantee that the rounded design will actually be optimal
among exact (integer-valued n) designs in all cases, but it is usually very close to the optimal

arrangement.

Constrained optimization of a function of real-valued arguments can be accomplished via the Method of
Lagrangian Multipliers. Briefly, suppose we wish to maximize or minimize a differentiable function fn)
with respect to n, a real-valued vector of farguments, subject to the constraint gn) = G for a specified
differentiable function gand scalar value . Now introduce a new scalar variable Z, and define a
function of #1 arguments:

hin,L) = f(n) + L{g(n) - G). (3.14)

The technique calls for solving the set of /+1 simultaneous equations:

a I, 0 d
I —— — — :'[ T —_— — [] —f —_— A : i 1["
dny gl dng et In, h 3L =0 (3.15)

Hence, this is an extension of the widely used technique from basic calculus for unconstrained

optimization, based on the solution of:

a 0 )
aal =0 g=F=0 e gEef=_0




Hence, this is an extension of the widely used technique from basic calculus for unconstrained

optimization, based on the solution of:

3] a
mf 0 E =0 mf:l].

As with this simpler version of the method, a solution found using the Method of Lagrangian Multipliers

can actually be any stationary point, and so careful use also requires checking to see that it is of the
desired type (e.g., maximizer or minimizer). The “Lagrangian Multiplier” Z is not a quantity of direct

interest in the specification of the design, but its introduction enforces the desired constraint through the

last equation:
a
—_— = -G =0,
(}Lh g(n) — G

Applying the Method of Lagranglan MLI:EUP]JEI'S to the allocation problem, if we wish to minimize the

average variance of contrasts Cy where y is the telement vector of treatment-specific response
averages, controlling the total number of units to be a specified value N,

hin.L) = Zp: Z{C}E,n," - L (z": n; — "'v) (3.16)

k=1 i=l i=1

P
e -y {Chimi®-L=0, i=1...t (3.17)
k=1

on;

(3.18)
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As is often the case with the Method of Lagrangian Multipliers, the last equation may not need to be
formally solved at all. Here, we know that the sample sizes must total &, and so the solution for the
(continuous) optimal design is:

V2 re=1{CH v V1{C'Clii V. el
4 L_ N=— N, i=1...t. (3.19)
> =1 VIC'Cly; ?

n; =

B EO

As an example, consider the experiment of Matsuu et al. (2005) described in subsection 3.1.1, in which

20 rats were used to compare four treatments. Since the first treatment was an experimental control, &
interest might be focused on estimating the differences 1,—1,, 1:-1;, and 1,—1,, leading to: #
-1 1 0 0
C=|-1 01 0
-1 0 0 1

From equation (3.19),

7 1
‘/_ 20 = 7.32, Mo =Ng =Ny =
V3+3

V348

ny = 20 = 4.23,

suggesting the CRD allocation defined by the integer values m, = 8 and 1, = n; = n, = 4. (Note that the
values cannot be independently rounded since this would lead to a sum of 21 units.) This imbalance
reflects the fact that treatment 1 is involved in all comparisons of interest, while the remaining
treatments are each involved in only one comparison.

A useful general tutorial on the Method of Lagrangian Multipliers can be found in Edwards (1994).

3.4.2 Overall experiment size
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3.4.2 Overall experiment size

In the allocation problem described above, for given experimental goals, optimal values of n, 7= 1,2,3,...,
t, are derived under the constraint of a specified value for /. We can also consider the complimentary
problem; suppose the proportion of units to be used with each treatment has been determined, and call
these p, 7= 1,2,3,..., £, 3; p;= 1. How large would the experiment have to be, that is, how large would &
have to be, to assure that the experimental objectives are met?

Suppose the design information matrix 7has been computed for a CRD based on an arbitrary value of &
total units, with the required proportions assigned to each treatment. We can denote a per-observation
design information matrix as I* = ] N. Note that for CRDs with fixed proportions of units assigned to each
treatment,  would be the same matrix regardless of the value of N used to compute 7 (Proof of this is
left to the reader; see Exercise 6 at the end of this chapter.) In fact, from equation (3.5) we see that

I' = diag(p) — pp’
where p = (p», o, B, ..., P2)°, and following equation (3.9), a generalized inverse is:
I'" = diag(p)~".
Then, for anyvalue of N,
I = NI' = N[diag(p) — pp'l,

1 1
I~ =—=TI'" = —diag(p)~".
N v diae(p)
If a particular linear contrast ¢’t is of interest, the variance of its estimate is a function of M

— P ﬂ'z
Var(c't) = 0*c'I ¢ = ~C 'diag(p) 'c = Zc, /pi-

We want a design for which the square root of this variance will be small relative to ¢’t, hence ANshould



a-
ar(e'r) = 0%c'T ¢ = N 'diag(p) 'e = — Lcijp,

We want a design for which the square root of this variance will be small relative to ¢’t, hence Nshould
be large enough to make

c'r UV c'r/a

Jrren) . Vedmapr e

acceptably large. Use of this equation requires a value be proposed for the unitless signal-to-noise ratio w

= ¢'t/o; given this, we can easily determine the experiment size needed to, for example, result in a

specified value of W = cr/ V l’I'mr{':h":':

3.5 Influence of design on hypothesis testing

The comparison of experimental interest is between variation associated with T, and variation associated
with . This comparison is made formally using the Fstatistic associated with the test of the null

hypothesis Hypy: 7 = . = T3 = ... = T, computed as the ratio of:
i
MST = "ni(@. —9.)*/(t—1) (3.20)
and
MSE = (yy — #.)*/(N —t) (3.21)

with critical value F_ (&1, N-D, where a is the selected level or size of the test. For a given value of 1, the
noncentrality parameter associated with this test is:

A=7Ir/o* =7 [dlag n)— lun] T/o? = Z ni(m = 7u)?/0?, (3.22)
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A=7Ir/o’ =7 [diag{n] - fqlln] T/o* = an{n —Tu)2/e?, (3.22)
- 1 .

where 7w is the weighted average of the elements of 7* ™ 7_ In particular, the power of the test of equal

treatment effects, for given values of T and o2, is

Prob{W > Fy_,(t — 1,N —t)},

where

W~ F' (5 -1, N = t.Zu,[T, - f‘,,_.)z,ff_‘rg).

449

For example, in the design of the experiment of Matsuu et al. described in subsection 3.1.1, investigators
might have wanted to know the power of the test of equal treatment effects, under hypothetical

conditions in which t’ = (0,0,-1,-2), and o = 0.75. For the design specified (five rats assigned to each of the
four groups), the critical value of a 0.01-level test would be:

ﬂ],m}{g. 1(‘1] = 5.292

and the resulting power would be based on a noncentral Fvariate, I#, with noncentrality parameter
24.444, (R3.2).

Prob{W > 5.292} = 0.845,

3.6 Conclusion

Completely Randomized Designs are the simplest and least restrictive class of experimental designs. They
are appropriate when the experimental material is homogeneous, e.g., not acquired or processed in
batches, within which the material is especially consistent, and where treatments can be applied to
experimental units without restriction. In fact, different numbers of units can easily be allocated to
treatments in a CRD; this flexibility is more difficult to accommodate in many other standard classes of
designs. Where the available expnerimental material does have structure. such as batches or grouns of



batches, within which the material is especially consistent, and where treatments can be applied to
experimental units without restriction. In fact, different numbers of units can easily be allocated to
treatments in a CRD; this flexibility is more difficult to accommodate in many other standard classes of
designs. Where the available experimental material doeshave structure, such as batches or groups of
especially similar units, other classes of designs take advantage of this fact by allowing “correction for”
variation that might be attributable to block differences before assessing the effects of treatments.

3.7 Exercises

1. Consider a completely randomized design with four treatment groups, with n;> 0 units assigned to
treatment 7= 1,2,3,4.

(a) One way to model data from such an experiment is with the effects model:
Yij =+ T; + € t=1.2834; jJ=1...7

Under this model, show why each of the following is estimable or nonestimable.
T3 ™S — T3 T3 + T2
(b) item Now define a different model for the same experiment, as:
nji=m+e,; j=1l...n
vij=m+0i+e; i=234 j=1...n
Under this model, show why each of the following is estimable or nonestimable.
R 05 — 02 O3 + 02
(c) Clearly explain in words the difference between the meaning of 1; in the first model and 6, in 7!
the second.
(d) Isthere any four-element vector ¢ such that ¢t is estimable under model 1, but such that ¢’6 is

not estimable under model 27 If yes, give an example of such a linear combination; if no, show
why this is so.

2. Consider a completely randomized design with five treatment groups, in which a total of &= 50 units
are to be used. Although it won't be explicitly used in the analysis model, treatments 1 through 5
actually represent increasing concentrations of one component in an otherwise standard chemical
compound, and the primary purpose of the experiment is to understand whether certain measurable
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are to be used. Although it won't be explicitly used in the analysis model, treatments 1 through 5
actually represent increasing concentrations of one component in an otherwise standard chemical
compound, and the primary purpose of the experiment is to understand whether certain measurable
properties of the compound change with this concentration. The investigator decides to address
these questions by estimating four quantities:

Tp=—=T1, T3 — T2, T4 — T3, Thg — Ty,
where each t1;is a parameter in the standard effects model. Find the optimal allocation for the 50
available units (i.e., values for r ... n;) that minimizes the average variance of estimates of the four
contrasts of interest. Do this as a constrained, continuous optimization problem, then round the
solution to integer values that are consistent with the required constraint.
Continue working with the experimental design described in problem 2. Suppose the experiment-
specific treatment means in this problem, as would be expressed in the cell means model, are

actually:
Hi [H2 K3 H4 Hs

10 11 12 12 12
and o = 2. What is the power of the standard Ftest for the hypothesis T, = 1, = 13 = T, = T, at a = 0.05:

(a) ifall n;=10?

(b) under the optimal sample allocation you found in problem 2?

(c) Derive anoptimal allocation for the Ftest of equal treatment effects, i.e., the sample sizes
(totaling 50) that would result in the greatest power, if in reality the experiment-specific means
arep, =10and py = ps = Py = s = 8.

Consider a situation in which an investigator plans to execute a CRD to compare 7= 3 treatments
using AMVunits, assigned to treatments in proportions n, = Aj2, i, = Nj4, and 1; = Aj4. The experiment
he envisions is rather small (relatively small value of A), but could be accomplished with reasonably
tight experimental control. However, he might also be able to conduct a larger experiment,
continuing to use sample sizes in the same proportions, if he were willing to use experimental units
from a larger source. The difficulty is that the units in the alternative source are more
heterogeneous, and should reasonably be expected to result in a value of o2 about four times the size
of the experimental variance he would encounter with his present plan.

51
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from a larger source. The difficulty is that the units in the alternative source are more
heterogeneous, and should reasonably be expected to result in a value of o2 about four times the size

of the experimental variance he would encounter with his present plan.

(a) How much larger would the alternative experiment have to be so that the precision of point
estimators would be the same under the two plans?

(b) If the present plan is to use &= 4 units, what is the smallest possible number of units that would
be needed in the larger plan so that the expected squared length of confidence intervals would

be reduced?

5. A completely randomized design is to be used in an experiment to compare 7= 3 treatments. The
contrasts of greatest interest to the investigator are:
H1 — 2, py — p3, and pus — pz
The investigator would like to minimize the average of the variances of the least squares estimators
of these three quantities, i.e., However, the costs are not the same for the three treatments. The cost

of each observation is:

L renecoar s o R
E( Var(py — p2) + Var(py — p3) + Var(pz — ps))

However, the costs are not the same for the three treatments. The cost of each observation is:

A
treatment 1: 1
treatment 2: $2
treatment 3: $3
v
14 >

Further, the total experimental budget is fixed at $100. Given this constraint, what is the optimal
design (i.e., values of the three sample sizes) of this study? (Treat the n;as continuous variables in

this problem.)
6. As described in subsection 3.4.2. show that for anv CRD in which the proportion of units assiened to



Further, the total experimental budget is fixed at $100. Given this constraint, what is the optimal
design (i.e., values of the three sample sizes) of this study? (Treat the n; as continuous variables in
this problem.)

. As described in subsection 3.4.2, show that for any CRD in which the proportion of units assigned to
treatment 7is p, 1=1, 2, 3, ..., £, JN= diag(p) - pp’.

. Aforensics researcher is interested in comparing the performance of a fingerprint expert to that of a
new automated computer system for assessing whether two presented fingerprints “match.” Both
the expert and the automated system judge the quality of the match by the “number of points of
agreement” they find, reported as a single number. An experiment is designed in which the expert
and the automated system each evaluate Npairs of fingerprints, some of which are known to match
(i.e., were made by the same finger) and the others known not to match. For each pair, both the
expert's score and the automated system's score will be the recorded responses.

Discuss this experimental situation and think about how it does or does not fit the pattern of a CRD. =
Specifically, what are the units and treatments here? Given access to all the fingerprints you want, =
including information on how each was made, how would you randomize this study and why? How
might you analyze the data if the score differences could be assumed to be approximately normally
distributed?

. A chemical engineer is interested in comparing three different versions of a reaction process, labeled
A, B, and C, with respect to “percent conversion of feedstock.” In a preliminary experiment, she
applied each process to four batches of raw material, using appropriate randomization of the 12
available batches to the three treatments, and collected the percent conversion values presented in
the following table.

Treatment

27.3 41.9 36.5




27.3 41.9 36.5

34.6 36.8 39.2
31.8 38.2 35.1
35.4 38.4 34.7
W
< >

Assuming the data are independent and can be reasonably modeled as:
2

Yij = Wi + €5, E(€) =0, Var(e;)=0":
(a) Estimate o? and test the Hypy: py = p; = ls.
(b) Using your estimate of o? as if it were the true parameter value, how large would a follow-up
experiment (with equal sample sizes) have to be so that the 0.05-level confidence interval for
each p—p; would have expected width (5%)>?

9. One popular model used in the statistical characterization of measurement methodologies is
y=x+0B+¢€ E(e) =0, Var(e)=o>,

where xis the “measurand” (the true value of interest), p characterizes measurement bias, o
characterizes measurement precision, and yis the measurement. Large values of | f | correspond to
poor accuracy. Repeated measurements of the same physical quantity have variance o2, and the
average of many measurements of the same quantity has error approaching f.
Suppose you compare five measurement methods by using each to measure the same unknown
quantity ten times, denoting the bias parameter for method /by B; 7= 1,2,3,4,5. Assume appropriate
randomization of measurement order has been carried out.

(a) Can this experiment be used to support estimation of f—f?
(b) Does this experiment provide information about which measurement method is most accurate,
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average of many measurements of the same quantity has error approaching f.

Suppose you compare five measurement methods by using each to measure the same unknown
quantity ten times, denoting the bias parameter for method /by B; 7= 1,2,3,4,5. Assume appropriate
randomization of measurement order has been carried out.

(a) Can this experiment be used to support estimation of p—?

(b) Does this experiment provide information about which measurement method is most accurate,
i.e., has smallest |B;|?

(c) If the model is extended to allow a different variance for each method, does this experiment
provide information about which measurement method is most precise, i.e., has smallest ¢/?

10. Continuing exercise 9, suppose the sample means and standard deviations are:

A
Method
1 2 3 4 5
‘37: 10.12 10.43 10.27 9.98 10.08
s 0.151 0.113 0.176 0.082 0.121 o
14 >

where units are in grams (weight).

(a) Assuming all methods are equally precise, test:
H}’pﬂ . ,ii"i = i?-_:- == [Jy == 31 = ,L?,Ir,
(b) Assuming x= 10, and that all methods are equally precise, test
H}’]’)U s = o == B == 3, = B =)

(c) Assuming methods 1, 2, 3, and 5 are equally precise, test

ey 2
Hyp, : 0] = 0}



CHAPTER 4 Randomized complete blocks and related designs

4.1 Introduction

The completely randomized designs described in Chapter 3 are the simplest general class of
experimental designs we shall discuss. A fundamental premise of the CRD is that the available collection
of experimental units is homogeneous, and that the treatments can be randomly applied in such a way
that any subsample of n,units have the same probability of being assigned to the ith treatment. Hence,
no predictable or systematic differences are expected in the collected data other than those that are
attributable to the treatments.

While the CRD is simple, popular, and frequently used — especially in smaller experiments — its
application is unrealistic or impractical in many settings. For example, an experiment might be
performed to compare the resilience of surface finish resulting from the use of five different additives
mixed in a standard base paint. An experimental unit includes the section of surface to be painted, along
with the physical quantity of base paint used in any one test application. The standard paint contained in
a “batch” (say, a commercially produced one-gallon container) may be very uniform in its properties, but
different batches might be known to vary somewhat in consistency and other physical properties that
could have some (hopefully small) effect on surface resilience. If a single batch of base paint contains
only enough material to prepare five test formulations for application, this means that the five
experimental units made from any one batch should be regarded as being more similar than a collection
of units made from five different batches. Because every pair of units used in a CRD must be regarded as
having the same “similarity” relationship, this leaves only two unpleasant choices for applying such a
design here:

* Use only homogeneous units from the same batch, implying that A can be no greater than 5.
* Use only one unit from each batch, and so intentionally use units that are less homogeneous than
those from a common batch.

In practice, of course, all five units from each of several batches of paint would be used in such an



« Use only one unit from each batch, and so intentionally use units that are less homogeneous than
those from a common batch.
|

In practice, of course, all five units from each of several batches of paint would be used in such an
experiment, even though the units taken from one batch would be expected to be more homogeneous
than those taken from different batches. Because a CRD is not appropriate in this application, the
experiment is executed in blocks, or “sub-experiments,” each using only the experimental material from
one batch. In our example, the five units prepared from one batch of material are referred to as a block.
If each of five treatments is applied once using the material in each block, making a complere
unreplicated sub-experiment in our paint study, and this pattern is repeated using b such blocks, the
entire experimental plan is called a Complete Biock Design (CBD). Fisher is generally credited with
developing the idea of blocks from a statistical perspective, first for agricultural experiments (1926) and
later for more general settings (1971); see, e.g., Preece (1990) for a historical account of this and other of

Fisher's early contributions to experimental design.

In a Randomized Complete Block Design, treatments are randomly applied to units within each block, but
these random assignments cannot be made in the same manner as in a CRD because they are restricted
to balance across the units within each block. So, for example, after dividing a batch of paint into five
quantities, additive 1 might be applied to the first such unit selected at random, but after this assignment
1s made, none of the remaining quantities from that batch could be used with additive 1. Note that if
treatments are sequentially applied to units randomly selected from those still available in the block, the
final assignment is automatic, that is, completely determined after the other four units have been

allocated.

4.1.1 Example: structural reinforcement bars

Kocaoz, Samaranayake, and Nanni (2005) performed a laboratory experiment to compare the effects of
four coatings on the tensile strength of steel reinforcement bars of the type used in concrete structures.
Three of the coatings were formed from a common matrix of Engineering Thermoplastic Polyurethane
(ETPU), embedded with glass fibers, carbon fibers or aramid fibers, respectively; the fourth coating
consisted of ETPU only (i.e., no added fibers) and served as an experimental control. The N= 32



four coatings on the tensile strength of steel reinforcement bars of the type used in concrete structures.
Three of the coatings were formed from a common matrix of Engineering Thermoplastic Polyurethane
(ETPU), embedded with glass fibers, carbon fibers or aramid fibers, respectively; the fourth coating
consisted of ETPU only (i.e., no added fibers) and served as an experimental control. The &= 32
specimens (coated bars) were:

“... prepared in eight groups of four, with each bar type represented in each of the eight groups. The
groups act as the ‘blocks’ in a randomized complete block ... design, thus adjusting for systematic trends
In environmental factors or testing conditions across time. The bars with(in) each group were prepared
In random order...”

The prepared bars were tested (destructively) for strength in a set-up requiring each bar to be anchored
in a pipe filled with grout. The bars from a given block were tested together:

“Since all four bars in a group were tested within a short period of time (1h) it is assumed that the rest
conditions within a group were similar. Also, for each group, a single batch of cementitious grout was
prepared, thus eliminating any variation due to grourt differences among the bars within each group.”

Data reported on bar tensile strength are presented in Table 4.1, by block and coating type.

TABLE 4.1 Tensile Strength (Kilograms Per Square Inch, ksi) of
Steel Reinforcement Bars, from Kocaoz et al. (2005)

Coating

Block 1 2 3 4

1 136 147 138 149
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1 136 147 138 149
2 136 143 122 153
3 150 142 131 136
4 155 148 130 129
5 145 149 136 139
6 150 149 147 144
7 147 150 125 140
8 148 149 118 145 "
< >
4.2 A model

The structure of a CBD suggests two potential systematic patterns in the data. One is associated with the
applied treatments, and so is of primary interest to the investigator. The other is associated with blocks
of units. These block differences are generally not of interest but, because they can lead to systematic
patterns in the data, must be taken into account in modeling and analysis. An effects model that
accommodates patterns of variation due to both ftreatments and & blocks is:

y:.’ = ¥ ":_ I!?; '=|_ ?-.} "Ir 'E]IT-



patterns in the data, must be taken into account in modeling and analysis. An effects model that
accommodates patterns of variation due to both ftreatments and b blocks is:

'y;‘;. = (¥ + ,t’j;;' + T_;i + E]Ju
i:l_,.b,j:1-++fq
€ij i.i.d. with E{f_:‘j} =0 and ",ﬂr[fu} = g* {41]

for the response for the jth treatment from the 7th block. As with the effects model presented in Chapter
3 for the CRD, a represents the influences common to all runs in the experiment, and T, represents the
systematic (common) contribution of the jth treatment to its responses. Similarly, p; represents any
systematic contribution unique to the units in the ith block. It is assumed that g/ of the common,
systematic influences of the units in block 7are represented by a and [; just as it was assumed that all of
the common, systematic influences shared by all units in a CRD are represented by a. Given this
accommodation for blocks, we assume that any further unit influence is random, and independent from

unit to unit.

Two further important points should be made about model (4.1) hefore we proceed. The first is that in
the present context, blocks are treated as fixed effects, symmetric to treatments in the statement of the
model, even if this symmetry does not extend to the scientific interest of the investigation. In some
settings, the block effect may be appropriately regarded as random instead; we shall address the use of
random blocks in Chapter 8. The second point is that model (4.1) includes no block-by-treatment
interaction terms. We sometimes rephrase this to say that we assume the effect of blocks is additive. This
is a straightforward but critical assumption for the usual analysis of CBD data, since inclusion of a block-
by-treatment interaction would lead to a variance decomposition with no residual degrees of freedom
(and so no standard F or £tests for treatment differences). Careful analysis of data from a CBD should
include a diagnostic check of the validity of this assumption.

4.2.1 Graphical logic

As we saw in Chapter 3, parallel boxplots of response values from CRDs can be useful graphical aids in
understanding the systematic differences between treatment groups and random variation within
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&.Z.1 GrapiiiCdat logic

As we saw In Chapter 3, parallel boxplots of response values from CRDs can be useful graphical aids in
understanding the systematic differences between treatment groups and random variation within
treatment groups. The only reservation in interpretation of these graphs was the understanding that the
origin of the common axis isn't really meaningful since the (essentially arbitrary and uninteresting)
experiment-, technique-, and material-influences common to all data values could well be different in,
say, a second experiment run in a different laboratory on a different day.

Boxplots of data from a CBD should be constructed with somewhat more care because each data value
contains a contribution from a specific block as well as a specific treatment. So, a simple boxplot of the
data associated with a given treatment will display variation originating both with random noise and
with blocks. In fact, parallel treatment-specific boxplots constructed from a CBD in which blocks
contribute a large proportion of the total variation are likely to be quite uninformative, because each
boxplot will be artificially broad.

Instead, consider a boxplot of “block-corrected” observations for each treatment group. For treatment j,
summarize data by a boxplot of b values:

Yij = Yij — Y, 1=1,2,3,...,b (4.2)

Since, according to the model, yj; = a + B;+ T+ &5, and ¥i. = @+ 5 +7.+ &, then

v = (r5 —7.) + (ei5 — &.)- (4.3)

Hence the systematic component of y;* reflects only the contribution of treatment j, relative to the
average effect of all treatments. As with the plots of uncorrected data for CRDs, we lose any sense of the
origin on the measurement axis, but retain meaningful comparisons between groups. The random

component of y;* has variance o?(1 - % ) under the assumed model, and so underestimates the variation
that would be seen in repeated application of a single treatment to units from a common batch, but this
reduction is minor if 7is not small. This “block-corrected” boxplot can be easily generated in a statistical
computing environment by constructing the treatment-specific boxplots of residuals from a model
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that would be seen in repeated application of a single treatment to units from a common batch, but this
reduction is minor if #is not small. This “block-corrected” boxplot can be easily generated in a statistical
computing environment by constructing the treatment-specific boxplots of residuals from a model
containing only block effects; an example based on the data from Table 4.1 is displayed in Figure 4.1

(R4.1).

Block-Corrected Data from Kocaoz et al.
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Treatment Group Number

Figure 4.1 Boxplots of block-corrected data of Kocaoz et al. (2005)(R4.1).

Mild block-by-treatment interaction is not easily detected in a CBD; however, a similar “correction”
strategy can be used to generate a graphical check of the assumed additive effects of treatients and

blocks. Just as j{,}—yi “corrects” yj for a block effect, consider the block-and-treatment-corrected data, or



Mild block-by-treatment interaction is not easily detected in a CBD; however, a similar “correction”
strategy can be used to generate a graphical check of the assumed additive effects of treatments and

blocks. Just as }‘;}—yi “corrects” y; for a block effect, consider the block-and-treatment-corrected data, or
equivalently, the residuals from the fit of model (4.1) to the data:

Ti; = Yij — Ui, — :‘EJ‘ +y.- Yij — !}‘J'

A little algebra reveals that, under the assumed model:

2(t=1(b-1)

E(ri) =0 Var(rij) = o b

These values are correlated; however, if fand b are not too small, they should roughly “look like” a
random sample with constant mean and variance. Any outliers appearing in a boxplot of these values
may be indicators of model inadequacy, such as possible treatment-block interaction. But they could also
simply indicate experimental runs that were unusual for other reasons. Familiarity with the details of
how the experiment was actually carried out is critical to interpreting this plot (and diagnostic plots in
general).

4.3 Matrix formulation

Following the scalar representation of model (4.1), we may use matrix notation to write a partitioned
model for all data from the experiment:

y=X:8+Xor+€ €~ N(0,0%), (44)

where [ is the (&+1)-element vector of nuisance parameters a and (; 7= 1,2,3,..., b, tis the rfelement
vector of treatment parameters, and y and € are M= b x f-element vectors of responses and random 50
“errors,” respectively. If the elements of y are ordered by block, and by treatments within each block, the

1; 1; Uf voos uf Ifxt
. — I, 0 1, ... 0O Y. — | PO

model matrices are:



1 1¢ O ... Oy | PP
1 0 1 sy B 1

X; = t ‘ f f X = o ,
1; 0, h o Xy | oY

where 1, 0, and I;. ,refer to £element column vectors of 1's and 0's, and the 7= ridentity matrix,
respectively.

Starting with the general form of the reduced normal equations from Chapter 2, we have

X5(I— Hy)Xor = X5H(I - Hy)y.

Some of these matrices have different structure than their counterparts in the CRD. In particular:

—
141 = .
tly, tlpen

This matrix is of rank & a generalized inverse can be constructed by omitting the first row and column,
inverting the remainder, and “padding” the result with zeros corresponding to the omitted row and

column:
(X X,)~ 0 0;
R TN s
and it follows that:
Jt.:-:f ﬂi‘x!‘ Oh-:t
H, =l Oixt Jixt | P ’
t
Oine Opuy Jie
1
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1
Xopn =(I-H)X; =X, - ?Jn‘xn

where 0 and J are matrices of 0's and 1's of the indicated dimension.

In fact, note here that for the purpose of inferences about 1, we might have omitted a from model (4.1),
simply using (; as the “intercept” for runs in the ith block. The result would have been a full rank X, of &
columns, leading to exactly the same H; and X;; as are given above. What is important here is that the
columns of X; span the same vector space whether the (linearly redundant) column associated with a is
included or not. It is customary to include a in such models; for example, most computer programs are
set up to “correct the data for the mean” first, leaving a sum of squares for blocks after removal of the

common intercept.

Note that for this model, X; and X, ; are the same as would be obtained with a CRD with b units in each
treatment group. As a result, it should be obvious that the reduced normal equations for the CBD take the
same form as those for the CRD:

F—=T=05—F. J=1...4 t. (4.5)

(Unlike the general reduced normal equations presented for the CRD in Chapter 3, this equation does not
indicate the need for a weighted average of 7j on the left side, because each treatment is applied to the
same number of units in a CBD.) This result is not mathematically complex, but it is quite profound. The
implication is that the least-squares point estimators of estimable functions of treatment effects can be
constructed for CBDs by simply ignoring the blocks and treating the data as if they were collected using a
CRD. We shall discuss why this is so in somewhat more depth in Section 4.6; for now it suffices to say
that it is critically related to the symmetry properties of the CBD, specifically, that each treatment is

I — x;llx‘ju

applied to exactly one unit in each block. Furthermore, since is the same matrix as would

be seen with a CRD with n;,= b, 1=1,2,3,..., £ we have

s
| . ;’.1 — b (1 - %J) (4.6)
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dpplied [0 eXacCuy one unift in edci DIoCK. rurtnermore, since - <l == 15 Ue salne mairix as would
be seen with a CRD with n;,= b, 7=1,2,3,..., f we have

!
7 =B~ ?’.1 = b (1 - %J) (4.6)

and one generalized inverse of this matrix is

T~z
)

;L (4.7)

The shared structure of the reduced normal equations for CBD and CRD also implies that estimable linear
combinations ¢’ T must be such that ¢’ can be written as:

1
c=1'(I-H))Xz =V (Xg — ?Jn.-m)
once again implying that ¢'1 = 0 since all rows of (I-H;)X, have zero sums.

4.4 Influence of design on estimation

The least-squares estimator of any set of estimable functions Crt 1s:

)

Cr=c|”* (4.8)

Y.t
The variance matrix for this estimate is easily constructed due to the simple form of the estimator, or
equivalently through the simple generalized inverse available for the design information matrix:

= 2 2
Var(C'r) = C(0?I7)C' = %CIC’ - %CC’. (4.9)

In particular, for a single estimable function,

a f



Var(C't) = C(¢°I")C' = —CIC’' = —CC'. (4.9)

b b
61
In particular, for a single estimable function, o
Var(c'r) = - 4. (4.10)

i=1

While these variance functions have the same form as those for the CRD in which n= bunits are

assigned to each treatment, it is important to remember that ¢? represents uncontrolled variation among
all unitsin a CRD, while it represents only uncontrolled variation among units from a common blockin a
CBD. Recall that all operational effects of blocks, including block-to-block differences in batches of units,
are represented by the elements of . Hence the sampling variance of treatment contrasts may be
substantially smaller for a CBD than for a CRD of the same size if blocking is “effective,” that is, if it
results in greater homogeneity among units-within-blocks than can be expected within a larger collection
of unblocked units.

In some cases, a CBD is chosen as the design for an experiment because of operational requirements; it
may simply not be possible to select enough units from a homogeneous source to allow execution of a
CRD, while smaller groups of units from different homogeneous sources may be available. In other cases,
this may be a choice the investigator is free to make; an experiment canbe executed as either a CRD or a
CBD, and the question is which would be better for the specific purposes of the experiment. Suppose that
in a given situation, the variance associated with e for the CRD is o?p, While that associated with the CBD
18 02 5. When either is operationally possible, we would generally expect 02z, < 025 since the CBD
involves a greater degree of experimental control. For any particular estimable contrast ¢’ T, the
expected squared length of the associated confidence interval is, for a CRD and CBD that both call for
application of each treatment to A units:

41“?_0’(;2{.\( — f]ﬂ-?!nn C'C f/.l.',\:r

4t2__ (N —b—t+1)odgp c'c t/N,

respectively. Regardless of the value of c, the ratio of these two quantities is:



4t7_,/2(N —b—t+1)atgp, c'c t/N,

respectively. Regardless of the value of ¢, the ratio of these two quantities is:

[t _a/2(N —t)odrp) / [63_asp(N —b—t+1)ofpp)] (4.11)

and so in this sense the CBD can be expected to yield more precise intervals if:

ocBp/o0crD < ti—as2(N —t)/t1_as2(N —b—t+1). (4.12)

The ratio of £fquantiles on the right side of inequality (4.12) is always at least somewhat less than 1
because the number of degrees of freedom is larger in the numerator quantile. This suggests that at least
some reduction in unit-to-unit variability must be expected as a result of blocking, compared to the
variability expected from selecting all units from the same source without restriction, if blocking is to be
considered a reasonable option. For larger values of /A, this is generally not a practical constraint since
the ratio of #quantiles approaches one for larger designs (where blocking is generally expected to be
most effective in reducing variation).

4.4.1 Experiment size

If each block contains one unit assigned to each treatment, the overall size of the experiment is
determined by the number of blocks, and for any estimable function ¢’ T, the variance of the estimate is
reduced in inverse proportion to &

2 ¢
_ — T i
Var(c't) = T E fj

7=1

For any treatment contrast of interest, we generally want

c'r
\/ Var(c'r)
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c'r
\/ Var(c'r)

to be acceptably large. For a given signal-to-noise ratio yp = ¢’ /o and desired value of ¥, we can solve for

lp-_—

the required number of blocks:

b = ‘F:c L

e

4.5 Influence of design on hypothesis testing

While the form of the least-squares estimates of estimable functions of treatment effects is the same for
CRDs and CBDs, this does normean that the entire analysis of data from a CBD can be carried out
ignoring blocks. In particular, the sum of squares for residuals will be too large in the CRD variance
decomposition of a CBD, because the sum of squares associated with block differences will not be taken
into account. Specifically, while SSEfor a CRD is the within-group sum of squares, for a CBD:

SSE = Z Z(yu -§.)° - Zf{?ji. -§.)% - z b(g.; -
; =1

However, for Hyp,: T; = T = 13 = ... = T, the noncentrality parameter associated with the Ftest is:
v'IT/o® =7"|bl - b—ll T/0? Zfr ;= F)* Jo?. (4.13)
N

Note that in comparison to the corresponding result from Chapter 3, the matrices (and hence the
quadratic form) are identical to those for a CRD with equal numbers of units assigned to each treatment,
and ¥ need not be a weighted average here since all treatments are applied to the same number of units.
Comparisons between a CRD and a CBD of the same size can be made in the context of the power of the
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quadratic form) are identical to those for a CRD with equal numbers of units assigned to each treatment,
and ¥ need not be a weighted average here since all treatments are applied to the same number of units.
Comparisons between a CRD and a CBD of the same size can be made in the context of the power of the

test of equal treatment effects. For either design and a fixed hypothetical value of t, the numerator of the

v'Ir = bxj{r_, -

2
noncentrality parameter associated with the Ftestis 7) . Hence the power of the

Ftest for equality of treatments is, for these two designs:

PI'DI,‘J{“"(;HD > Fi_aft—1,N — f}}
where Werp ~ F'(t = 1,N = t,7'I1 /ot np) (4.14)
Prob{Wegp > Fialt —1,N —b—t + 1)}

where Wepp ~ F'(t—=1,N =b—t+1,7'It/olpp), (4.15)

respectively. Again, the trade-off is between the degrees of freedom (favoring the CRD) and the size of the
noncentrality parameter (favoring the CBD if 035 < 0p). As with the precision of estimates, unit-to-unit
variation must be at least somewhat smaller with the CBD to justify its use.

4.6 Orthogonality and “Condition E”

Return now to more carefully consider the equivalence of normal equations and design information
matrices for the CBD and CRD with ;= b, j=1,2,3,..., . A general statement of similarity between two
designs that leads to this result follows; for convenience we will refer to the two requirements of this
statement as “Condition E” (for “Equivalent™):

Consider two designs, each constructed to accommodate 7treatments in Aruns. Data can be modeled via
a partitioned linear model in each case:

y = X108+ XaoT + €,

where X, is an NMx rmatrix for either design, but X; may have a different number of columns for the two
designs, depending on the blocking strategy used. Say that the two designs satisfy Condition Eif, for some
ordering of rows (experimental runs):



where X, is an Nx fmatrix for either design, but X; may have a different number of columns for the two
designs, depending on the blocking strategy used. Say that the two designs satisfy Condition Eif, for some
ordering of rows (experimental runs):

+ X, is the same matrix for each design, and
+ H,X, is the same matrix for each design.

An immediate consequence is that X, |, = (I-H,)X; is the same for any two designs that jointly satisfy
Condition E. Recall from Chapter 2 that (I-H;) is a projection matrix associated with the orthogonal
compliment of the column space of X; in R". When Condition E is satisfied by two designs, they are in a
sense equivalent after the respective corrections for the terms represented by X, have been made in each
case. As a result, the solutions to the reduced normal equations for treatment parameter estimates are of
exactly the same form. In particular, since a CRD and a CBD that assign the same number of units to each
treatment jointly satisfy Condition E, the estimable contrasts in the elements of T can be estimated in a
CBD ignoring blocks, just as they can be estimated in a CRD ignoring a. This is often summarized by
saying that “tfreatments are orthogonal to blocks” in a CBD, or that “a CBD is an orthogonally blocked
design.” These phrases are also appropriate for any other blocked design which, together with a CRD,
satisfies Condition E.

Among designs that partition units into a single set of blocks, CBDs are probably the most popular, but

they are not the only such arrangements for which treatments and blocks are orthogonal. Suppose an

experiment is organized in b blocks, but that these blocks may be of different size, and the number of

units to which any treatment is applied may be different in each block. What conditions must hold so

that X; and H; X; are as they would be in a CRD of the same size? Let m, 1, ..., n;be the number of units

associated with the various treatments in each design (thereby satisfying the first part of Condition E).
n; nz ng

S | ) 1 .
Recall that H1 = §J fora CRD; this means that each row of H, X, must be &35 2 RRRRE ¥ ) for this
design.

Next, suppose that for the blocked design, blocks are of size mm, nn, ..., m, units, so that

Zm, = Zn_, = N.
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Next, suppose that for the blocked design, blocks are of size my, n, ..., m,units, so that

Zm, = Zn_,- = N,
i J

Assume for simplicity that we work with a parameterization in which a term for each block is included
(i.e., p;), but that we omit the redundant intercept (a). X; for the blocked design is such that each row
contains a single 1 and the remaining elements 0, and the ith column has sum m; so that

(XX,)"! = diag(m)~', (4.16)

where m = (1m, nx, 0, ..., my)’. Xy,'X; 1s called an incidence matrix; its (1) element is the number of times
treatment jappears in block 7 Hence

(X1X;) X (X, (4.17)

contains, in the ith row, the proportion of units assigned to each treatment in the jih block:

(Pi,1:24.20 ¢« -+ Dit)s (4.18)

where pj;is the proportion of units in the ith block assigned to treatment j. Next, let B(J) be the column
number of the entry in the ith row of X; that is 1, i.e., the number of the block containing the ith
experimental run. Then the (7)) entry of X;[(X;"X;)-X;'X;] = H;X; must be pgg; So, H;X, will be the same
matrix as would be calculated for a CRD if and only if

T
PB(i)g = “ﬁ}" for all 1 = 1.2......f'\r, 7= 1,2 ... L {—l.lq]

That is, any specific treatment must be applied to the same proportion of units in each block (although
these proportions do not need to be the same for each treatment).

Note that this condition cannot be met for all possible integer values of ¢ mn, m, ..., m; however, it can
be easily satisfied when all blocks contain the same number of units. In most practical experimental
layouts, each block contains the same number of units, and this general result is useful in cases where



Note that this condition cannot be met for all possible integer values of ¢, 4, m, ..., my; however, it can
be easily satisfied when all blocks contain the same number of units. In most practical experimental
layouts, each block contains the same number of units, and this general result is useful in cases where
the common block size can be greater than z Such designs were called gaugmenred complete block
designs by Federer (1955 and 1961), since they allow at least some treatments to be applied to more than
one unit in the same block. For example, in situations where it is desirable to have a relatively larger
group of control units (e.g., as in the discussion of subsection 3.4.1), an augmented complete block
design can often be constructed to accommodate this.

While orthogonally blocked designs are attractive because they result in simple reduced normal
equations, are such designs really statistically superiorto other blocked arrangements? In one important
sense, the answer to this question is “yes.” Consider again two designs, each of which assigns n;units to
treatment y= 1,2,3,..., £ For the moment, assume that the error variance is the same in both experiments,
that is that Varn(y) = o’I for either design. Design 1 is a CRD, so the variance of ¢'r under this design is

2

3
L Z.i:l Ef Design 2 is a blocked design for which we write a general partitioned model as:

yv=X0=X,8+XaT +¢€

where 0 = (', ')’. Under this design, the variance of €7 is 0°¢/(X'X) ;¢ where (X'X)22 is the lower
right /= fsubmatrix of a generalized inverse of X'X. One convenient re-expression of (X’X) 22 for this
situation is
(X5X2)™!
+ (X5X2) 71 X5 X (XX — X1 X(X5X2) 1 X5 X, )~ X Xa(X5X,) ™!

or more conveniently, (X,'X,)-1+Q, where the generalized inverse is replaced with a unique inverse if one
exists, and Q is positive semi-definite in any case. Using this result, and realizing that X,'X, = diag(n), we
have that the variance of ¢/r under design 2 can be written as

t 2

. , =
Var(c't) = o? E 2 4+ %c'Qc

n;

j=1"7



have that the variance of ¢’ under design 2 can be written as

t 2
e , I
Var(c't) = o? E 2 4+ 0%'Qc
n;
je=1 7

where the second term must be non-negative. Hence, apart from its effect on the value of o2, blocking
cannot improve the variance properties of a design, and can make them much worse (depending on the
values of ¢ and Q). On the other hand, the variance properties are not degraded for blocked designs
which, together with a CRD of the same size, satisfy Condition E; for these designs, ¢'Qc = 0 for all
estimable ¢’ 1.

One caveat should be added to the above argument. We have shown that with the same value of ¢?, the

best that can be expected of a blocked design is that it yields the same precision of estimation as a CRD of

the same size, and that designs that are equivalent to CRDs in the sense of Condition E attain this bound.

The equal-variances requirement in this claim is usually unrealistic in practice since we expect blocking

to reduce random noise in the data. Hence designs that are nororthogonally blocked may sometimes also
actually reduce estimation variance through better control of noise. The real point to be made here is -
that when blocking is required or desired, where two plans result in the same value of ¢ and one is o
Condition E-equivalent to a CRD while the other is not, the first should be preferred for its superior

precision properties.

4.7 Conclusion

In blocked experiments, treatment comparisons are made as precise/powerful as possible by arranging
treatment applications within groups of especially similar units. In Complete Block Designs, each
treatment is applied to exactly one unit in each such group or block; every pair of experimental
obhservations in a CBD differs in the applied treatment, the block of the design, or both. Standard analysis
requires that treatments and blocks be assumed to have additive effects (i.e., do not interact), to provide
for an indirect estimate of o2. When this assumption is justified and blocking is “effective,” CBDs yield
more precise/powerful inference than unblocked experimental designs of the same size. Because blocks
and treatments are orthogonal in a CBD, the reduced normal equations are identical in form to those
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for an indirect estimate of o2. When this assumption is justified and blocking is “effective,” CBDs yield
more precise/powerful inference than unblocked experimental designs of the same size. Because blocks
and treatments are orthogonal in a CBD, the reduced normal equations are identical in form to those
associated with a CRD in which each treatment is applied to n = b units. Non-orthogonally blocked
experiments can be no more efficient than CBDs of the same size, and for some treatment contrasts must
be less efficient.

4.8 Exercises

1. item Consider a modification of the usual randomized complete block design. Suppose there are b
blocks, and that each block contains units allocated to each of 7treatments, as in the CBD. However,
while each treatment is assigned a unit in each block (as with a CBD), r> 0 additionalunits are
allocated to treatment 1 in each block. (This is an augmented CBD, as discussed in Section 4.6.) That
15, each block contains #runits, r+1 of these are allocated to treatment 1, and one of these is
allocated to each of treatments 2 through z There are thus &= B+ 1) units used (and observations
recorded) in the entire experiment. Answer the following questions, using the usual notation for an
effects model parameterization and assuming that blocks and treatiment effects do not interact (e.g.,
as with the usual analysis of CBDs).

(a) Write expressions for the partitioned model matrices, X; and X;. (Use general symbolic
expressions like 1,and Jy. » to do this; segments of the matrices that are filled with zeros can be
left blank.)

(b) Write expressions for the matrices Hy, X;;, and /.

.

(c) Give a scalar expression (i.e., not in terms of matrices) for the variance of 71 — 72.

(d) Similarly, give a scalar expression for the variance of T 5 — T3, &7

(e) Does this design and a CRD with i, = Mr+1) and ;= b, /= 2,3,4...., fsatisfy Condition E? =

(f) For this design, o? can be unbiasedly estimated even if treatments and blocks interact. Write this
estimate, a quadratic form in the data for which the rank of the central matrix is rb, and show

that it is statistically independent of the least-squares estimate of any estimable ¢’ .

2. Now consider a different kind of balanced block design consisting of &= ¢blocks. As in the design of
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estimate, a quadratic form in the data for which the rank of the central matrix is rb, and show
that it is statistically independent of the least-squares estimate of any estimable ¢’ 1.

2. Now consider a different kind of balanced block design consisting of &= ¢blocks. As in the design of
exercise 1, each block contains #runits with r> 0, and in each block, one of the units is paired with
each treatment as in a CBD. However, here the radditional units in block 7 are allocated to treatment
I, so that each treatment is allocated to the same number of units (#+r) overall.

(a) Write expressions for the partitioned model matrices, X; and X;. Use general symbolic
expressions like 1, and Jy. » to do this; segments of the matrices that are filled with zeros can be
left blank.

(b) Write expressions for the matrices Hy, X; 5, and /.

(c) Give a scalar expression (i.e., not in terms of matrices) for the variance of 7 —r

(d) Does this design and a CRD with n;= #+r; 1= 1,2,3,..., £, satisfy Condition E?

3. Consider a very small designed experiment in which the experimental units are grouped in two
blocks; one block contains four units and the other contains two units:

block 1 block 2

For ftreatments, we are willing to assume that blocks and treatments do not interact; the data will be
modeled as:
y:jk:ﬂ'*ﬁl'\"'r_j"i‘f;jk =] 2 im=]...t

where kindexes replication for any (/) pair.

(a) Compute H;, the hat matrix corresponding to the blocks-only submodel.

(b) Suppose 7= 2. Is is possible to assign three units to each treatment in this experiment so that the
reduced normal equations are the same as those for a completely randomized design with m, =
1, = 3? Defend your answer without computing the entire reduced normal equations for either
design.

(c) Suppose =3 and that two units from block 1 will be assigned to treatment 1, one unit from each



reduced normal equations are the same as those for a completely randomized design with m, =
n, = 3?7 Defend your answer without computing the entire reduced normal equations for either
design.

(c) Suppose =3 and that two units from block 1 will be assigned to treatment 1, one unit from each
block will be assigned to treatment 2, and one unit from each block will be assigned to treatment
3. Are the reduced normal equations for this design the same as those for a completely
randomized design with n, = 1, = 115 = 2? Defend your answer without computing the entire
reduced normal equations for either design.

(d) Is Ty — 1z estimable using the design described in part (c)? Clearly defend your answer using
your solution from part (c).

4. Perhaps the simplest use of blocking is the basic paired-comparison study, i.e., complete blocks to
compare two treatments. Consider the expected squared length of the usual two-sided 95%
confidence interval for p;—u; based on such a paired experiment, with 10 pairs of observations; call
this £L,*. In contrast to this, consider also the expected squared length of an unpaired #based 95%
interval for the same quantity, assuming the same number of observations (20); call this £L,2. The
variation associated with the paired-units study (o,?) shou/dbe smaller than that associated with the
unpaired study (o,?), since it requires only that pairs of homogeneous units be identified. What is the
largest possible value of o/, that results in E£L;* < EL,?

5. Suppose an experimenter initially decides to test four treatments in a randomized complete block
design, using five blocks of size 4. Within each block, she randomly assigns one unit to each
treatment. However, before the experiment begins, she discovers that she has the opportunity to add
two additional blocks each containing eighrunits to the experiment. How can the units in blocks 6
and 7 be assigned to treatments so that the resulting design and a CRD with n;= 9, j=1,2,3,4 satisfy
Condition E?

6. Continuing exercise 5, suppose the investigator strongly suspects that the relative effects of her
treatments can be approximately expressed as

H==1, == =41
Given this information, how should treatments be assigned in blocks 7 and 8 so as to maximize the

power of the Ftest for
Hypp: n=T2=m3 =174



= —1, Ta=T3=0U, T4=-+1.
Given this information, how should treatments be assigned in blocks 7 and 8 so as to maximize the
power of the Ftest for

Hypp: n=T2 =13 =14

Does this design and a CRD assigning each treatment to the same number of units satisfy Condition
E?
. Write a detailed set of instructions for how treatments could be properly randomized to
experimental material in the experiment of Kocaoz et al., described in subsection 4.1.1. Assume that

you have:

» 32 uncoated bars,

» sufficient material to coat the bars as described, but must do so one bar at a time,

» 8 pipes as described, each with 4 pre-drilled holes, one bar to be inserted in each hole, and

« sufficient grout (in a single batch) to accomplish the execution of the experiment as described.

. An investigator wishes to design an experiment to compare three treatments using a CBD (of three T“
units per block). From long experience with similar experiments, he knows that o will be very close

to 2.4. He believes that there really is no difference between treatments 1 and 2, but that treatment 3
produces responses about 0.6 larger, on average, than these. Assuming this is true:

(a) How many blocks should be included in the design to provide power of 0.8 for testing Hyp,: T; =
T, = T; With type I error probability of 0.05?

(b) If =10 blocks are used, what will be the expected squared length of a 95% confidence interval
for 3(T1 +72) — Tap

Continuing exercise 8, suppose that the investigator decides to perform a CBD in /£ = 10 blocks, but
fails to randomize units to treatments appropriately. In each block, he always assigns treatment 1 to
the first unit selected, measuring the response from it first, then evaluates treatment 2 using the
second selected unit, and finally tests treatment 3 by assigning it to the third unit. Suppose also that,
unknown to the investigator, his response measurement system has a temporal “drift” problem. It
functions as it should for the first measurement in each block, but the second is always 0.3 units less
than it should be, and the third is always 0.6 units less than it should be. That is, the statistical model
for the data he generates should be:



10.

fails to randomize units to treatments appropriately. In each block, he always assigns treatment 1 to
the first unit selected, measuring the response from it first, then evaluates treatment 2 using the
second selected unit, and finally tests treatment 3 by assigning it to the third unit. Suppose also that,
unknown to the investigator, his response measurement system has a temporal “drift” problem. It
functions as it should for the first measurement in each block, but the second is always 0.3 units less
than it should be, and the third is always 0.6 units less than it should be. That is, the statistical model

for the data he generates should be:
Yij = o + B; + Tj + € for the first measurement in each block
=a+ 3 +71; — 0.3 +¢; for the second measurement in each block
=a+ B +7; —0.6 +¢; for the third measurement in each block
If the investigator bases his inference on the usual model (i.e., does not account for measurement
bias), o2 = 2.4, and a nominal type I error probability of 0.05 is used,

(a) What is the actual probability of a type I error?
(b) What is the real power of the testif t, = 1, = 13 — 0.6?

In subsection 4.2_1, it is suggested that the model residuals:
Tij = Uiy — Vi, — .ﬁ.j + ..
may be used in a diagnostic analysis to check for possible block-by-treatment interactions, or other
unanticipated effects associated with individual data values. For example, we might define:
t—1)(b-1
tu’ — ?‘fjf“.“rfSE X { 3; ]

and declare as “unusual” any value that has absolute value larger than the fquantile with N-5/-#+1 o

70

degrees of freedom, associated with a selected probability.

(a) Explain why 7;is not actually a rstatistic.
(b) Write a small computer program to compute the probability that for any one z;
|tizl > tors(N —b—t+1)
Do this for any rand b by letting 7= j= 1, and repeatedly generating normally distributed data
that have the structure of the assumed model.

Hint: In this exercise, you may find it helpful to recall that r = (I-H)y, and that MSE=y'(I-H)y/
(N-b-r+1).
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CHAPTER 5 Latin squares and related designs

5.1 Introduction

Randomized Complete Block Designs, and the other orthogonally blocked designs described in Chapter 4,
are motivated by the idea that units can be naturally grouped in blocks, within which uncontrolled unit-
to-unit variation is reduced. These blocks form a partition of the units used in the experiment; each unit
is an element of exactly one block. Even if all the physical sources of unit-to-unit variation are not fully
understood, it is assumed that the single classification variable associated with blocks accounts for a
substantial proportion of it.

In some cases, the relationships among experimental units are more complicated, and a more
complicated system may be required to describe potential systematic differences among them. Row-
Column Designs(e.g., John and Williams, 1995) are used in settings where units can reasonably be
sorted by two characteristics rather than one, and the most commonly used of these are Latin Square
Designs (LSD). For example, suppose an agricultural experiment were to be performed in a square field,
divided into “rows” and “columns” (as they would appear on a map) of smaller square experimental
plots as displayed in Figure 5.1. The treatments will be different strains of corn, say, and a single strain
of corn will be sown (i.e., the treatment applied) in each small square of land (i.e., unit). Now suppose
that the field slopes gradually downhill from north to south, and that it is understood that this could have
an effect on responses; the units in the northern-most row could absorb less rain water (depending on
drainage characteristics) than the units in the next row to the south, and these in turn could be
systematically different than those in the third row, et cetera. If this were our only concern regarding
systematic differences among units, we might use a CBD, grouping the units in each east-west row as a
separate block, randomly selecting one plot in each row for application of each of the strains of corn. But
now also suppose that the prevailing winds in this area are west-to-east, and that this might cause the
western-most “column” of units to be somewhat different in their response from those in the next
column to the east, and that these in turn could be systematically different from those in the third
column, et cetera. The result is a two-way classification of units based on two potential sources of
nuisance variation, so the unit-to-unit relationships cannot be described independently within rows



western-most “column” of units to be somewhat different in their response from those in the next
column to the east, and that these in turn could be systematically different from those in the third
column, et cetera. The result is a two-way classification of units based on two potential sources of
nuisance variation, so the unit-to-unit relationships cannot be described independently within rows
jgnoring columns, or independently within columns ignoring rows.
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f N  — prevailing wind
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1[{4|3)|2
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3|2|1|4

413(2]|1

Figure 5.1 Example of a Latin square; four treatments are denoted by numbers.

In order to ensure treatment-block balance comparable to that found in CBDs, it would seem minimally
necessary that treatments should be associated with units in such a way that:

+ the design is a CBD with respect to rows as blocks, ignoring columns, and
« the design is a CBD with respect to columns as blocks, ignoring rows.

This is, in fact, how a LSD is constructed. Note that there are a number of immediate implications of
these requirements, including:

» The number of row-blocks of units must be 7(the number of treatments), since each treatment must
appear exactly once in each column-block.

* The number of column-blocks of units must be £ since each treatment must appear exactly once in
each row-block.

* Therefore, a LSD must contain a total of # units, £ of which must be assigned to each treatment, and
result in /= £ data values for each resnonse variable.



* The number of column-blocks of units must be £ since each treatment must appear exactly once in
each row-block.

+ Therefore, a LSD must contain a total of £ units, 7 of which must be assigned to each treatment, and
result in &= £ data values for each response variable.

The basic pattern of a LSD can be described by a £x farray of 7symbols, where each treatment is
associated with one of the symbols, in which each symbol appears once in each row and once in each
column. For small values of rthere are relatively few unigue Latin squares, those not equivalent to
others through reordering of rows, reordering of columns, and/or relabeling of symbols. But for some
larger values of £ many such unique Latin squares exist. Latin square patterns are often tabulated in
“standard form,” with symbols appearing in increasing order across the top row and down the first
column; this is a convenient way to clearly list each unique Latin square exactly once. Figure 5.2
contains examples of Latin squares in standard form for 7= 3 through 6 (Beyer, 1968).

L]

112(3|4|5]|6
112(3(4(5
1 (2|3 |4 2/6|14|3|1(5
1123 2115|314
213 |4 |1 3145621
213]|1 314|152
314 |1 |2 41116532
3|11]|2 4 151213
4 11|12 |(3 5|13(1]|2|6]|4
5134|121
6(512|1|4)|3

Figure 5.2 Examples of Latin squares in standard form for £=3,4,5 and 6

Since each experimental unit is contained in two blocks, randomization is somewhat less straightforward
for LSDs than with CBDs. For a given value of 7and corresponding Latin square in standard form
(generally taken from a reference table or constructed by hand), the challenge is to randomly select one
of the physical experimental layouts that conforms to this pattern. The critical aspects of the “pattern”
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for LSDs than with CBDs. For a given value of rand corresponding Latin square in standard form
(generally taken from a reference table or constructed by hand), the challenge is to randomly select one
of the physical experimental layouts that conforms to this pattern. The critical aspects of the “pattern”
are that each symbol appear once in each row and once in each column, but the physical order of
placement of rows and columns, and the physical meaning attached to each symbol, can be randomized.
Hence, for a selected pattern, randomization can be accomplished by:

« randomly shuffling the rows of the Latin square, so that each of the # row orderings is equally likely,

« randomly shuffling the columns of the Latin square, so that each of the # column orderings is
equally likely, and

« randomly shuffling the association of symbols to treatments, so that each of the # assignments is
equally likely.

The fullest possible (and therefore best) randomization for a LSD actually involves one further step. The
process outlined above supposes that a standard-form Latin square has been selected. More completely,
this starting point should be randomly selected from the collection of unique Latin squares of the desired
size.

5.1.1 Example: web page links

Murphy, Hofacker and Mizerski (2006) used a series of Latin square designs to investigate the effect of
link placement in a web page on the probability of a visitor “clicking” on that link. One study focused on
a website maintained by a Florida restaurant, including seven links to other pages containing
information on the restaurant's offerings, travel directions, and local attractions. Seven versions of this
page were constructed in which the seven links appeared in different positions (top-to-bottom in the
page) in such a way that each link was located at each position in exactly one version of the web page.
Over the course of an eight-week period, the website was visited 18,134 times; visitors were randomly
divided into seven groups, with visitors in the first group shown the first version of the web page, visitors
in the second group shown the second version, et cetera. This arrangement led to a seven-by-seven table
with rows associated with the seven links, and columns associated with the seven groups of visitors, in



Over the course of an eight-week period, the website was visited 18,134 times; visitors were randomly
divided into seven groups, with visitors in the first group shown the first version of the web page, visitors

in the second group shown the second version, et cetera. This arrangement led to a seven-by-seven table
with rows associated with the seven links, and columns associated with the seven groups of visitors, in
which each cell was associated with one of the seven positions on the web page (the treatment of interest

in this experiment). In each of the 49 cells, the proportion of visitors from the associated group who

clicked on the associated link was tabulated. The investigators used this Latin square arrangement to
separate the possible effects on “click probability” of visitor group and specific link, from the effect of

link position in the web page. The authors presented these overall click proportions for each locationina
graph, from which the data of Table 5.1 have been extracted, and reported results of a formal analysis "
using a logistic regression model accounting for all three possible sources of variation. The investigators
interpreted their study as supporting previous research indicating a “primacy” effect (increased

probability that links located at the top of the page will be clicked), but also indicating the possibility of a
“recency” effect (increase in probability for links at the bottom of the page).

TABLE 5.1 Proportion of Visitors Clicking on the Link at the
Indicated Web Page Position, from Murphy et al. (2006)

Link Position Proportion of Clicks
1 (top) 0.0462
2 0.0438
3 0.0392
4 0.0380




3 0.0392
4 0.0380
) 0.0356
6 0.0350
7 (bottom) 0.0368 v
£ >

5.2 Replicated Latin squares

The CRDs and CBDs discussed in Chapters 3 and 4, respectively, can easily be “sized” to meet
experimental requirements. CRDs allow the freedom to select the number of units to be allocated to each
treatment, and CBDs can be adjusted in size by adding or removing complete blocks, or by expanding
blocks to include replication of some treatments. However, the structure of the basic LSD is such that this
isn't possible. For ftreatments, a Latin square can only be constructed for £ units, each classified by one
row-block and one column-block; increasing either the number of rows or columns would destroy the
Latin square structure. This would be a serious restriction if it meant that the total sample size could not
be increased as needed, to allow the investigator to control the power of tests and the expected size of
confidence intervals.

However, experiments designed as Latin squares can be adjusted in size by adding additional replicates
of the entire basic desigm; that is by combining rbasic Latin squares in a design calling for a total of r#
units. These replicates can be thought of as “superblocks,” each containing all the experimental material
for a single Latin square, each organized by row-blocks and column-blocks. So, for example, in the
hypothetical agricultural experiment described in Section 5.1 carried out to compare four different
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units. These replicates can be thought of as “superblocks,” each containing all the experimental material

for a single Latin square, each organized by row-blocks and column-blocks. So, for example, in the
hypothetical agricultural experiment described in Section 5.1 carried out to compare four different
varieties of corn, we might increase the size of the study by using r= 3 complete Latin squares on three
different fields, as depicted in Figure 5.3. The effects associated with row-blocks and column-blocks for

each of these could be different, in part because the slope of the ground might not be the same and/or the
effect of the prevailing wind might be different for each basic Latin square. But whatever systematic Fa

differences might be associated with east-west differences or north-south differences, these can be
accounted for in each square in the replicated plan.

I N I'N I N
43|21 3(4(1]2 14|23
1|4(3|2 1|l2]3|4 2(3|1/4
3(2(1]4 33|41 4|2(3|1
2(1(4(3 4(1(2]3 3(1[4]2

Figure 5.3 Example of a replicated Latin square; three replicates of a basic Latin square in
four treatments.

Where a replicated LSD is used, randomization should be performed independently for each replicate in
the experiment.

5.3 A model

A basic LSD recognizes the possibility of three systematic sources of variation in the data related to rows,
columns, and treatments. If these effects can be assumed to influence the data additively, a three-way
main effects analysis of variance model can be used to describe the structure of the data:

Yijk = &+ B +v; + T + €k,
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columns, and treatments. If these effects can be assumed to influence the data additively, a three-way
main effects analysis of variance model can be used to describe the structure of the data:

Yijk = & + B; + v + Tk + €iji,
it de=liot kealaak

€iji 1.i.d. with E(e;) =0 and Var(ejx) = a? (5.1)

where y; is the data value observed for the unit appearing in the jth row-block and jth column-block.
Because only one unit is included in the “intersection” of any row and column, the values of 7and jare
sufficient to identify any specific experimental run, but kis included in the indexing system to identify
the effect of the treatment assigned to that unit. Hence, not all possible combinations of z / and kare
represented in any specific Latin square arrangement.

Two-way interaction terms representing effects due to row-column combinations, row-treatment
combinations, or column-treatment combinations, cannot be meaningfully accounted for in a Latin
square design, and in fact must ordinarily be assumed to be zero in order to allow an analysis of the
three first-order effects. To see this, consider an analysis that recognizes only effects due to rows and
columns and their interaction. We might adopt the following model as a basis for this analysis:

Visk = a + B; + 75 + (B7)i5 + €igs
t1=1...1, 3=1...t, k=1...L

ek Lid. with E(e;x) =0 and Var(egx) = o (5.2)

Note that the index kA can be ignored here since it no longer indexes any fixed effect or replication TS
(because only one value of kis included for each (Z) pair). This leads to a two-way ANOVA of an
unreplicated #by-7table, and a standard decomposition of variation would assign /-1 degrees of freedom

to rows, -1 degrees of freedom to columns, and (7-1)? degrees of freedom to the row-column interaction.

A model containing an intercept (a) along with terms representing all these degrees of freedom is
saturated— it represents a//variation in any data set of this form. Adding model terms corresponding to
treatments cannot improve, or change in any way, the fit of this model, because any variation that might
have been attributable to treatments has been accounted to the row-column interaction. Put another
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saturated— it represents a//variation in any data set of this form. Adding model terms corresponding to
treatments cannot improve, or change in any way, the fit of this model, because any variation that might
have been attributable to treatments has been accounted to the row-column interaction. Put another
way, the ~1 degrees of freedom that might have explained variation due to treatients are completely
confounded with 1 of the (#~1)* degrees of freedom associated with the row-column interaction, and so
the effects of both cannot be simultaneously assessed. The practical result is that, in a LSD, inferences
can only be made about treatment effects under a model in which the contributions of treatments, rows,
and columns are assumed to be additive.

If the basic Latin square pattern is replicated, an augmented model is needed to represent the additional
sources of variation. Here we must be careful to think physically about how this replication is being
carried out. First, consider the hypothetical experiment with four strains of corn described in Section
5.2, where the three replicate squares are physically unrelated. A model for this experiment can be
written as:

Yijhl = O+ P +}'311” + Vi) + Tk + €ijkis
gl ol Y=l EBwlial Peliar

€ijke Lid. with E(€;) =0 and Var(ejn) = a2, (5.3)

In this model, a new additive effect due to replicates is denoted by p, where /=1 ... r; note that there is no
restriction on the number of replicates that can be included (as with row-blocks and column-blocks
within each basic Latin square). Because each replicate Latin square is comprised of a physically
different collection of row-blocks and column-blocks, these entities are nesfed within replicates. This is
indicated by the indexing in the notation p, and y,. So, for example, the common effect of the third
column-block may be entirely different in replicates 1 and 2, that is, ysu; and ysq are different nuisance
parameters in this model. Treatment effects are not nested within replicates, that is, we continue to use
1, rather than t,,, because they are assumed to be the same in each replicate.

But now recall that east-to-west column-blocking was actually implemented to protect against possible
differences associated with prevailing winds. If all three replicates are physically placed in locations
where these effects are known or assumed to be the same (i.e., with the same level of exposure to or



But now recall that east-to-west column-blocking was actually implemented to protect against possible
differences associated with prevailing winds. If all three replicates are physically placed in locations

where these effects are known or assumed to be the same (i.e., with the same level of exposure to or
protection from predominantly west winds), the nested pattern of column-blocks within replicates may 78

not be the most realistic description of the data. Instead, a model of form: *

Vijkt = &+ pr + Bigy + v + T + €ijkt,
il .t J=1...0 R=ml...h I=1l..%
€ijki i.i.d. with E(€jn) =0 and Var(en) = o? (5.4)

describes a situation in which, for example, the systematic effect of the third column-block, ys, is the
same in each replicate, while the effects of row-blocks (north-to-south drainage) continue to be expressed
differently for each replicate.

Finally, suppose that all three replicates are, in fact, executed on the same plot of ground, but in three
different growing seasons. If our concern continues to be protection against the possible effects of
prevailing wind and drainage pattern, andwe are willing to assume that these effects (if present) do not
change from year to year, then we might choose to model them with the same set of parameters in each
year (replicate):

Viski =@+ pr + Bi + 75 + T + €i5m1,
i=1...t,j=1...t, k=1...t,l=1...m

€ijkt Lid. with E(€;in) =0 and Var(e;jn) = a2, (5.5)

Note that the progression through these three models actually represents a strengtheningof assumptions
being made about the variation associated with blocks. In model (5.3), we assume only that row-blocks
and column-blocks may have effects. In model (5.4), we further assume that the effects of column-blocks
are the same in each replicate. Finally, in model (5.5) we add a similar assumption concerning the
equivalence of row-blocks in each replicate. In this sense, use of model (5.3) is always most conservative
because it requires the fewest assumptions. But it contains more nuisance parameters than model (5.4),
which contains more nuisance parameters than model (5.5). Thismeans that an analysis based on model
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equivalence of row-blocks in each replicate. In this sense, use of model (5.3) is always most conservative
because it requires the fewest assumptions. But it contains more nuisance parameters than model (5.4),
which contains more nuisance parameters than model (5.5). This means that an analysis based on model
(5.5) will result in more residual degrees of freedom than one based on model (5.4), and so will provide
more power for tests and narrower confidence intervals (other things being equal). Similarly, the
statistical inferences based on model (5.4) — when it is an accurate representation of the system being
studied — will be superior to those of model (5.3). The important principle here is that the modeling
must accurately represent the actual (physical) experimental situation in order to assure a valid data
analysis, but that given this, relatively fewer nuisance parameters generally lead to more precision and
power in the analysis of the data.

5.3.1 Graphical logic

Because the data collected from a Latin square contains variation associated with row-blocks, column-
blocks, and treatments, graphical displays of data by treatment should be “adjusted” to remove both sets
of nuisance effects. Extending the logic we used in Chapter 4 for CBDs, consider adjusting each datum
from an unreplicated LSD by subtracting averages representing both kinds of nuisance effects and the
overall mean:

Vo = Vsh— (..~ 0.) ~Ws.—F.) D= —T.—tp — 5. — T4 +E,..

The expectation of each such value is 7¢ — 7., and the variance is:
1 2
. " 9
Var(yj) = o (1 e ?) :

As with CRDs, the variability is somewhat smaller than that associated with e, especially when 71s not
large. But given this qualification, parallel boxplots of these adjusted data values provide, under the
assumed model, relative comparisons of the responses associated with each treatment, after correcting
for both kinds of blocks.

A similar data correction can be made for each of the three versions of replicated LSDs described
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assumed model, relative comparisons of the responses associated with each treatment, after correcting
for both kinds of blocks.

A similar data correction can be made for each of the three versions of replicated LSDs described
previously. For models (5.3), (5.4), and (5.5), respectively, define:

Yijkt = Yijkt — (Tt — §..0) — (Fj1 — §..1) — F..0
Yokt =Yijet — (T —G.0) — Ty —0...) — G0,
Yijkt = Yigkt — (Yi.. — 9....) — (U5, — F...) — ¥...1-

Each quantity is actually a residual from the least-squares fit of the data to a model containing only the
nuisance parameters, i.e., those associated with X; for the appropriate model, and in each case the

expectation of Yijkt 18 Tk = T,

5.4 Matrix formulation

Beginning with model (5.1) for an unreplicated Latin square, and collecting all nuisance parameters in
the first model partition and those associated with treatments in the second, we can write:

y=X18+X2T+€ €~ (0,0°]), (5.6)

where [§ is the (2+1)-element vector of a and the block parameters, T is the felement vector of treatment
parameters, and y and £ are N (= £)-element vectors of responses and random “errors,” respectively. If
the elements of y are sorted by row-blocks, and within each row-block by column-blocks (that is, as
would be the case in “reading” the design pattern lefi-to-right and top-to-bottom), the model matrices can

be written as:

1, 1, 0, ... 0p Ty P,
le 0 14 s O 1 P )

X, = ? ¥ ¢ v e X, = . where Z P; =J.
1, 0, 0, ... 1; Iy P,

(5.7)
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1; 0. 0: ... 1; ILixs P,
(5.7)
In this expression, P, /= 1... fare tx ¢ permutation matrices containing zero elements at every position

except for a single 1 in each row and column. This class of matrices gets its name from the fact that
multiplication by any such matrix permutes the elements of a vector, e.g.:

1 0 0 0\ /u ”
0 0 0 1 Vg U4
0100 |w]| " |w
0 010 4 U3

Note that the identity matrix is a permutation matrix (even though it corresponds to a fairly
uninteresting permutation). A consequence of these being permutation matrices is that each treatment is
applied exactly once in each row-block. The requirement that the permutation matrices sum to J implies
that there is exactly one application of each treatment in any column-block.

For this model, a little matrix algebra shows that

2 1L i
X\ Xy = ty  Jixe
3 P

X, is of rank 2 /-1 because the sums of columns 2 through #1, and #2 through 21, are each equal to the
first column. As a direct result, X;'X; is also of rank 21, so two judiciously chosen rows and columns
can be ignored in constructing a generalized inverse. However, in this case, we can take a somewhat less
computationally burdensome route to the construction of H;X,, the key quantity in determining the form
of the reduced normal equations. First, we repartition

H, X, = [X(X};X1)"][X; Xol,

and consider the second matrix factor in this expression. The inner products of columns from X, and X,
“count” the number of positions in which both columns contain 1's. The first column of X; contains all 1's,



H, X, = [X;(X]X;) 7 ][X]Xs),

and consider the second matrix factor in this expression. The inner products of columns from X, and X,
“count” the number of positions in which both columns contain 1's. The first column of X, contains all 1's,
so the first row of X, 'X; records the number of times each treatment appears in the entire design; the
result is 7in each case. Inner products involving each of the other columns of X; record the number of
times a particular row-block or column-block contains a unit assigned to the treatment associated with
the selected column of X;; the result is 1 in each case. As a result:

t1}
XXy = * 1
Jin]\c!

Now, we can write another simple matrix product that has the same value, namely:

1 11,
X =3y ) = t ),
: (f * “) (mexr)

81

Using this equivalence, we have:

- i 1
H X, = [ X (X{X,)7] [Xl (?J:H:)} = H, (?Jt*:ﬂ')-

But we know that multiples of 1, lie in the column space of X, because 1, is the first column of this
matrix. Therefore Hi %1} = %1- and so Hl{%']f*“ )= %J“ =t But note that this is the same as H;X; for a
CRD with funits allocated to each treatment, so an unreplicated LSD and a CRD with the same number of
units assigned to each treatment jointly satisfy Condition E. It follows immediately that the reduced

normal equations for a LSD are of form:
1-# - 17- = .ﬁ..k o §1 k —— l'r"'!f:'l

and that the design information matrix and one of its generalized inverses can be written as:

I=tI—J=t(I--:l-J), I‘=%I.



and that the design information matrix and one of its generalized inverses can be written as:

I=tI—J=t(I—%J). I"=%I.

For replicated LSDs, these matrix arguments can be extended by adding the necessary columns of
indicator variables for each replicate, and additional necessary columns if row-blocks or column-blocks
are nested within replicates, to X,. For example, for an r= 2 replicated LSD of 7= 3 treatments in which
row-blocks are different for each replicate but column-blocks are not, the form of X, B, following the
parameterization of model (5.4), is:

/11010000010 0
110100000010
1 10100000001
1100100001 00[7a)
1 10010000010|][p
11001000000 1[][ p
11000100010 0[]|g,,
11000100001 0f[g"
11000100000 1[fg"
10100010010 0f]|5®
10100010001 0]
1 0100010000 1]/
101000010100/ m
101000071001 0]||
10100001000 1|\ %/
1010000017100
1010000010710
\1 0100000100 1)

where the number of columns is 12, and the number of linear dependencies among columns is 4,
because linear combinations of columns associated with

-]
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where the number of columns is 12, and the number of linear dependencies among columns is 4,

because linear combinations of columns associated with

* p1 * pz —a,
* Bt B2t Bsw— P1s
* Bt Banyt Bsw— p2. and

. YitY:+tys—a

each sum to 0. Hence rank(X,) = rank(H,) = 12-4 = 8. Each of the three forms of replicated LSDs discussed
in Section 5.3 is Condition E-equivalent to a CRD with r7units assigned to each treatment. The reduced

normal equations are then

fe—F=ge—0., k=1t

and the design information matrix and one of its generalized inverses can be written as:

L=zt (I — lJ) I~ = il.
l rt

5.5 Influence of design on quality of inference

Because Latin square designs are balanced and orthogonally blocked, the reduced normal equations for
treatment effects take the same form as those for complete block designs, and the results of Sections 4.4
and 4.5 hold for Latin squares after an appropriate adjustment for the number of times each treatment is
included in the design, and the residual degrees of freedom. In particular, for a #treatment Latin square

design replicated rtimes (including r=1):

+ The residual degrees of freedom are found by subtracting from N = r&, the number of fixed
parameters in the appropriate model:

— 1 for the experiment-wide nuisance parameter. .



» The residual degrees of freedom are found by subtracting from N = r&, the number of fixed
parameters in the appropriate model:

— 1 for the experiment-wide nuisance parameter, a,

— r—1 for replicates,

— -1 for unnested column-blocks, or (1) for nested column-blocks,
— =1 for unnested row-blocks, or rn(~1) for nested row-blocks,

— -1 for treatments.

In the following, we use “df to stand for this quantity.

* The residual sum of squares is found by subtracting from the corrected total sum of squares, ¥, {y

yﬂ—y}z the orthogonal sums of squares associated with each set of parameters in the model:

= Y. Y yfor replicates if r> 1,
-¥; n{y j,,—y....}z for row-blocks if r= 1 or if they are physically the same in each replicate,

— ¥ f(y;,.;—y,,, »* for row-blocks if r+ 1 and they are physically different (nested) in each
replicate,

- Z,—rf{y, f-,,—y....)z for column-blocks if r=1 or if they are physically the same in each replicate,

- Y e'(y, i ;—y »* for column-blocks if r+ 1 and they are physically different (nested) in each
replicate,

- ¥k ﬂ(ﬁ_k—g....)z for treatments.

» The variance of an estimable function (i.e., contrast) of treatment parameters is
T iy s
Var(c'r) = — Ecﬁ. (5.8)

« The Latin square design can be expected to yield better estimation precision than a CRD with rfunits

assigned to each treatment if

aLsp/ocrp < tioas2(rt® —t)/ti_asa(df), (5.9)
and better estimation precision than a CBD in r7blocks if
oLsp/0cBD < ti—ajart® —rt —t + 1)/t _as2(df), (5.10)
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oLsp/0crRD < ti_ap(rt® —t)/ti_aj(df), (5.9)

and better estimation precision than a CBD in r7blocks if
oLsp/0cBD < ti_aja(rt? —rt —t+1)/t,_a2(df), (5.10)

where 05 0q5p and o;¢p are the standard deviations associated with € in each of the three designs.

o / of ot
» For a given estimable function ¢’ T and signal-to-noise ratio y = ¢’ t/o, a desired ¥ =cr/y Var(c'r)
can be obtained with

. = 2 ,.
T = "IF m {.Ll 1)
replicates of the Latin square.
» For testing Hyp,: T; = T, = 1z = ... = T, the noncentrality parameter associated with the Ftest is:
t
'IT/o? =) ri(m —7)?/a?, (5.12)
k=1

and the power of this test at level a for given values of T and o? is

t
Prob{W > F,_,(t-1,df)} where W ~ F’ (r. - 1,df, zrtm - f)?fa?).
k=]
(5.13)

5.6 More general constructions: Graeco-Latin squares

A slightly more general version of the algebraic argument described in Section 5.4 can be used to
demonstrate that some even more complicated designs are orthogonally blocked. Consider any blocked -
design in which Munits are evenly distributed among 7treatments. Suppose the nuisance parameters are *
represented by the model matrix X; of Nrows and p columns, and that the column totals (the number of

1's in each column) of this matrix are s, &, 8, ..., 5,- The requirements of the more general result are that:

* 1 bein the column space of X,, that is, 1 can be expressed as a linear combination of the columns of

X;, and
. X5X; = $(si1]s21]s31]...s,1).



* 1 bein the column space of X,, that is, 1 can be expressed as a linear combination of the columns of

X, and
. X5X; = 2(s11]s21]s3l]...|sp1).

Note that the first of these conditions is immediately satisfied if the model contains an intercept term. It
follows then that:

/ . 1 . .
. XiX; =X (£4) because the total of elements in the ih row of X,"1s 5, and so

. HX;=H, (%J} . %J, because 1 is in the space spanned by the columns of X;,

that is, the conditions for the design to be Condition E-equivalent to a CRD of the same size with units
divided equally among treatments are satisfied. The key to this result is the requirement that the inner
produce of the ih column of X;, and anycolumn of X, be s/7 That is, any blocking arrangement for
which the units in each block are evenly divided among the treatments is an orthogonally blocked
design. One interesting point is that this says absolutely nothing about how the blocks must relate to each
other; the condition is entirely characterized by how the treatments are assigned within each block
individually.

This result saves us substantial effort in analyzing the Graeco-Latin Square Design (GLSD), a direct
generalization of the LSD. Suppose we have three sources of “nuisance” variation with which we must
deal, rather than the two accounted for by the rows and columns of a Latin square. If we are willing to
accept the no-interaction assumption required by the Latin square, we can construct a designin N= £
units for this situation by “superimposing” two orthogonal Latin squares of this size. Two Latin squares
are said to be orthogonal if, when superimposed, each treatment symbol in one Latin square is paired
with every treatment symbol in the other Latin square in exactly one cell. Figure 5.4 displays the 4-by-4
Latin square we used to introduce the basic design in Section 5.1, with the four treatments indicated as
numbers 1-4. A second Latin square is superimposed, using letters A-D for clarity, arranged so that each
number 1-4 appears in exactly one cell with each letter A-D, hence the two Latin squares are orthogonal.
Three overlapping types of blocking are now represented by tabular rows and columns (as in a Latin
square) and letters, while numbers continue to denote treatments. As with Latin sq‘uare des.lgns
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number 1-4 appears in exactly one cell with each letter A-D, hence the two Latin squares are orthogonal.
Three overlapping types of blocking are now represented by tabular rows and columns (as in a Latin
sqquare) andletters, while numbers continue to denote treatments. As with Latin square designs,
straightforward analysis requires an assumption that interactions are not necessary in the response
model.

2A | 3B | 4D | 1C
3D | 2C| 1A | 4B
4C | 1D | 2B | 3A
1IB| 4A | 3C| 2D

Figure 5.4 Example of a Graeco-Latin square; four treatments are denoted by numbers.

We can extend the notation used in defining a matrix model for a Latin square by adding fnew columns
to X, to represent rnew blocks represented by the symbols of the second Latin square:

1; 1, Ot . | I.‘ R] P|
1, O L, ... 0, I; Ro P

X, — ‘ ' : . P X, — 2 | (5.14)
1, 0 0 ... 1, I Ry P,

Here, R; 7= 1,2,3,..., fare a second set of order-fpermutation matrices which must be chosen so that:

*«  Y..1R;=], requiring that the “letters” form a second Latin square with respect to the tabular rows
and columns, and
+  Y:21P/R;=], requiring that the two Latin squares be orthogonal.

With some effort, it would be possible to work out the algebraic form of the reduced normal equations
for these specific model matrices. However, we note that a//blocks in the GLSD (denoted by tabular rows,
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With some effort, it would be possible to work out the algebraic form of the reduced normal equations
for these specific model matrices. However, we note that a//blocks in the GLSD (denoted by tabular rows,
tabular columns, and letters associated with the second Latin Square pattern) are of size £, and contain
each treatment exactly once. Hence by the result discussed at the beginning of this section, this is also an
orthogonally blocked experimental design, and the reduced normal equations and design information
matrix for treatments take the same form as those for CRDs, CBDs, and LSDs in the same number of units
for each treatment.

It is important to remember that while the reduced normal equations are the Key to point estimates, the
form of the full model determines the precision with which the variance of £ can be estimated. Writing
the model matrices explicitly, as in equation (5.14), helps us see the number of degrees of freedom
assoclated with the model (the column rank of matrices X; and X, combined). In the case of the GLSD, our
representation of X; includes a leading column of 1's, followed by three groups of 7columns each; the
sum of each of these sets of columns is 1, indicating the presence of three linear dependencies in the
columns of this matrix. In addition, the sum of the columns of X; is also 1, indicating a fourth linear
dependency among the columns of the full model matrix (X; |X;). The rank of this combined model
mairix is then 41 (columns) minus 4 dependencies, or 473, so the number of degrees of freedom
available for estimating o® is # (data values) minus 47-3 (rank of the full model matrix), or #-4#3.

A GLSD can be randomized by randomly selecting a pair of orthogonal Latin squares in normalized form,
independently randomizing each of them as described in Section 5.1 (where symbols in the second Latin
sqquare are being associated with blocks in the third system, rather than to treatments), and overlaying
the resulting randomized arrays as in Figure 5.4. For larger experiments, Graeco-Latin squares can be
replicated an arbitrary number of times, where any combination of row-blocks, column-blocks, and
second-square-blocks can be regarded as either common to each replicate or nested within replicates,
according to the physical detail of the experiment.

5.7 Conclusion

The Latin sauare desien is an extension of the comnlete block desien in which two svstems of blocks
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5.7 Conclusion

The Latin square design is an extension of the complete block design in which two systems of blocks
account for two possible sources of variation, and each unit is contained in exactly one block from each
system. Like CBDs, LSDs are orthogonally blocked and so have reduced normal equations and design
information matrices that are identical to those of CRDs of the same size and with the same number of
units assigned to each treatment. The basic Latin square contains # units, but the size of a LSD can be
increased by replicating the basic pattern any number of times. In addition to the standard assumption
of no block-by-treatment interaction in CBDs, LSDs also require that the effects of the two blocking
systems be additive, that is, no row-block-by-column-block interactions, for clear interpretation of
treatment effects; Hunter (1989) discusses the potential for misleading analysis if these assumptions are
violated. The Latin square structure can be further extended to three blocking systems by combining two
orthogonal Latin squares to form a Graeco-Latin square.

5.8 Exercises

1. Consider an experiment in which an unreplicated Latin square is constructed in #1 row-blocks and
column-blocks, anticipating #+1 treatments. However, since there are only 7treatments to be
compared, treatment 1 is applied each place a “1” or a “#+1” appears in the Latin Square layout; that
18, treatment 1 actually appears fwicein each row-block and each column-block.

(a) Derive the 7= fdesign information matrix for this design. (Hint: Remember that H; is the same
for this design as for a Latin Square with 71 treatments).

(b) Does this design, along with a CRD with treatment 1 assigned to 2(#+1) units and each of
treatments 2-fassigned to +1 units, satisfy Condition E?

2. Discuss the meaning of experimental unirin the web page link-clicking experiment of Murphy etal.
(2006), described in subsection 5.1.1. =

3. Consider the following (rather unusual) experimental design in three treatments, with nine units
organized in four overlapping blocks:



Z.  UISCUSs The IMedaning oI experimenial uririn the web page INK-CIICKING eXPETImMeENnt ol Murpny etal. o
(2006), described in subsection 5.1.1. =

3. Consider the following (rather unusual) experimental design in three treatments, with nine units
organized in four overlapping blocks:

Treatment Block 1 Block 2 Block 3 Block 4

1 @ @
J. * ®
3 B @
1 3 s
2 B s
3 5 v
1 - *
2 a »
3 # %

Write (without using any algebra at all) the reduced normal equations for treatments for this design,
and explain (using only words) why your answer is correct for this design.

(a) Construct a Graeco-Latin square of order 3 (i.e., for three treatments), and explain why an
unreplicated design of this form is of limited practical value in most experimental settings.
(b) Explain why a Graeco-Latin square of order 2 cannot be constructed.

5. An experiment was set up to compare the wear characteristics of four kinds of automobile tires.
Sample tires of each kind were tested under “live conditions” by mounting on fleet cars; wear was
determined by a measurement on each tire after a specified number of miles in use. However, it is
known that the position of the tire (e.g., left-rear, et cetera) can also have an effect on wear, as can
the specific automobile. To control for these uninteresting sources of variation, a 4-by-4 Latin square
design was used in which automobiles were thought of as “rows,” tire positions were thought of as
“columns,” and the four kinds of tires were the treatments of interest. Before execution of the study,
however, the investigator decided that a larger experiment should be performed, so he enlarged the



the specific automobile. To control for these uninteresting sources of variation, a 4-by-4 Latin square
design was used in which automobiles were thought of as “rows,” tire positions were thought of as
“columns,” and the four kinds of tires were the treatments of interest. Before execution of the study,
however, the investigator decided that a larger experiment should be performed, so he enlarged the
experimental plan to include two complete Latin squares as described above, using four different
automobiles in each (e.g., total of eight automobiles).

(a) With the usual model for analysis of data from a Latin square design, how many degrees of
freedom should appear in the indicated lines of the ANOVA table?

« replicates
» automobiles

* positions
* fire types
« residual

(b) Suppose that in fact, ; = +1, 2 = -1, 1 = 1. = 0, and o = 2. What is the value of the noncentrality
parameter associated with the Ftest of the hypothesis of equality among treatments? (Hint:
Recall that Latin squares have the same H;X; as completely randomized designs with the same
number of units assigned to each treatment — this is also true of replicated Latin squares.)

Consider a Latin square design for comparing three treatments, specifically:

where rows in this figure correspond to one kind of block, columns to another kind of block, and
numbers refer to the associated treatments.

(a) How many degrees of freedom are available for estimating o” in this design, if row-blocks,
column-blocks, and treatments are assumed to have additive treatments (i.e., no interactions)?

(b) What is H; X; for this design? Are the least-squares estimates of estimable contrasts of T's the
same for this design as they would be for a completely randomized design with three units
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column-blocks, and treatments are assumed to have additive treatments (i.e., no interactions)?

(b) What is H; X; for this design? Are the least-squares estimates of estimable contrasts of T's the
same for this design as they would be for a completely randomized design with three units
assigned to each treatment? Why or why not?

(c) Apart from the factor of 02, what is Vad ™ TTE) for this design?

7. Suppose the investigator who was planning to use the design in exercise 6 decided at the last minute
that she was not interested in treatment 3 after all. However, she had already arranged to use units
which would be appropriate for a Latin square of order 3. So, she considered simply not using those
units which woul/dhave been assigned treatment 3. That is, she considered the experimental design

which might be described as:

112 -
21-11
- 1|2

where as before, rows in the figure correspond to one kind of block, columns another kind of block,
and numbers refer to the associated treatments, but where the units corresponding to the cells

containing “-” were simply not used.

(a) How many degrees of freedom are available for estimating o in this design, if row-blocks,
column-blocks, and treatments are assumed to have additive treatments (1.e., no interactions)?

(b) What is H, X, for this design? Are the least-squares estimates of estimable contrasts of T's the
same for this design as they would be for a completely randomized design with three units
assigned to each of treatments 1 and 2? Why or why not?

(c) What is the design information matrix for this design? Apart from the factor of ¢?, what is Var

(71 = 72) for this design?

8. In the example of Murphy et al. (2006) described in subsection 5.1.1, the response variable was a
binomial proportion in each cell of the Latin square (or Bernoulli for each user within each cell). If

Rl " il



(71 = 72) for this design?

8. In the example of Murphy et al. (2006) described in subsection 5.1.1, the response variable was a
binomial proportion in each cell of the Latin square (or Bernoulli for each user within each cell). If
sample sizes are large enough and proportions are not extreme, approximate inferences can be
based on standard linear models. Suppose a smaller experiment was conducted with four
treatments, using a LSD, resulting in the following response values, each a proportion from a sample
size of 100:

trt1: 0.51 trt 2: 0.56 trt 3: 0.52 trt 4: 0.53 g

trt 2: 0.52 trt 3: 0.59 tre4: 0.55 trt 1: 0.43

trt 3: 0.53 trt 4: 0.58 trt1: 0.42 trt 2: 0.45

trt 4: 0.48 trt1: 0.47 trt 3: 0.41 trt 3: 0.38 o
< >

(a) Although a “normalizing” transformation might be applied, since all of these proportions are
similar and none especially near 0 or 1, ANOVA-based inference should be adequate. Compute
the ANOVA decomposition and perform the Ftest for equality of treatments.

(b) Because all proportions are similar, an estimate of the near-common variance for each is
ﬁp{l <= PJ, where P is the average of the 16 tabulated proportions. Based on this estimate, and
regarding it as a “constant” since the accumulated sample size is 1600, develop a y2-test based on
the residual sum of squares to determine whether the assumed model is adequate.

9. Revise and extend each of the points made in Section 5.5, for Graeco-Latin squares.
10. Consider the following (highly artificial) data set for a Latin square in four treatments:

™
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trt 4: 0.48 trt 1: 0.47 trt 3: 0.41 trt 3: 0.38

< >

(a) Although a “normalizing” transformation might be applied, since all of these proportions are
similar and none especially near 0 or 1, ANOVA-based inference should be adequate. Compute
the ANOVA decomposition and perform the Ftest for equality of treatrments.

(b) Because all proportions are similar, an estimate of the near-common variance for each is
ﬁpil o PJ, where P is the average of the 16 tabulated proportions. Based on this estimate, and
regarding it as a “constant” since the accumulated sample size is 1600, develop a y>-test based on
the residual sum of squares to determine whether the assumed model is adequate.

9. Revise and extend each of the points made in Section 5.5, for Graeco-Latin squares.
10. Consider the following (highly artificial) data set for a Latin square in four treatments:

trt1: 1.23 trt 2: 1.59 trt 3: 1.37 trt 4:1.28 :
trt 2: 1.83 trt 3: 1.71 trt4: 7.22 trt 1: 1.64
trt 3: 1.17 trt 4: 1.65 trt1: 1.18 trt 2: 1.44
trt 4: 1.36 trt 1: 1.27 trt 2: 1.52 trt 3: 1.03 >
< > 00

a1
(a) Present a careful argument supporting why you think that this data set is or is not consistent

with the model usually used in analysis of data from a LSD.

(b) If you argued that the data are consistent with the standard model, perform a test for equality
of the four treatment effects. If you argued otherwise, give at least two possible explanations,
1.e., specific model failures that could result in the observed data pattern.



CHAPTER 6 Some data analysis for CRDs and orthogonally blocked
designs

6.1 Introduction

The emphasis of this book is on experimental designs and the statistical rationale for their use, in
particular, the impact of the design on the precision of estimators and power of hypothesis tests in the
context of linear models. However, since the properties of analysis are the foundation for our motivation
to study experimental design, it is fitting to spend some effort discussing the ideas upon which some of
these analytical techniques are based. This is only a very brief summary of a very few widely-applicable
techniques. For more information on analysis methods, the reader should consult some of the many
excellent books that have been written on this topic.

This chapter is placed at this location in the book because the structure of CRDs and orthogonally blocked
designs leads to especially simple forms for many popular analytical techniques. That being said, some of
the methods discussed here are applicable in a far wider variety of settings. The material is presented in
the order in which it might actually be used (at least sometimes) in analyzing data; model diagnostics to
check the validity of the intended assumptions, transformation of the data to more closely meet those
assumptions, basic statistical inference to answer questions about treatment effects, and more specific
techniques for controlling overall risk when many estimates are required.

6.2 Diagnostics

6.2.1 Residuals

Any application of linear models depends on assumptions about the form of the model representing the
mean and the statistical behavior of the observable realizations. The most commonly encountered
assumptions of the latter type are that the data have equal variances and are statistically independent.

Taken together, these imply:
I



mean and the statistical behavior of the observable realizations. The most commonly encountered
assumptions of the latter type are that the data have equal variances and are statistically independent.
Taken together, these imply:

E{L'} = X8, Var(y)= o1l (6.1)

where the assumptions do not include specification of o* or 6. In some cases, an additional assumption of
normality is added:

y ~ N(X0,0°I).
Validity of these assumptions is often checked by examining the residualsfrom the fitted mean model:
r=y-y=(I-Hy.

If the assumptions about the mean structure are correct, the implication is that

E(r) =0, Var(r)=c*1-H).

If y is also normally distributed,

r ~ N(0,0%(1 — H)).

Further, since r is a linear combination of y, the Central Limit Theorem often provides justification for
treating r as being approximately normally distributed even when y is not. If the observed residual
vector is a credible realization from this distribution for some value of o2, this may be interpreted as
evidence in support of the assumptions; a residual vector that would be an unusual realization from such
a distribution for anyvalue of o? suggests that one or more of the modeling assumptions is questionable.

The simplest of these residual-based assumption checks are plots or indices computed from the residuals,
designed to indicate whether they have the appearance of an i.i.d. sample from a normal distribution of
mean zero and unknown variance. In some cases, the assumed common standard deviation is estimated
and the standardized residuals— original residuals divided by an estimate of o — are examined instead.
This does nothing to destroy any pattern or curious feature that might be apparent in the residuals
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mean zero and unknown variance. In some cases, the assumed common standard deviation is estimated
and the standardized residuals— original residuals divided by an estimate of 0 — are examined instead.
This does nothing to destroy any pattern or curious feature that might be apparent in the residuals
because it is a common rescaling of all values, but it does eliminate the need to consider “any” or “some”
value of o® because it puts all residual values on a scale that should be approximately appropriate for &
(0,1) data.

A more subtle issue, that is sometimes important, is that the residuals are not really an i.i.d. sample even
when the assumptions are correct, because Far(r) = o? (I-H). The residuals woul/dbe i.i.d. draws from N
(0,0%) if Hwere 0, and in well-designed experiments in which Nis much larger than rank(X), this is often
approximately (but never entirely) true. Studentized residuals, unlike standardized residuals, are formed
by normalizing relative to an estimate of the actual standard deviation of each:

ri
VMSE(1 — hy;)

i=1,23,....N,

where r;is the jth element of r and /;1s the ith diagonal element of H.

Note that while studentized residuals are approximately normally distributed with zero mean and of
equal variance (if the model assumptions hold), they are not statistically independent because His not a
diagonal matrix except under very unusual circumstances. (See exercise 1.) Since H is known, it is
possible to linearly transform r to a vector of independent random variables with equal variances,
through a linear transformation:

r* = Ay_pxnr such that A(I—H)A' = In_pxn—p

where p=rank(X). However, this sacrifices much of the intuitive appeal of the residuals as diagnostics
because there is no one-to-one relationship between the elements of r* and the experimental
observations; one or a few unusual elements of r* could not generally be easily traced back to one or a
few experimental observations at which something might have “gone wrong.”

Hence, simple listings of residuals, standardized residuals, or studentized residuals can be a useful
screening device to indicate which, if any, individual observations might be regarded as suspicious.



few experimental observations at which something might have “gone wrong.”

Hence, simple listings of residuals, standardized residuals, or studentized residuals can be a useful
screening device to indicate which, if any, individual observations might be regarded as suspicious.
Aggregated plots of these quantities, grouped by treatment or block, can also be useful diagnostic checks
of the validity of model assumptions. For example, a treatment group in which the sample variance of
residuals is substantially larger may indicate a treatment that influences both the mean and variance of
the response. The most effective diagnostic checks are often relatively simple graphical displays such as
these, because the intelligent consideration of how assumptions can fail is usually highly context-specific.
A pattern of suspicious residuals can often be the basis of a fruitful discussion between an investigator
and a statistician. This is often a process of discovery rather than of formal model comparison and
testing. Still, there are contexts in which it is useful to have a “standard” diagnostic procedure at hand for
specific kinds of assumption failures. The analysis methods described in the remainder of this section are
useful for detecting inequality of variance in CRDs, and interaction between blocks and treatments in
CBDs.

6.2.2 Modified Levene test

Consider data collected from an experiment executed as a CRD (or any other modeling scenario in which
one-way ANOVA is the default analysis) in which there is concern over the assumption of equal
variances in each treatment group. Following the notation of Chapter 3, let y; denote the jth observation
of the ith (treatment) group, where all groups need not be of the same size. The modified Levene test for
equality of group variances, introduced by Levene (1960) and shown to be superior to a number of
competing procedures by Conover, Johnson, and Johnson (1981), is very simple and is performed as
follows:

1. For each group (1), compute the median of data values, y;, =123, ¢t

2. For each data value, compute the absolute difference between y; and the associated group median:
zi5 = |vis — il R B S S A [ & =8 &5 S v

3. Perform an Ftest (one-way ANOVA) for equality of means, using the transformed data z;



o . e e R

2. For each data value, compute the absolute difference between yj; and the associated group median:
ziy = lyi5 — Gl 25 i 3 S, A §i=1,2,3,...,n;.

3. Perform an Ftest (one-way ANOVA) for equality of means, using the transformed data z;

The intuition for why the procedure works is revealed in step 2; any group with an unusually large
spread of data values (y3) will tend to have relatively large transformed data (z;), and the average value
of the group will tend to be relatively large. While the test is not exact, an extensive simulation study by
Conover et al. showed it to approximately maintain the nominal type I error level, and have reasonable
power for moderate nonhomogeneous variance.

6.2.3 General test for lack of fit

A key assumption in all blocked experiments we have discussed is that blocks and treatments do not
interact. In most of these designs, the information available to check this assumption is limited.
However, designs that have been enlarged to include “true replication” yield data in which the variation
of model residuals can be compared to the variation within groups of runs with common treatment and
block, via a formal test for lack of fit (subsection 2.7.1). Such designs include augmented complete block
designs (Section 4.6), extended complete block designs (to be discussed in subsection 7.5.1), and any
other blocked design in which multiple units are assigned to the same treatment and block for at least
some treatment/block combinations.

For example, consider the small augmented CRD for 7= 3 treatments in &= 3 blocks, in which treatment 1
15 assigned to two units within each block (of size four). Extending the notation of Section 4.3:

(1 100]10 0)
1100|100
1 1 0 0 0 1 0
11 00] 001
1 010 0 0
1 010|100
X=XilXa)=1, 01 0l010




11 1 0 0 1
1 01 0 0 0
1 010100
X =(XX2) =
1 1 0] 0 0
1 1 0|0 01
1 001100
1 0 1 0 0
1 o1]|06 10
\10 1 {0 0 1)

In this case rank(X) = 5 since the sum of columns 2 through 4 and the sum of columns 5 through 7 each
are equal to column 1. SSEtherefore is associated with 12-5 = 7 degrees of freedom, and can be
decomposed into SSPEwith 3 degrees of freedom (V— the number of unique rows of X), and SSLOFwith
4 degrees of freedom. SSPEis the “within-group” sum of squares for the three groups associated with
rows 1 and 2, rows 5 and 6, and rows 9 and 10, of X, and a formal test for adequacy of the no-interaction
model can be carried out by comparing MSLOF/MSPEto F_.(4,3).

6.2.4 Tukey one-degree-of-freedom test

Unless a design contains “true replication” — multiple units in at least some blocks that are assigned to
the same treatment — the general test for lack of fit described in subsection 6.2.3 is not available. For
example, a CBD is typically analyzed as an unreplicated two-way table, in which b#rows represent blocks
and 7columns represent treatments. Because the table contains no replication, variation that cannot be
ascribed to row differences or column differences couz/d be due to row-column interaction, random
noise, or both. A standard analysis is to assume that any residual variation assoclated with these (~1)
(b-1) degrees of freedom is random noise.

One test for interaction, introduced by Tukey (1949), partitions this variation into one single degree of
freedom component associated with one particular kind of possible interaction, and the remaining (7-1)
(b-1)-1 degree-of-freedom component which is assumed to represent random noise. Using the notation
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One test for interaction, introduced by Tukey (1949), partitions this variation into one single degree of
freedom component associated with one particular kind of possible interaction, and the remaining (7-1)
(b-1)-1 degree-of-freedom component which is assumed to represent random noise. Using the notation
of Chapter 4 in which y; denotes the observation associated with treatment jin block Z Tukey's
procedure calls for computing an interaction mean square:

. 1224 vii(Bi. — 9.)(5.5 — 7.))?
MSI* = , _
G, — 507105, g = 5.7

and an adjusted error mean square:

SSE — Msr*

MSE”™ = G-1)(t—1)—1

and tests for interaction by comparing the ratio MSF/MSE* to F,_,(1, (b-1)(#~1)-1) for selected «a,
interpreting a large statistic value as evidence that blocks and treatments do interact.

Tukey's formulation is designed to be sensitive to cases in which the interaction, or nonadditivity
between rows and columns, is primarily due to an omitted term that is proportional to the product of the
marginal row and column effects in each cell. Examination of the numerator of MSF shows thatitis a
squared, unnormalized “covariance” between the data, y;; and the product of these marginal effects —
large values of this “covariance,” either positive or negative, lead to large test statistics. Of course, this
test will not be so sensitive to other patterns of nonadditivity, and it is perhaps for this reason that this
procedure has not been referenced so heavily in recent years. As noted above, subject matter knowledge
of the form interaction might reasonably take — if it zs present — is the best clue concerning how data
should be examined for model diagnosis.

6.3 Power transformations

When the variance of the response appears to be inconsistent across groups of units (defined by block or
assigned treatments or both), a decision must be made as to whether the heterogeneity is severe enough
to merit a modification in the form of the analysis. In many cases where data values are strictly =



When the variance of the response appears to be inconsistent across groups of units (defined by block or
assigned treatments or both), a decision must be made as to whether the heterogeneity is severe enough
to merit a modification in the form of the analysis. In many cases where data values are strictly =
nonnegative, and the variance is inhomogeneous, careful examination of enough data reveals that the
variance and mean are related. Many simple oneparameter probability distributions have this property,
e.g., the exponential (mean equal to variance) and the Poisson (mean equal to standard deviation). But

such relationships also sometimes occur with data that are at least approximately normally distributed;

for example, in chemical or material science experiments where the standard deviation of replicated
concentration measurements is often roughly proportional to mean concentration. In our context, the
empirical selection of a response transformation that equalizes variances over experimental groups, and
preserves the desired additive structure for the response mean as a function of treatments and blocks, is
sometimes a practical challenge.

The power transformation is often useful in this context and has found heavy use in experimental
analysis. A diagnostic graph of group means against group variances (or standard deviations) that
suggests a monotonic relationship is evidence that power-transformed data may more nearly satisfy the
equal-variances assumption of unweighted least-squares analysis. Suppose that our response variable y
is actually such that the mean and variance are related through a power law

Var(y) = E(y)".

If we actually knew the value of g, we might select a power transform j# with an appropriately selected
value of pto make the variances more homogeneous. Using the delta method (e.g., the expectation of a
Taylor Series expansion of ¥ as a function of y), the approximate variance of our transformed variate is:

Var(y?) = P’-’ % E[y)q+?p~2_

Hence, selecting p= (2—¢)/2 would provide a scale on which the variance is approximately constant with
respect to the mean.

The one-parameter power transformation as described by Box and Cox (1964) is:

uP -1



respect to the mean.

The one-parameter power transformation as described by Box and Cox (1964) is:

« =1
yp — .
P

A convenient characteristic of this parameterization is that values of pclose to 0 correspond to
transformations that are “close to” logarithmic because:

y" -1

limy_.o — In(y).
This form also facilitates the use of available data to empirically fit an appropriate value of p. Suppose
that there actually is some value of p, say «, for which p;™:

* has mean structure as described in the model we are fitting, and
« has errors that are i.i.d., and normally distribured.

Under this model, the maximum likelihood estimate (MLE) of  can be numerically found as follows:

- N
1. Compute the geometric mean of the untransformed data, i.e.,¥ — iz wi] x
2. For a collection of values of p, fit¥%s = Yp /4" to the intended model.
3. The value of pthat minimizes SSEis the MLE of o

Note, for example, that this approach will not work without normalizing the transformed data by the
geometric mean since SSEvalues would then be expressed in different physical units for each value of p
and so would not be directly comparable. In practice, values of pbetween 0 and 2 are generally of most
interest, and many investigators limit attention to P € {0, % + 1,2} unless the data set is large enough to
support accurate resolution over a finer grid, or there is a good physical reason to consider other specific
values.

When the selected value of pis treated as a known constant, tests for equality of treatments can
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support accurate resolution over a finer grid, or there is a good physical reason to consider other specific
values.

When the selected value of pis treated as a known constant, tests for equality of treatments can
generally proceed with usual procedures applied to the transformed data. However, interpretation of
estimates derived under power-transformed data require more attention. To see this, consider a CRD in
which the response data are measured in physical units of seconds (time). The transformed data are
modeled as:

yf}' =a" + T: + 5:;

R e Fg=1.ny

Here, the modeled response is in units of seconds?; due to the linear form of the model, these units also
apply to a*, 1/, and ;7 (and hence also to the standard deviation of £*). These physically meaningless

7'y and €; (and hence also to the standard deviation of £*). These physically

*
units also apply to ™ »
meaningless units also apply to ¢’ and ¢’r where the elements of ¢ are (unitless) weights in an

interesting treatment contrast.

The simplest approach to partially addressing this problem of interpretation is through use of the reverse
transformation. The data model implies that

yr: — 1
E (J” ) =a'+ 1.
p

i~ , Elyi,)P -1
The approximate relationship found by replacing B P ) by I leads to

- - P |
E(yy) = [pa® + pr] +1]7.
So linear contrasts in treatment means can be estimated (although not unbiasedly except in the trivial
case of p=1) as:
— e
L

t
: o Bl ) = ; rrlrvi-'_Lh-‘i""_L]E*
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case of p=1) as:

..--""'--"""'--..

. o <
ZﬂtE(y;) = Z:nf[rn +pfi +1]7.
i=1 i=1

20

Note that a*, which would not play a role in any estimable treatment conirast on the transformed scale, ™
doeshave an influence in this estimate due to the nonlinear form of the transformation.

6.4 Basic inference

In Chapters 3-5 the two basic analysis tools discussed in motivating the structure of experimental
designs are the Ftest for equivalence of treatments, and #based confidence intervals for specified linear
contrasts of treatment effects. Formulae for these procedures are especially simple for the designs
considered to this point because analysis for the CRD is based on one-way ANOVA, and since CBDs and
LSDs are orthogonally blocked designs, they share much of this simplicity of analysis. We assume that
the reader understands how these procedures would be performed in the general (unbalanced) case; the
following paragraph is a brief statement of the relevant formulae as they apply to data from experiments
designed as CRDs, CBDs, or LSDs.

For balanced CRDs and orthogonally blocked designs, let T;be the average of all observations associated
with treatment 7 T denote the #element vector of these treatment averages, rdenote the number of times
each treatment appears in the design, MSE be the error (residual) mean square from an ANOVA
determined by the design and model used, and drbe its associated degrees of freedom. In each case, the
mean square associated with treatments can be written as:

MST =Y r(T;-T)?/(t-1).

i=1

To test for equality of treatment means, the ratio of MSTto MSEis compared to £ _,(/-1,d] for a selected
value of the type I error probability a, and the hypothesis of no treatment difference is rejected if the
statistic is larger than the Fquantile. The power of this test is A W> F,_,(i~1,d0} where



To test for equality of treatment means, the ratio of MSTto MSEis compared to F_(71,d/ for a selected
value of the type I error probability a, and the hypothesis of no treatment difference is rejected if the

statistic is larger than the Fquantile. The power of this test is A W> F_(1~1,d0} where
W~ F(t-1,df,3,r( —7)*/0?)

For any estimable function c¢'t, the £based two-sided (1 - a)100% confidence interval can be written as:

c'T + ty_o/2(df)y/c'c x MSE /7.

6.5 Multiple comparisons

In experiments performed to compare a large number of treatments, there may be a need to estimate or

test hypotheses about a large number of estimable parameter contrasts. In these situations, the problem

of controlling the experimeni-wise error probability may be of concern. Suppose that 95% confidence
intervals are to be constructed for several specified linear contrasts. For example, in a screening

experiment designed to compare 10 treatments, it might be of interest to construct confidence intervals

on all 45 pairwise differences of two treatment parameters. If conventional #based intervals are used 100
and all the required assumptions are valid, each interval has a probability of 0.95 (before the experiment ™
1s executed) of containing its target parameter contrast value, or a 0.05 probability of failing to contain it.
However, the probability that az /Jeast one of several such intervals fails to contain its target may be
substantially greater because the 0.05-risk is taken several times; in the 10-treatment example the
probability that at least one interval for a treatment difference will fail is approximately 0.64. Multiple
comparisons confidence intervals are constructed as modifications of the usual forms, so that the pre-
execution probability of any of them being incorrect (i.e., not containing its target parameter) is less than

or equal to a user-supplied experiment-wise error probability we denote by ax Similar adjustments are
available for multiple hypothesis tests. Miller (1981) is a popular in-depth treatment of the general

multiple comparisons problem.

In this section, we briefly describe four procedures for constructing collections of confidence intervals
that maintain a selected experiment-wise type I error probability. Each is a modification of the #based
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multiple comparisons problem.

In this section, we briefly describe four procedures for constructing collections of confidence intervals
that maintain a selected experiment-wise type I error probability. Each is a modification of the £based
confidence interval for a linear contrast of treatment parameters. In each case described, the procedure
calls for constructing multiple intervals of standard form, but replacing the #_,, quantile by the a42
quantile from a different, related distribution.

6.5.1 Tukey intervals

In many experiments, the treatment contrasts of greatest interest are the pairwise differences between

treatment parameters, 1.e., ¢yt contains all zeros except for {¢;4;= +1, and {¢c;};= -1, forall1 < /< j=< £ If
t

all such comparisons are of interest, the number of inferences is (‘!) (c;and ¢, are not both considered,

since one is simply the negative of the other.) If individual #based 95% confidence intervals are used for

each comparison, the expected number of intervals that are incorrect (i.e., do not contain their

7)x0ﬂ5=1ﬂ5

respective target parameter contrast values) when =7 is ( - , and when

t =20 is (zzn) x 0.05 = 9.50
Tukey (1953) described how quantiles from the sfudentized range distribution could be used as the basis

for simultaneous inference in this case. Let i, i, U5, ..., U:and W, 13, V3, ..., Vas: be iIndependent random
variables following a common normal distribution, and let R = U,,.,— U, De the sample range of the first

S = [ Tilvi - 9)

R
ratio v25 follows the studentized range distribution, which is fully characterized by the values of rand
df Let B1-ax/2(tdf) genote the 1-ay2 quantile of this distribution; then the Tukey simultaneous
pairwise confidence intervals are of form:

2
sample, and be the sample standard deviation of the second sample. Then the

di - T:f + 'Tl—t:ri-:r‘"?{f*df} \/2 x ‘meE/rr

constructed foralll1 <7<j< ¢
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T — T_‘i - - l’n_ﬂh.r;g{f.,df}\/? x ﬁfSEfI‘

constructed foralll1 = 7<= j=<
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6.5.2 Dunnett intervals

When one of the treatments is a control, reference condition, or wellunderstood “standard,” the
comparisons of greatest interest are often the /~1 pairwise contrasts involving this special treatment
(treatment 1, say) and each of the other treatments in turn, that is, “IIJT where ¢;; contains all zeros

except for {¢,4, = +1, and {¢, ;= -1, for all 2 < j < £ Dunnett (1964) developed a procedure for this
situation which, like the Tukey procedure, requires substitution of a different distributional quantile for 7
in the standard confidence interval. As in our description of the Tukey method, let w, 5, 1, ..., 4;and 1,
5, V4, ..., Vag1 be independent random variables following a common normal distribution, and let

5=\/i (vi—0)2 . . . _ . D

g Lilvi = 7) _but in this case define £ = maz;=23,4,....t/u1 — ;| Then the ratio V25 follows a
distribution characterized by rand df let d,_, (¢ dfj denote the 1-a42 quantile of this distribution. Then
the simultaneous intervals are of form:

Ti — Tj % Q1 2(t,df) /2 X MSE 7

constructed for all 2 < j < . For specified values of rand df, there are fewer Dunnett intervals than Tukey
intervals, and so the Dunnett intervals can be somewhat smaller for a given experiment-wise error
probability.

6.5.3 Simulation-based intervals for specific problems

The similarity of arguments given for the Tukey and Dunnett modifications to the general +based
intervals suggests a general procedure for generating joint confidence intervals for any specified
collection of treatment comparisons. The quantiles required in each case are not analytically tractable
quantities, and the tables originally published for implementing these methods were based on extensive
and careful numerical analvtic evaluation of the integrals. This effort is warranted for collections of



intervals suggests a general procedure for generating joint confidence intervals for any specified
collection of treatment comparisons. The quantiles required in each case are not analytically tractable
quantities, and the tables originally published for implementing these methods were based on extensive
and careful numerical analytic evaluation of the integrals. This effort is warranted for collections of
contrasts that are apt to be of interest in many studies — here all paired differences, and all differences
including a control, respectively.

However, the context of an experiment often suggests specific comparisons of particular interest. For
example, in a study comparing ¢= 5 treatments, there might be four contrasts of primary interest,
denoted by the rows of the matrix:

+1 -1 ¢ 0 0
+1 0 -1 0 0
0 g 41 =1 O
0 U 41 U ==l

=

This might be the case if, for example, treatments 1 and 3 are fundamentally different preparations,
treatment 2 1s a modification of treatment 1, and treatments 4 and 5 are modifications of treatment 3.
This fits neither of the patterns for the Tukey or Dunnett procedures, but could in principle be solved the
same way. Generally, suppose there are ccontrasts in 7treatment parameters, defined as
c;T,i=1,23,... Let u;, 1=1,2,3,..., £ and Sbe defined as described in subsections 6.5.1 and 6.5.2.

C = rr!uxi=1,2,:a,._._n£2"—.
Define the #element vector u to have sth element u; and let Vei€S Then the 1-a42

quantile of the distribution of Cwould be the appropriate factor for modifying standard confidence
intervals in this case.

While it is probably impractical to compute this quantile by numerical integration techniques for each
case that might arise, these quantities are (uite easy to compute via stochastic simulation using most
modern statistical computing packages. Edwards and Berry (1987) outlined a simple algorithm for doing
this, and studied the precision of results obtained using it. Essentially, for given values of ay, £, dff and
contrasts C, their approach is to repeatedly (say M times, where AMis a large number):
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modern statistical computing packages. Edwards and Berry (1987) outlined a simple algorithm for doing
this, and studied the precision of results obtained using it. Essentially, for given values of ay, #, df and
contrasts C, their approach is to repeatedly (say M times, where A is a large number):

1. Generate uvand vvalues as independent random draws from a normal distribution, say M0,1).
2. Use these to compute each of ¢/u, §, and Cby the formulae described above.
3. Sort the resulting Mvalues of Cin ascending order, and use the (A4+1) (1-az2)-st of these as a Monte

Carlo estimate of f1-az/2(t, df ), rounding or interpolating if needed.

The resulting value is used as the quantile required in the simultaneous intervals:

CIT % fi—ap/2(t,df)y/<ici X MSE/r

constructed for all 7= 1,2,3,...,c. The procedure is “approximate” only in that freap2(t,df) is determined
by simulation; for sufficiently large A{it is essentially exact.

6.5.4 Scheffe intervals

The most general simultaneous confidence intervals we shall mention are the Scheffé (1953) intervals
for simultaneous estimation of any collection of contrasts in the elements of t. Because they are so
generally applicable, they are wider than the more specialized intervals of Tukey and Dunnett, and so
should generally not be used in situations for which the latter were developed. However, for several
contrasts involving more than two treatments, especially when the form of some of these contrasts may
result from a preliminary inspection of the data, Scheffé intervals provide an easy way to control
experiment-wise error probability.

For any one contrast c't, the Scheffé interval is yet another modification of the #interval form:

T+ \/(t— 1)Fi1—ag(t — 1,df)\/c'c x MSE/r.

TABLE 6.1 Example Data, Four-Treatment Latin Square Design



T+ /(t — 1)Fi_ag(t — 1,df)\/c'c x MSE/r.
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TABLE 6.1 Example Data, Four-Treatment Latin Square Design .
treatment 3 treatment 2 treatment 1 treatment 4
y=10.2 y = 18.3 y = 15.7 y = 25.0
treatment 1 treatment 4 treatment 3 treatment 2
gp==13.1 9 =219 y = 16.8 oy =210
treatment 4 treatment 3 treatment 2 treatment 1
n==24.1 y = 18.1 y = 18.9 y = 18.8
treatment 2 treatment 1 treatment 4 treatment 3
y=20.0 9 = 18.2 9y = 23.b Yy =227 v
< >

Regardless of the number of such intervals formed (and note that the interval form is not a function of
this number), the pre-experiment probability that any of the intervals does not contain its target
parameter contrast value is less than or equal to as Unlike the intervals produced by the Tukey and
Dunnett procedures, Schefié intervals are conservative (and in some cases, very conservative); that is,
they generally have pre-experiment probability of actual joint coverage of greater than 1-ax

6.5.5 Numerical example

Table 6.1 presents data from a four-treatment experiment designed as an unreplicated Latin square.
Because the blocks of a Latin square are orthogonal to treatments, least-squares estimates of estimable
treatment contrasts are simply the corresponding contrasts of the treatment means, Table 6.2. The
additional information needed to construct confidence intervals on these contrasts is the error mean
square from the full model, in this case containing additive effects for the row-blocks, column-blocks,

and treatmente (Tahle 8 2 BRE& 1Y The miantilee needed to conetriiet Tnilkew nairwrice comfidence intervale



treatment contrasts are simply the corresponding contrasts of the treatment means, Table 6.2. The
additional information needed to construct confidence intervals on these contrasts is the error mean
square from the full model, in this case containing additive effects for the row-blocks, column-blocks,
and treatments (Table 6.3, R6.1). The quantiles needed to construct Tukey pairwise confidence intervals
can be found in published tables of the studentized range distribution (e.g., Beyer, 1968), but many
statistical computing packages contain routines that can calculate many kinds of simultaneous
confidence intervals (Table 6.4, R6.2). In this case, the null hypothesis of no treatment difference would
be rejected for even a very small selected type I error probability. Simultaneous interval estimates of
pairwise differences of means, using Tukey's procedure, indicate differences between each pair of
treatments except for 1 and 3, and 2 and 3, while preserving overall confidence for all paired
comparisons of 95%.

™
TABLE 6.2 Treatment Averages for Data of Table 6.1
Treatment 1 2 3 4
Average 16.45 19.55 18.43 23.63 <
< > 104
. " A
TABLE 6.3 Analysis of Variance for Data of Table 6.1. (R6.1)
Source of Variation Degrees of Freedom Sum of Squares Mean Square F
Rows 3 20.0025 6.66750
Columns 3 31.0475 10.34917
Treatments 3 109.9025 36.63417 42.72
Residuals 6 5.1450 0.85750 v

< >
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Residuals 6 5.1450 0.85750 v

< >

6.6 Conclusion

Most diagnostic checks of the assumptions made in analyzing experimental data are based on residuals
from the fitted model. Many of these are graphical presentations designed to reveal residual values that
would be unusual under the model assumptions. Analytical procedures described in this chapter are the
modified Levene test for detecting heterogeneity of variance in a CRD, a formal test for lack of fit for
blocked experiments in which some units in a common block receive the same treatment, and the Tukey
one-degree-of-freedom test for detecting block-by-treatment interaction in a CBD. When the variance of
observations is monotonically related to their mean, the Box-Cox procedure can sometimes be used to
find a power transformation that preserves the desired form of the linear model while making variances
more homogeneous.

A large number of simultaneous inference procedures have been developed and are applicable to data
collected from designed experiments. These differ in the collection of tests or estimates of interest, and

the approach taken to controlling the pre-experiment probability of making one or more errors. In this
chapter, we have described two modifications of standard #based confidence intervals for specific
collections of pairwise treatment contrasts, a simulation-based generalization of these that can be used

for any & priori collection of contrasts, and a conservative method that can be used for any collection of
contrasts — even those determined after looking at the data — that control the experiment-wise error
probability ax. We note that the use of these methods does not come without some cost. While they do
control the experiment-wise error probability, and so provide better control over the probability that 105
any error is made, they do this by increasing the width of the interval estimates. In some cases, the 1
resulting intervals may be so wide as to be of limited practical value to the investigator. An appropriate
balance between relatively narrow intervals (and thus higher risk) versus lower risk (and thus wider
intervals) is highly application-specific, but should be understood by all involved in interpreting the data.
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intervals) is highly application-specific, but should be understood by all involved in interpreting the data.

TABLE 6.4 Tukey 95% Simultaneous Confidence Intervals for Data
of Table 6.1. (R6.2)

Treatment Comparison Estimate Lower Bound Upper Bound

1-2 —3.10 —5.37 —0.833

1-3 —1.98 —4.24 0.292

1-4 —T7.17 —9.44 —4.910

2-3 1332 —1.14 3.390

2-4 —4.07 —6.34 —1.810

3-4 —5.20 —T7.47 —2.930 v
< >

6.7 Exercises

1. In the discussion of subsection 6.2.1, residual analysis is described as often being loosely based on
the idea that the off-diagonal elements of the hat matrix are “small.” However, they cannot all be
Zero in realistic experiments, and can easily be large even when Nis substantial.

(a) Determine the conditions under which a CRD results in a hat matrix H that is diagonal (i.e., has

off-diagonal elements that are all exactly zero).
(b) Consider designs for comparing two treatments using two blocks of 10 units each. Demonstrate

that the off-diagonal elements of H are not necessarily “small” by computing this matrix for a
(not very attractive) design that meets these specifications.

2. Using the data reconstructed from the experiment of Matsuu et al. (2005) (Table 3.1),

(a) Perform the modified Levene test to check for equality of variance in the four treatment groups.
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. Using the data reconstructed from the experiment of Matsuu et al. (2005) (Table 3.1),

(a) Perform the modified Levene test to check for equality of variance in the four treatment groups.

(b) Assuming variances areequal in the four treatment groups, use the appropriate method to
construct simultaneous confidence intervals for comparing the control condition to each of the
other treatment groups; use az= 0.05.

. Using the data of Kocaoz et al. (2005) (Table 4.1),

(a) Perform the Tukey one-degree-of-freedom test to check for interaction between the blocks and
treatments.

(b) Using the appropriate method, construct simultaneous confidence intervals for comparing all
pairs of treatments; use a= 0.05.

. Write a computer program or script (in any language or package you like) to compute the quantile
value necessary to perform the simulation-based simultaneous confidence intervals of Edwards and
Berry. Your program will need (as input):

» the number of treatments, f,
» the number of contrasts, ¢, and
» the ¢x fmatrix of contrast coefficients, C.

Suppose Murphy et al. (2006)(subection 5.1.1) are especially interested in comparing the proportion
of “clicks” observed at the first web page location to the average proportion of clicks observed at
locations 2 through 6, andthe average proportion of clicks observed at the last web page location to
the average proportion of clicks observed at locations 2 through 6. Use the program you wrote in
exercise 4 to compute the quantile that should be used to construct simultaneous confidence
intervals for these two contrasts, using a:= 0.10. (For this exercise, ignore the fact that the data were
actually zeros and ones in this experiment, and that no information is given about a value of MSE.)

. All simultaneous interval estimation procedures described in Section 6.5 are such that ¢’ T is

estimated by €T £ K\/¢'¢MSE/T for an appropriate value of K. What value of Xshould be used if,
based on the data presented in the example of subsection 6.5.5, intervals are to be constructed for
1000 values of the vector ¢ and overall confidence of 80% is desired?
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Berry. Your program will need (as input):

» the number of treatments, f,
» the number of contrasts, ¢, and

» the ¢x fmatrix of contrast coefficients, C.
105

5. Suppose Murphy et al. (2006)(subection 5.1.1) are especially interested in comparing the proportion '
of “clicks” observed at the first web page location to the average proportion of clicks observed at
locations 2 through 6, andthe average proportion of clicks observed at the last web page location to
the average proportion of clicks observed at locations 2 through 6. Use the program you wrote in
exercise 4 to compute the quantile that should be used to construct simultaneous confidence
intervals for these two contrasts, using ar= 0.10. (For this exercise, ignore the fact that the data were
actually zeros and ones in this experiment, and that no information is given about a value of MSE.)

6. All simultaneous interval estimation procedures described in Section 6.5 are such that ¢’ tis

estimated by o'r + K/JcMSE]r , for an appropriate value of XX What value of K'should be used if,
based on the data presented in the example of subsection 6.5.5, intervals are to be constructed for
1000 values of the vector ¢ and overall confidence of 80% is desired?

7. In most applications of the Box-Cox transform, the value of pis fitted as described in Section 6.3, but
1s subsequently treated as if it is a known constant. The degree to which this practice affects the
quality of inferences depends on many things, perhaps especially the size of the samples. In order to
get some understanding of this, perform a simulation study in which you repeatedly:

» Generate n;= 10 data values from normal distributions with p;= 7= 10 and
o;=vix10,fori=1...5

» Use the Box-Cox method to estimate a power transform parameter p.

» Use the transformed data to construct a 95% confidence interval on p;—p;.
Over a large number of simulations (say 1000), keep track of the proportion of times the
constructed confidence interval contains the true mean difference of 10. Is this proportion
significantly different from 0.957?

8. Compute the studentized residuals for the data presented in Table 6.1. Are any of these values large
enough to raise suspicions about the standard assumptions?
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5. Suppose Murphy et al. (2006)(subection 5.1.1) are especially interested in comparing the proportion '
of “clicks” observed at the first web page location to the average proportion of clicks observed at
locations 2 through 6, andthe average proportion of clicks observed at the last web page location to
the average proportion of clicks observed at locations 2 through 6. Use the program you wrote in
exercise 4 to compute the quantile that should be used to construct simultaneous confidence
intervals for these two contrasts, using a:= 0.10. (For this exercise, ignore the fact that the data were
actually zeros and ones in this experiment, and that no information is given about a value of MSE.)

6. All simultaneous interval estimation procedures described in Section 6.5 are such that ¢’ tis

estimated by o'r + K/JcMSE]r , for an appropriate value of XX What value of K'should be used if,
based on the data presented in the example of subsection 6.5.5, intervals are to be constructed for
1000 values of the vector ¢ and overall confidence of 80% is desired?

7. In most applications of the Box-Cox transform, the value of pis fitted as described in Section 6.3, but
is subsequently treated as if it is a known constant. The degree to which this practice affects the
quality of inferences depends on many things, perhaps especially the size of the samples. In order to
get some understanding of this, perform a simulation study in which you repeatedly:

» Generate n;= 10 data values from normal distributions with p;= 7= 10 and
o;=vix10,fori=1...5

» Use the Box-Cox method to estimate a power transform parameter p.
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constructed confidence interval contains the true mean difference of 10. Is this proportion
significantly different from 0.957?

8. Compute the studentized residuals for the data presented in Table 6.1. Are any of these values large
enough to raise suspicions about the standard assumptions?



CHAPTER 7 Balanced incomplete block designs

7.1 Introduction

The Complete Block Designs and Latin Square Designs introduced in Chapters 4 and 5 share special
structure that leads to simple and desirable characteristics in data analysis. In particular, they are
orthogonally blocked designs, composed of blocks of the smallest size (funits) for which this is possible.
However, effective designs of even smaller blocks can certainly be constructed, and are necessary in
many applications. For example, in some settings, groups of two similar units form natural blocks; e.g.,
identical twins, left and right halves of a common plant leaf, opposite surfaces of a metal plate, and the
two front tires mounted on the same vehicle. While such blocks may offer especially “tight” experimental
control of noise, they cannot be used in a CBD or LSD in which more than two treatments are to be
compared.

In such cases, unit-to-treatment assignments necessarily result in incomplete blocks, that is, blocks in
which only a subset of treatments are assigned. We maintain the notation of 7for the number of
treatments and b for the number of blocks, but now denote the block size, or number of units in each
block, by k< £ Note that this means the total number of units and observations Vis bkrather than bz In
most cases, there are many ways in which a design of 7treatments in blocks of size & can be constructed,
but it should be clear that some arrangements are better than others.

In this chapter, we focus most of our attention on Balanced Incomplete Block Designs (BIBDs), a special
class of designs which, as their name suggests, maintain statistically desirable “balance” properties
despite the requirement that & be less than £ An incomplete block design is a BIBD when three
requirements are met:

1. Each treatment is applied to at most one unit in each block.

2. Each treatment is applied to a unit in the same number of blocks. We refer to this as the first-order
balance requirement. It follows that this common number of units per treatment must be r= b4/t
the number of units divided by the number of treatments.
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2. Each treatment is applied to a unit in the same number of blocks. We refer to this as the first-order
balance requirement. It follows that this common number of units per treatment must be r= bift,
the number of units divided by the number of treatments.

3. Fach pair of treatments is applied to two units in the same number of blocks. We refer to this as the
second-order balance requirement. The common number of blocks in which each pair of treatments
appearis A= r{k— 1)/(f- 1). This result follows from considering any one treatment, say the 08
treatment labeled “1”. Treatment 1 is assigned in rblocks, so there are r(k — 1) units available in w
these blocks for allocation of the 7— 1 other treatments, and so (A - 1)/(z- 1) is the average number
of within-block pairings of treatment 1 with any other treatment. But if the second-order balance
requirement holds, the average number of within-block treatment pairings is also the common
number of within-block pairings for any two treatments.

So, for example
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1s a BIBD for f=5 treatments in &= 10 blocks of size 4= 3, with r=6 and A = 3, while
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is not a BIBD, even though it meets requirements 1 and 2 above.

7.1.1 Example: drugs and blood pressure



is not a BIBD, even though it meets requirements 1 and 2 above.

7.1.1 Example: drugs and blood pressure

Kraiczi, Hedner, Peker and Grote (2000) compared the effects of five drugs — atenolol, amlodipine,
enalapril, hydrochlorothiazide, and losartan, each at a standard dose — on the blood pressure of patients
suffering from both hypertension and obstructive sleep apnea. The 40 patients included in the study
were males of age 25 to 70 years, each of whom was tested by objective criteria for both medical
conditions. Each patient was randomly assigned to one of 20 treatment protocols. A treatment protocol
consisted of a baseline period during which blood pressure measurements were made without medical
therapy, followed by two 6-week treatment periods separated by a 3-week “washout” period. During
each treatment period, the patient received daily oral doses of one of the five drugs. The 20 treatment
protocols were identical except for the ordered sequence of two drugs used; 20 such sequences are
possible, and two of the 40 patients were assigned to each of the 20 protocols. The primary response
variable in this study was the average of three diastolic blood pressure measurements, taken 24 hours
after the last dose of medication administered in each period.

The design of this study is actually somewhat more complex than a basic BIBD, because the investigators
were also concerned about the possibility of an effect due to the order of drugs administered. Models
containing additional terms to explain carryover effects are often used with crossover designsin this
context. For our purposes, suppose order of administration is of no consequence, e.g., that we are willing
to assume that any systematic difference between the effects of atenolol and amlodipine is not "
dependent on the order in which they are administered. With this assumption, and disregarding the data
collected during the baseline period, this experiment can be viewed as a BIBD in 7= 5 treatments (drugs),

in b= 40 blocks (patients), each of which contains &= 2 units (treatment periods experienced by the
specified patient). The 10 block patterns used correspond to the 10 (now unordered) combinations of two
drugs from among five, and each of the basic patterns is used with four patients. Hence in the notation
described above r= kb/t=2 x40/5=16 and A = (k- 1)/(f- 1) = 16 x 1/4 = 4. Under our simplified scenario,
appropriate assignment of units to treatments could be accomplished by randomly dividing the 40

patients into 10 groups of equal size (each group corresponding to one pair of drugs), and then for each

natient individuallv. flinning a coin to determine which of the two assiened treatments would be 11sed in



described above r= kb/t=2 x40/5=16 and A= n(k- 1)/(f- 1) = 16 x 1/4 = 4. Under our simplified scenario, .
appropriate assignment of units to treatments could be accomplished by randomly dividing the 40

patients into 10 groups of equal size (each group corresponding to one pair of drugs), and then for each

patient individually, flipping a coin to determine which of the two assigned treatments would be used in

the first treatment period.

7.1.2 Existence and construction of BIBDs

The construction of CBDs is such that a design can be constructed in any number of blocks for any
number of treatments. However, there are many combinations of values of ¢ 4 and & for which a BIBD
does not exist. A necessary, but not sufficient, condition for the existence of a BIBD follows immediately
from the construction requirements: For given £, &, and A, a BIBD cannot exist unless:

« r= bkitis an integer, and
» A=nk-1D/t-1) = bk(k-1/[dr- 1)] is an integer.

For example, a BIBD cannot exist for six treatments in five blocks, each of size 4, since the required
number of units associated with each treatment would be r= 3%. For seven treatments, a design in 21
blocks, each of size 5 may exist since this would allow for r= b&kfr=21x5/7=15and A=r(k-1)/(r-1) =
15 x 4/6 = 10. In fact, such a BIBD does exist in this case, and it is easy to show that no BIBD for seven
treatments in fewer blocks of size 5 can exist since b= 21 is the smallest integer satisfying the two
conditions in this case.

Construction of the BIBD for the case of =7 and k= 5 just mentioned is actually simple. It can be
7

accomplished by including one block with each of the (5) = 21 subsets of five treatments. In general, a
t

BIBD for ftreatments in ("‘) blocks of size kcan always be constructed, even though it is not always the
smallest BIBD that is possible for the given values of rand k. It is easy to show that such all-possible-

t—1 ) ( t—2 )
subsets BIBDs are characterized by r= (‘{t —1/andn=\*~2/ Another simple and useful technique is 4,



BIBD for ztreatments in \™/ blocks of size &k can always be constructed, even though it is not always the
smallest BIBD that is possible for the given values of fand k. It is easy to show that such all-possible-

t—1 i —2
subsets BIBDs are characterized by r= (‘{t - 1) and A = (‘t" - 2). Another simple and useful technique is 1,
to note that any BIBD in /& blocks can be expanded to a BIBD in mb blocks where mis an integer greater '
than one, by including /m “copies” of each required block; the values of rand A for the (larger) BIBD are
each also increased by a factor of m. The BIBD described in the blood pressure experiment of subsection
7.1.11s an example of both techniques; all possible combinations of two from five treatments are used as
block patterns, and each block pattern is replicated in four different patients.

Several more elaborate algebraic techniques have been developed for constructing BIBDs, either for
specified values of ¢, &, and/or 4, or, as in the case of the replicating technique mentioned above, by
modifying other BIBDs. Some of these are discussed in John (1998). Colburn and Dinitz (1996) are
editors of an extensive table of BIBDs, and Prestwich (2003) has described a construction algorithm.

7.2 A model

Aside from the values of indices that can occur together in describing a response, the form of an effects
model for a BIBD is the same as that for a CBD:

Vij = a+ B + 75 + €,
S —-— j € S(i),
€;; 1.i.d. with E(e;;) =0 and Var(e;) = o2 (7.1)

for the response from a unit in block sthat received treatiment /, where SJ) is the set of Atreatments
assigned to experimental units in block i As with CBDs, standard analysis of data from a BIBD generally
proceeds under the assumption that blocks and treatments do not interact.

7.2.1 Graphical logic

At first glance, it might seem that a graphical presentation of the response data collected from a BIBD
could be designed using a similar strategy as that described in Chapter 4 for CBDs. There, each data
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At first glance, it might seem that a graphical presentation of the response data collected from a BIBD
could be designed using a similar strategy as that described in Chapter 4 for CBDs. There, each data
value was altered by subtraction of its corresponding block average to remove variability that could
reasonably be attributable to blocks before treatment-specific boxplots were constructed. However, that
approach is not so reasonable in this case since each block (and so each block average) represents only a
subset of treatments. With CBDs, “correction” for block totals is an adjustment for a commoaon average
effect over all treatments, within each block, leaving a corrected value that represents the deviation of a
specific treatment from the average of all treatments. Applied to BIBDs, this correction represents a
different subset of treatments in each block, and so does not produce the desired result.

One solution to this problem, which is of practical value primarily when #1is relatively small, is to
construct a boxplot of differences for each pairof treatments, using only data from the A blocks in which
both treatments have been applied to units:

dt_?_j' = Wij — Yij'» ] € S{I} and jr & S{I], Y = _]"r. {TE}

Based on our model, each dy has mean 1; - 1; and variance 2 o%, and so reflects only relative

characteristics of treatments jand / and within-block variability assumed to be consistent throughout
the experiment.

{
It should be noted that this collection of (2) boxplots may not seem entirely consistent to an untrained
obhserver. Since different subsets of data associated with a given treatment are used in comparisons to
other treatments, it is likely that (for example) the average of A values for treatments 1 and 3 is nofequal
to the difference of averages for treatments 1 and 2, and treatments 2 and 3. However, discrepancies of
this sort that are large, relative to the standard deviation of V 20%/A for the average of values in each
boxplot, may be indicators of a violation of modeling assumptions.

The plots just described, while sometimes useful, do not actually represent a// information about
treatment differences in a BIBD. For example, consider a BIBD in blocks of size 2, in which treatments 1

arnAd 2 ava arnmbiod in hlacrlr 1 and troaotmante 27 and 2 avroa arnmliad in hlaelr 2 TAThila tyvootmaoante 1 and 2 An
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The plots just described, while sometimes useful, do not actually represent &// information about
treatment differences in a BIBD. For example, consider a BIBD in blocks of size 2, in which treatments 1
and 3 are applied in block 1, and treatments 2 and 3 are applied in block 2. While treatments 1 and 2 do
not appear together in either block, it is easy to see that 3, — i3 + J53 — J5, has mean 1, — 1, but variance
larger than that of a difference between two data values from the same block, 2 ¢*. More generally, if
blocks 1 and 2 each contain units assigned to several common treatments other than 1 and 2, the
averages of all such values can be used in place of yi; and yss to reduce the variance of the contrast
while maintaining the expectation of 1, — 1s. These multi-block contrasts can be added to graphical
displays, but only with the understanding that they are less precise than differences computed within a
single block.

7.2.2 Example: dishwashing detergents

John (1961) described an experiment performed to compare 7= 9 dishwashing detergent formulations.
Interest centers on how long the soapsuds remain in a standard solution of each detergent, and the
recorded response is the number of plates (each soiled in a controlled, uniform way) that are washed
before the “foam” disappears. The experiment is performed in three basins; the tests performed during
the same time period are treated as a block so as to control for fluctuations in the temperature of the
room and other unaccountable sources of variation that would affect all three simultaneous tests. In the
data listed in Table 7.1, treatment 9 is actually regarded as a standard formulation or control, while
treatments 1-8 are alternative detergent formulations of interest. Examination of the pattern of entries
in the table shows that this is a BIBD, with /= 12 blocks each containing &= 3 units, for 7= 9 treatments
each of which appears in r= 4 blocks, and each pair of which appear together in A = 1 block.

113
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TABLE 7.1 Data (Number of Plates) from the Detergent Example of
John (1961)

Block

Treatment




John (1961)

Treatment
Treatment 1 2 3 4 5 6 T 8 9 10 11 12 Total
1 18 = = W = = ) = = J) & = 79
2 17 - - - AT - - 21 - - 17 - 2
3 11 - - - - 15 - - 13 - 14 53
1 - b - T - - - « f 6 - 26
5 - 26 - 26 - 26 - . - - 24 102
G - 23 - - - 23 - 23 - 24 - - 93
T - - 21 20 - - - 21 - - - 21 83
8 - - 19 - 19 - - - 20 19 - - i
9 - - 28 - - 31 31 - - - 29 - 119
Block Total 47 55 68 47 62 69 77 65 40 63 52 59 704 v
L 4 >

7.3 Matrix formulation

A matrix representation of all data from an experiment arranged as a BIBD also follows the general form
of that for a CBD:

y=X8+Xor+€ €~ N(0,0%), (7.3)

where [ is the (& + 1)-element vector of nuisance parameters a and p; 7= 1,2,3,..., b, 118 the felement
vector of treatment parameters and X, takes the form that would be used in a CBD with & (rather than 9
freatments:

1y 1x O ... O

1y O 1 .+ O

; A ko O g k
1. B O ... 1%

It follows immediately that H, also takes the same form as it would in a CBD with blocks of size &

(J;H;.- Okxk --- ﬁkxk\
— 1 Uk}k Jk}.L roa kai iFroah



It follows immediately that H; also takes the same form as it would in a CBD with blocks of size &

Jixk Okxk -+ Opxk
HI - I ﬂkr.ﬁ: J.L:-.:L ﬂkxl (?.4]
Orxx Okxk - Jrxk

The form of X; is more difficult to write simply, but can be characterized by noting that

» each row consists of zeros with the exception of a single 1,

« the total of elements in any column of X; is r;

* the inner product of any two columns of X, is zero, and

* the group of rows numbered (/- D)k+1,U-1Dk+2,U-1k+3, ... 1k, 1=123,.., b le., those rows
coding treatment assignments in the ith block, contain 1's placed according to each element of S(J).

It follows that the &h row of H;X;, /= 1,2,3,..., N, contains elements that take on one of two values, namely

f in columns corresponding to treatments that are applied in the block that contains observation / and 0
in columns corresponding to treatments that are norapplied in the block that contains observation / As
an example, consider a BIBD for f= 6 treatments, in blocks of size k= 4. If treatments 1, 2, 3, and 6 are
applied in a given block, the four rows of H;X; associated with the units in that block are each:

1 1 1 1
(1- Eq. 1- U.. U- Z)-

Further, since X, ; = (I - H)X; = X; — H;X;, the corresponding rows of zh7/s matrix are:

3 1 1 1
(3= ¢ e " ° —1)
1 3 1 |
(‘: e " %L “1)
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In the general case, a given row of X; ; contains three unique values:

L. } . : )
* 1 -%inthe column corresponding to the treatment applied to this unit,

1
* — % In columns corresponding to the & — 1 other treatments applied to units in this block, and
* 0 in columns corresponding to treatments not applied to any unit in this block.

Since all such rows have elements that sum to zero, it is clear that any linear combination of the rows of
X, ; has a zero sum, implying (once again) that contrasts are the only estimable linear combinations of
the elements of t. Further, it is clear that for any distinct pair of treatments jand 7, 1, - 1, is estimable
because the contrast can be expressed as a linear combination of just the rows of H; X, corresponding to a
block in which these two treatments are both applied. Finally, since the pairwise contrast associated with
everytwo treatments is estimable, anylinear contrast in the elements of 1 is estimable, just as in the case
of the CBD.

To understand the structure of the design information matrix 7= X,,,"X; , for this design, consider the
characterization of X, , given above. The jth column (corresponding to treatment j) contains:

+ relements of value 1 - &, corresponding to the rexperimental runs in which treatment jis applied, ;s

1 . : . :
+ (k- 1)elements of value -k corresponding to runs in which other treatments were applied, but e

which are grouped in blocks where treatment jwas also applied, and
* k(b - D elements of value zero corresponding to runs in blocks where treatment jwas not applied.

Hence, the sum of squared elements in any one column is:
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* k(b— n) elements of value zero corresponding to runs in blocks where treatment jwas not applied.

Hence, the sum of squared elements in any one column is:

13\? _ 1\> r(k—1) At-1)
T(I_E) +rik—1) (_I) = 2 = }.‘ y

so this is the common diagonal element of Z The inner product of any pair of distinct columns of X;, is

comprised of:

!
« 2iterms of value — (1 - %}E corresponding to runs receiving one of the two treatments, from blocks in
which they are both applied,
1
»  AMk- 2) terms of value ¥ corresponding to runs receiving neither of the two treatments, from blocks

in which they are both applied (to other units), and
* (b- ANkterms of value 0 corresponding to runs from blocks in which at least one of the two
treatments is not applied.

So, the complete inner product for two such columns is:

S | 1 1
—l} — — - " — — o
2 (1 k) =+ Ak = 2)5 = —AL,

the common off-diagonal element of Z Taken together, these imply that

At-1) | A A 1 :
I_( - R)I—IJ_—{rI—J]_R(I—?J). (7.5)

s - r
Since the reduced normal equations can be written as 17 = xﬂily, we now consider the form of the

right side of this system. Turning again to our description of the structure of X; ;, the inner product of the
Jth column (corresponding to treatment j) and y includes terms of:

1 . 2 2 :
* (1 - F times the total of responses associated with treatment /, and
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Jth column (corresponding to treatment j) and y includes terms of:

L .. A : 2
* (1 - F times the total of responses associated with treatment / and

- : A : :
+ — % times the total of responses associated with all other treatments, but only from blocks in which
treatment ywas assigned,

or, simplifying the sum of these, the total of responses associated with treatment j minus % times the total
of allresponses from blocks in which treatment jwas assigned. Letting T represent the felement vector
of treatment totals, and B represent the felement vector of block totals, this means that the system of
reduced normal equations can be written as

%(l—%-])""”xé(l—de:T_%(x;x,)B. (7.6)
118
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The elements of the vector on the right side of equation (7.6) are often called the “adjusted treatment
totals,”

Q=T- %xgxla.

Dividing each side of the reduced normal equations by % yields
1 . k
(l—?J)T’— EQ {?.?)

which in turn leads to the form of the estimate for any contrast in the treatment parameters:

— ,I""
'r = —c’Q. R
i e Q (7.8)
It is interesting to compare this equation to the form of the estimate for unblocked or orthogonally

blocked experiments with runits assigned to each treatment:

— 1

c'r=~-c'T.



It is interesting to compare this equation to the form of the estimate for unblocked or orthogonally
blocked experiments with runits assigned to each treatment:

or = %c’ T
While these forms are similar, T and ( are not equal (nor even proportional), and r+ A /&, reflecting the
fact that treatments and blocks are not orthogonal in a BIBD.

Another result of this nonorthogonality of blocks and treatments is the somewhat more complicated
form of an ANOVA decomposition. For CBDs, the partitioning of sums of squares is especially simple:

S5B + SST + SSE = Total S5

Zt(y, - §.)° +Zr{r;3 i7.)? + SSE = Z{J‘J_ i7.)?

4J

where SSE can be easily computed as a difference. The absence of orthogonality between blocks and
treatments in a BIBD can be interpreted as meaning that some of the variation in the data can be
attributed to either blocks ortreatments. Computing SSF as above assigns all of this variation to blocks,
and S§7(which now quantifies variation associated for treatments after “adjustment” for blocks) can be
written for a BIBD as

" 2
SST:Z%(QJ Z;\i -=Z ( / ) (7.9)
2 J J

= A
since €.=0. Again, : 3 “plays the role of” rin the sum of squares, just as it did in the reduced normal
equations, even though r+ A #k Given this adjustment, SSE can be computed as a difference between the
mean-corrected total sum of squares and (SSE + SST) for BIBDs, just as it is for CRDs.

118

7.3.1 Basic analysis: an example

We continue with the data of John (1961) described in subsection 7.2.2 and listed in Table 7.1. Block and
treatment totals are included in the table, and the array of elements in X,"X,, the incidence matrix,



/.5.'1 basIC analysis: an examplte

We continue with the data of John (1961) described in subsection 7.2.2 and listed in Table 7.1. Block and
treatment totals are included in the table, and the array of elements in X,'X,, the incidence matrix,
follows the pattern of entries in the main body of the table with 1's corresponding to data locations and
0's corresponding to empty table cells. Using equation (7.6) above, this leads to:

(47

55

(79\ (1{}01001(!010{1\68

72 100010010010|].

53 100 00 001UU1;52
26 010100001 10

1 : 1 , 69
OI-JjF=]102(-=-]0 1 0010100001

3 3 77

93 010001010 0 0|

83 001100010001 4;]

17 001 010001100(],

\ 119/ \0 0 1. 00110001 0/ i

52

\59/

or, after algebra and reduction

[ 1000\ [ 0.333)

-3.333 ~1.111
—18.667 —6.222
—38.667 —12.880

.5-_{1:%@:% 17.667 | = 5.889 |.
9.000 3.000
3.333 1.111
~0.667 ~0.222

\ 30333/ \ 10.111)



3.333 1.111
—0.667 —0.222
30.333 10.111

So for example, differences between each of the first eight treatment parameters and the ninth
(standard) are uniquely estimable as 71 — 79=0.333 - 10.111 = — 9.778, et cetera. Following equation
(7.9), §5T can be computed as:

k . X | sk
ﬂg Qj = 3 x 3180.4 = 1060.1333

leading to

MST = 1060.1333 /8 = 132.5167.
118
SsBis 2o k(Ui — 8.)% = 426.2363, and SSE can then be computed as a difference between the corrected '™
total sum of squares, and sum of squares for blocks and (block-corrected) treatments:

1502.8889 — 426.2363 — 1060.1333 = 16.5193

for which the corresponding mean square is an estimate of error variance:

% = 16.5193/16 = 1.0325.

While the derivation and use of these equations are helpful in demonstrating how inference for BIBDs
and CBDs is both similar and different, data analysis for designs that are not orthogonally blocked (and
often for simpler plans as well) is most often carried out using general computer programs. The format
of input used by various programs differs, but the key is to be sure that the treatment sum of squares is
being computed after correction for blocks, and not vice versa. A strategy that is generally safe
(regardless of the program) is to assemble the ANOVA components using the least squares fits to two
models, one containing only the nuisance parameters coded in X;, and the other containing all terms (i.e.,
mode] (7.3)). Call the first of these Model 1, and the second Model 1 + 2 (R7.1). Then the ANOVA
decomposition of interest can be assembled as:



models, one containing only the nuisance parameters coded in X;, and the other containing all terms (i.e.,
model (7.3)). Call the first of these Model 1, and the second Model 1 + 2 (R7.1). Then the ANOVA
decomposition of interest can be assembled as:

+ SS5FBand associated degrees of freedom as the “model” component of the Model 1 fit,

+ SSE and associated degrees of freedom as the “residual” component of the Model 1+2 fit,

+ SSTand associated degrees of freedom as the difference between “model” components for Model 1+2
and Model 1, and

« total SS as reported in either fit.

7.4 Influence of design on quality of inference

For an estimable linear combination of the elements of t, that is, ¢’t for which ¢’1 = 0, the variance of or
18:

i , ke 1L X7 k
Vi f = 20T = 2 ¢ —_ = = W s ,’ E
ar(c't)=0°c'IT"c=0o i C (I fJ) b

Recall that the variance function for CRDs with each treatment applied to rexperimental units is

Var(c't) = o2 lc'c,
2
and that this variance function also applies to all orthogonally blocked designs for which each treatment

kr
is applied to runits. Since the variance formula for the BIBD differs by a factor of At, the ratio of 118
estimation variances for a BIBD and CRD of the same number of experimental units is: 1=

Varpipp _ krogypp _ k(t—1) o%ipp
Varcrp At JE}:RD t(k —1) Jé’-‘HD

k(t=1)
Since k < 1, the factor t(k-1) is larger than one, and becomes larger as the block size decreases relative to

the number of treatments. This is a direct consequence of the comparative information lost to the
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k(t=1)
Since &k < [, the factor t(k-1) is larger than one, and becomes larger as the block size decreases relative to

the number of treatments. This is a direct consequence of the comparative information lost to the
absence, in some blocks, of pairs of units assigned to any two treatments. As with other blocked designs,

the hope is that effective blocking leads to a smaller value of ¢°. The reduction in variance must be such
% t{k—1
that ?Zeo ~ **=1) if the BIBD is to result in smaller estimation variances for estimates. This requirement

is likely to be met in many cases, where blocking is even modestly effective. The more important
comparison, however, is between BIBDs and comparably sized CBDs. Since the latter are orthogonally
blocked, the BIBD has superior estimation variance properties only if:

ohpp _ tk—1)
ocbpp k(t—1)

Here, the reduction in variance must come from reduction of the block size from rto 4, and this change
may be much less dramatic. Nonetheless, there are many applications in which very efficient blocking
can be achieved only when kis at least somewhat less than 7 and BIBD's are natural candidates in these
settings.

As we have discussed, BIBDs are not orthogonally blocked designs, but their balanced structure makes
their statistical efficiency easy to compare to the designs described in earlier chapters. In particular, for a
ttreatment BIBD containing b blocks each of size &, and in which each treatment is replicated rtimes:

+ The residual degrees of freedom are found by subtracting from N = rf= bkthe number of linearly
independent fixed parameters in the block-treatment additive model, i.e., N- - £+ 1. In the
following, we use “df” to stand for this quantity.

« The variance of an estimable function of treatment parameters is

- I T
Var(c't) =o*—= ) . 7.10
ar(c'r) =o MEH (7.10)

+ The Balanced Incomplete Block Design yields a smaller expected squared length for (1 — a)100% two-
sided confidence intervals of estimable functions than a CRD with AJfunits assigned to each

freatment if
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k=1

» The Balanced Incomplete Block Design yields a smaller expected squared length for (1 — a)100% two-
sided confidence intervals of estimable functions than a CRD with Affunits assigned to each

treatment if
t(k—1) .
oBIBD/OCRD < k(- l]{h-afz(ﬁ" —1))/t1-a/2(df)], (7.11)
and is superior in the same sense to a CBD in &= AN/ tblocks if =
t(k—1)

oBiBp/0cBp < t1-as2(N —b—t+1)/ti_ap2(df)], (7.12)

k(t — 1)
where o zp Ocsp and ozzp are the standard deviations associated with e in each of the three designs.

—_— ¥ Ty
» For a given estimable function ¢t and signal-to-noise ratio y = ¢'t/o, a desired ¥ =c'r/y/ Var(c'T)

can be obtained with

.c'c k
=P 7.13
P w2 At ()
replicates of the BIBD.
» For testing Hyp,: T; = T, = T = ... = T, the noncentrality parameter associated with the Ftest is:
v L —
T'Ir/0? = %Zm - 7)%/a?, (7.14)

k
and the power of this test for given values of T and o? is

t
Prob{W > F,_.(t—1,df)} where W ~ F' (r. = 1.{1{,\"1%2(& — 7)2/a?).
K

(7.15)

7.5 More general constructions

7.5.1 Extended complete block designs

The primary motivation for BIBDs given so far is the need to construct designs for which the natural or
convenient block size 1s smaller than the number of treatiments to be compared. However, the BIBD



7.5.1 Extended complete block designs

The primary motivation for BIBDs given so far is the need to construct designs for which the natural or
convenient block size is smaller than the number of treatments to be compared. However, the BIBD
structure we have discussed is also useful for generating exrended complete block designs introduced by
John (1963), and further developed by others including Trail and Weeks (1973). These designs are
similar to the augmented complete block designs discussed in Section 4.6, in that the number of units in
each block is larger than the number of treatments. In extended complete block designs, each treatment
1s assigned to one of the first funits in each block, and a BIBD is used to determine the treatment
assignments for the “extra” units.

More precisely, suppose that b blocks of &> runits each are available for comparing 7treatments, and

that b, &, and ¢ are such that a BIBD exists for ftreatments in &2 blocks of size &' = k- fwith design
parameters ' = bk’/tand A’ = r'(K — 1)/(f - 1). An extended complete block design can then bhe

constructed by applying the & treatments included in a block of the BIBD to rworandomly selected units,
and each of the 7- &’ other treatments to one randomly selected unit, in the corresponding block of the 4,
extended complete block design. The result is a design that has first- and second-order balance among 1=
treatments as defined in Section 7.1, and that affords bk’ “pure error” degrees of freedom in within-

block replication for estimation of o2 that does not depend on the assumption of additive block effects.

In thinking about the form of the design information matrix for the extended complete block design, it is
helpful to use the expression 7= X,'X, - (H;X,)'(H,X,). For this design, X,'X; = (b + )I. The form of H; is as
it would be for any design containing /& blocks each of size &,

Jixk Okxk .. Orxk
1 ['Oui 3 e Dodd
g, = L[ Qe kx k kxk (7.16)
k
Okxr Okxk oo Jpxk

1
{H:X:};1s equal to & times the number of units assigned to treatment jwithin the block containing the ith
run; in this case, the unique counts are 1 and 2. In the jth column of this matrix r* kelements are & (each

] ] ) ; ] : 1
row associated with a block in which treatment 7occurs twice) and (b - r)kelements are ¥ (each row



{H:1X:}51s equal to % times the number of units assigned to treatment jwithin the block containing the ih
run; in this case, the unique counts are 1 and 2. In the jth column of this matrix r X elements are Il (each
row associated with a block in which treatment joccurs twice) and (& - ') kelements are % (each row
associated with a block in which treatment joccurs once). Further, for any pair of columns, j= 7,
corresponding elements are both Ijr in X krows, are mixed —i.e., ((f #)or (%, %) —in2(r' = X)k TOWS,
and are both %jn (b - 2r + X)krows. With these results and some algebraic reduction, one expression for

the design information matrix for the extended complete block design is:

I=b

k(k — 3) + 2t 1
k(t —1) [l - EJ]'

7.5.2 Partially balanced incomplete block designs

In some cases, an incomplete block design is desirable due to operational or efficiency constraints, but
the value of ¢, and the allowable values of kand &, do not permit construction of a BIBD. In these cases, a
design from the larger class of partially balanced incomplete block designs (PBIBD) may be available. A
PBIBD, like a BIBD, is a design for comparing 7treatments in & blocks of & < funits each, that requires
each treatment to be applied to one unit in each of rblocks — the same first-order balance property
required of BIBDs. However, the “partial” second-order balance requirements of a PBIBD are less
stringent. Specifically, a PBIBD(2) (the “2” to be explained shortly) requires the following:

1. For treatment Z the remaining 7 - 1 treatments may be divided into two groups; call these 4;and B.
For example, for eight treatments, 4; and B; might be {1,2,4} and {5,6,7,8}. The treatments identified
In A; are called first associates of treatment 7, and those identified in B;are called second associatesof .-
treatment L 1=
For any treatment 7 A; contains # elements, and B;contains % elements, &, + £ = - 1.

3. Any two treatments that are first associates (e.g., treatment 7and any treatment identified in 4,
appear together in A, blocks. Any two treatments that are second associates appear together in A,
blocks.

4. For anv two treatments that are first associates, sav treatments 7and /.,



3. Any two treatments that are first associates (e.g., treatment 7and any treatment identified in 4,
appear together in A, blocks. Any two treatments that are second assoclates appear together in A,
blocks.

4. For any two treatments that are first associates, say treatments 7and J,

» A;and A;have p; elements in common,
» A;and B;(or 4;and B) have p;, elements in common, and
» B;and B;have p, elements in common.

5. For any two treatments that are second associates, say treatments 7and J,

= A;and 4;have g, elements in common,
= A;and B;(or 4;and B) have ¢, elements in common, and
» B:and B;have ¢, elements in common.

Hence, the inter-related design parameters (values specifying the structure and properties of the design)
aret b, k &, b, Ay, As, Pria, Prz, Por, Qv Gaz, @aNd @5, EXtensive tables of PBIBD(2) designs have been
published by, for example, Clatworthy (1973).

For example, consider again the second example design given in the introduction to this chapter:

1|3|o0]|2]4]|]1]|3|90]|2]| 4 A
24|11 3
3151214113 411 v

|
bo
.
—

] |

ot
b

Each of the five treatments appears in six blocks, so the design has first-order balance. Each pair of
treatments is applied together in blocks with frequencies:

Treatments | (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5 (3,4) (3,5) (4,5) |a
Frequency 2 1 1 2 2 1 1 2 1 2 v




treatments is applied together in blocks with frequencies:

Treatments | (1,2) (1,3) (1.4) (1,5) (2,3) (2,4) (2,5) (3.4) (3,5) (4,5) |a
Frequency 2 1 | 2 2 1 | 2 1 2 |v
< >

So, for each treatment, the first and second associates are

™
Treatment First Associates Second Associates
1 25 3.4
2 13 45
3 2.4 1,5
4 3,5 1,2
5 1,4 2.3
W
< >
with A; = 2, and A; = 1. We leave it to the reader to confirm that requirements 4 and 5 are satisfied,
completing the verification that this design is a PBIBD(2).
Finally, the designation PBIBD(2) specifies that there are two associate classes for each treatment. The 1

more general class of designs also includes subclasses PBIBD(im) for m= 3,4,5,..., f— 1 for more associate
classes (and so also even more design parameters). Where m is larger, the class of designs is more
general (based on fewer restrictions) resulting in less simplicity in inference formulae, but more freedom

for ronetrmiriine decione wwnth dacired cize rhararterictire



more general class of designs also includes subclasses PBIBD(in) for m = 3,4,5,..., - 1 for more associate
classes (and so also even more design parameters). Where mis larger, the class of designs is more
general (based on fewer restrictions) resulting in less simplicity in inference formulae, but more freedom
for constructing designs with desired size characteristics.

7.6 Conclusion

Balanced incomplete block designs are attractive alternatives to CBDs when homogeneous blocks contain
fewer units than the number of treatments under study (k< 7). BIBD “balance” refers to the requirements
that each treatment be assigned to the same number of units (), and that each pair of treatments be
assigned to units in the same number of blocks (A). When 4is not much smaller than ¢ the loss of
efficiency of a BIBD due to incomplete block structure is minimal, and is often completely overcome by

the smaller observation variance associated with smaller blocks. Apart from any difference in the error
k(t—1)
variances, variances of estimable functions under BIBDs are ¢(k-1) times their counterparts under CRDs

or orthogonally blocked designs. Extended complete block designs contain blocks of k> rin which the all
ftreatments are assigned to at least one unit in each block, and the treatments assigned to a second unit
in each block are determined by a BIBD. Partially balanced incomplete block designs contain fewer units
in each block than the number of treatments being compared, and require the same first-order balance
requirement as BIBDs, but do not require all pairs of treatments to be assigned to units in the same
number of blocks.

7.7 Exercises

1. Aresearcher wants to conduct a blocked experiment to compare five treatments, but operational
constraints require that the blocks be of size 3.

(a) She likes the idea of performing the experiment in five blocks since that would allow her to
assign each treatment to three different units in the experiment. Can a BIBD for this experiment
be constructed under these conditions? Prove your answer.

(b) Construct a BIBD for this experiment using ten blocks (not five). Fully specify your design by
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assign each treatment to three different units in the experiment. Can a BIBD for this experiment
be constructed under these conditions? Prove your answer.

(b) Construct a BIBD for this experiment using ten blocks (not five). Fully specify your design by
making a table with 10 rows for blocks, with three entries in each row for the treatments to be
included in that block.

(c) Suppose we think of this experiment with reference to the model:

yU:ﬂ+ﬂ,+TJ+fu- 124

where yis the response, p's are block effects, and 1's are treatment effects. Suppose that, in fact ™
(although we don't know it as experimenters),
n=p=-1 =0 g=mn=%+1, =2
Given this information, completely characterize the distribution of the Fstatistic that would be
used to test for equality of treatments. (That is, specify the distribution including numerical
values of all parameters.)

(d) Continuing with part (c), suppose the researcher had been able to execute a randomized
complete block design in ten blocks, rather than the BIBD we have been discussing. Note that
this would have been a larger experiment, since each block would contain five units. Using the
same model information provided in part (c), give a complete characterization of the
distribution of the Fstatistic that would be used to test for equality of treatments in this case.

2. A consumer products testing laboratory performed a study to compare four varieties of home radon
detectors. Trials were performed in a laboratory chamber that was large enough for simultaneous
testing of only three units. Units processed together in the chamber can safely be assumed to
experience very similar exposures, but there may be some variation in achieved chamber conditions
among the chamber operation “sessions.” The design and resulting data (expressed in a unitless
efficiency measure) are given in the following table:

Detector T'ype ~

Chamber Session A B C D

1 6.11 - 5.95 5.82
2 6.70 6.22 - 5.97
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Chamber Session A B C D

1 6.11 - 5.95 5.82
2 6.70 6.22 - 5.97
3 6.60 6.11 6.52 -

4

- 6.22 6.54 6.18 v

(a) Identify the treatments and units in this experiment.

(b) Use a computer package such as R to compute sums of squares for blocks, treatments after
accounting for blocks, residuals, and corrected total. Do this by fitting two models, one
containing terms for only chamber session effects, and one containing terms representing both
chamber sessions and detector effects, and assemble the required information from the two fits.

(c) Perform an Ftest for equality of detector types.

(d) Assuming that blocks constitute fixed effects, derive the least-squares estimates and standard
errors of the six treatment differences:

T, — T3, Tl — T3, Ty — T4, Tg — T3, T — T4, T3 — T4
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3. Continuing the previous radon detector problem, now suppose the experiment and resulting data set =
are twice as large:

Detector T'ype A
Chamber Session A B C D
| 6.11 - 5.9 5.82

6.70 6.22 -
6.60 6.11 6.52 -
- 6.22 6.54 6.18
6.34 - 6.20 6.06
6.77 6.30 6.02

6.55 6.09 6.48 -
- 604 (£24 5OR s

2.97

0 ~] O Ut = WK



0.4 - 0D.2U 0.UD
6.77 630 -  6.02
6.55 6.09 648 -

- 604 624 598 v

O 3O U

(a) Use a computer package such as R to compute sums of squares for blocks, treatments after
accounting for blocks, residuals, and corrected total. Do this by fitting two models, one
containing terms for only chamber session effects, and one containing terms representing both
chamber sessions and detector effects, and assemble the required information from the two fits.

(b) Compute the adjusted data needed to make the six boxplots described in subsection 7.2.1. As
each plot would be based on only four data values in this case, plot these as six parallel “dot
plots,” each comprised of four dots on a common vertical axis, rather than as boxplots. Does this

plot suggest the existence of systematic differences among the four detector types?

4. Suppose that it might have been possible to perform the (simplified version of) the drug experiment
discussed in subsection 7.1.1 as an extended complete block experiment in which each patient
received two of the drugs in six-week periods as described, but could also receive all five of the drugs
in five additional six-week periods. Continue to assume that the order of drug administration does
not matter. For each of (1) the BIBD described in subsection 7.1.1, and (2) the extended complete
block design described here, compute:

(a) the design information matrix for treatments

(b) the power of the level a = 0.05 test for no treatment effects if in fact
7' =(-8,2,2,2,2) and o = 10.

5. Consider the following incomplete block design in six treatments:

L11|111]|112|212]|3]| 4 A
212]|13|3|1413|3|4]|5]5
0|6|4]16]|5|4]15]6|6]6 v




2121313141313 |4]|9]9o
5161465456 ]|6|6 v
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Verify that this is or is not a BIBD. If it is, give the values of rand A. In any case, compute the design
information matrix for the six treatments under comparison.

6. Consider the following partially balanced incomplete block design, a PBIBD(2) taken from
Clatworthy (1973), for comparing eight treatments in eight blocks of size 4 units each:

15121613748 A
2(6|713|8|4]|1]5
3|71814]11]|5]|6] 2
4 (811|562 7]3 v

(a) For each treatment, identify the first- and second-associates.
(b) Determine the values of all design parameters discussed in subsection 7.5.2:
t, b, k, 1y, ta, A1, A2, p11, P12, P22, Q11, ©12, and g22.

7. Consider a BIBD in b= 20 blocks of size &= 2 units each for comparing #= 5 treatments. For this
design:

i

(a) Apart from a factor of o, what is the sampling variance of 71 — 72?
(b) What #value would be used to construct a 95% two-sided confidence interval for t; — 1;?
(c) fm=1=0,15=1, =1 = 2, and ¢® = 2, what is the noncentrality parameter of the distribution

of the test statistic for:
Hypg: i =Ta=T3 =Ty = Ts?

8. Suppose a Latin square design is planned to compare 7= 5 treatments, using 25 experimental units,
each of which is part of one “row block” and one “column block.” However, in the execution of the
experiment, all observations to be taken from one of the row blocks are lost, so that the resulting
experiment actually provides N= 20 data values. Note that in this case, the “row blocks” alone take
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6. Consider the following partially balanced incomplete block design, a PBIBD(2) taken from
Clatworthy (1973), for comparing eight treatments in eight blocks of size 4 units each:

1151263748

= o
N

o

2|16 |7 8 115
3718 1 6|2
41811 6 713

bo

o

(a) For each treatment, identify the first- and second-associates.
(b) Determine the values of all design parameters discussed in subsection 7.5.2:
t, b, k, 1y, t2, A1, A2, P11, P12, P22, Q11, Q12, and g22.

7. Consider a BIBD in &= 20 blocks of size k= 2 units each for comparing 7= 5 treatments. For this
design:

——

(a) Apart from a factor of 0%, what is the sampling variance of 71 — 727
(b) What rvalue would be used to construct a 95% two-sided confidence interval for t; — ;7
(c) f1y=1=0,15=1, u =15 = 2, and o’ = 2, what is the noncentrality parameter of the distribution

of the test statistic for:
Hypg: I =Ta=T3 =74 =Ts!

8. Suppose a Latin square design is planned to compare 7= 5 treatments, using 25 experimental units,
each of which is part of one “row block” and one “column block.” However, in the execution of the
experiment, all observations to be taken from one of the row blocks are lost, so that the resulting
experiment actually provides &= 20 data values. Note that in this case, the “row blocks” alone take
the form of a CBD, while the “column blocks” partition units as a BIBD. (This is an example of a
Youden square design, introduced by Youden (1940).)

(a) Using a computer, calculate the 5 x 5 design information matrix for treatments.
(b) Apart from a factor of o?, what is the sampling variance of 71 — 72?
(c) What #value would be used to construct a 95% two-sided confidence interval for t; - .7



CHAPTER 8 Random block effects

8.1 Introduction

In our discussion of blocked designs to this point, we have represented block effects as unknown, fixed
model parameters. But there are also experimental situations in which it is reasonable to think of block
effects as random, suggesting that a mixed effects model may be more appropriate (e.g., Dedidenko
(2002), Hocking (2003)). If an industrial metallurgist performs an experiment using ingots of steel as
units, and the ingots used in any particular block are chosen from those delivered by a supplier on a
particular day, this might notlead to a random-blocks assumption since the metallurgist might not (at
least without extensive study) be willing to assume that day-to-day differences from the supplier are
reasonably considered to be random draws from some conceptual population of batches. However, if the
metallurgist's company already owned a very large inventory of ingots, and each batch was assembled
by selecting ingots stored together at a randomly chosen location in a warehouse (and so likely produced
together, et cetera), an analysis based on an assumption of random block effects might be more sensible.

At first glance, it might seem that the distinction between random blocks and fixed blocks has little
practical importance because block effects are usually not of experimental interest. In fact, many
experimenters prefer to treat block effects as fixed in the analysis, regardless of arguments that might be
made about them being reasonably thought of as random. But where the random blocks assumption is
reasonable, it can lead to additional analysis options. In some designs, such as the split-plot designs
described in Chapter 10, a full analysis of experimental treatments cannot be made un/essblock effects
can be treated as random.

8.2 Inter- and intra-block analysis

Suppose that an Arun experiment is divided into & blocks of equal size k(so N= bk}, and that a
partitioned model of form:

y=X,8+Xor +¢€, E(e) =0, Var(e) =01



Suppose that an Mrun experiment is divided into & blocks of equal size k(so N= bk), and that a
partitioned model of form:

y=X,8+X,T+¢, E(¢)=0, Var(e) =01
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is appropriate, where s
1; 0 0,
X, - 0 1; 0% ’
0; 0 ... 1;

B is a felement random vector, AP) = ugl, and Varn(p) = a’L If the elements of p are also independent of
those in g, it follows from the model that:

E(y) = 1pg + XoT
Var(y) = 05X, X + 0°L

While each ohservation has the same variance, og? + 02, pairs of observations associated with the same
block have covariance og”. It follows that the best linear unbiased estimator of 1 1s the generalized least-
sguares estimare, any solution to the normal equations:

X5 (03X X] + 021) 1 Xo7 = Xi(03 X, X] +0%I) "y,

or equivalently,
HAAXG X, + D)1 X7 = X5(p*X XL + D7 Yy,

where p = opg/o. In most practical cases, p 1s not known and so taucirc cannot be determined. /teratively
reweighted least-squares procedures (Jennrich and Moore (1975), Gentle (2007)) that cycle between
estimation of T using the normal equations with an estimated value of p? in place of the true variance

ratio, and estimation of p treating an estimated value of T as the true parameter vector, are sometimes
used in such cases.



estimation of T using the normal equations with an estimated value of p? in place of the true variance
ratio, and estimation of p treating an estimated value of T as the true parameter vector, are sometimes
used in such cases.

In designed experiments, it is often possible to manage the relationship between X, and X, so that other
options are available. Let U be any Arow matrix such that X;"U = 0. Then define two linear
transformations of the data vector, y; = U'y and y; = X;'y. Note in particular that y; is the Z-element
vector of block totals. Statistical models for y; and y,, following from the original data model, are:

y1 =UXor 4+ U'X;8+ U'e
=UXer 4+ €
where E(e;) = 0 and Var(e;) = ¢*U'U, and
y2 = X Xor + XX, 8 + X]e
=X Xor + kB + Xie
= kpgl + X XoT + €3

where He;) =0 and Var(s;) = (Fog’+ko?)1. Hence the transformed data can be represented as two linear -
models, each containing only a single random element. Further,

Cm.*[}fl.}fj} = UF{UEI + nf.“;xl}{'i )X1 = HEU'XI + n}}U’X;X‘;}El =0

so if all random elements are normally distributed, analyses based on the two transformed models are
statistically independent. With this structure, it is desirable that the treatments be assigned (i.e., X; have
structure relative to X; and U), so that the interesting linear functions of t are ¢’ t, such that

« ¢’ =1'(U'X,), so that c’t is estimable based on the analysis of y;, or
. ¢ =D(I- %J}{}{’,le so that c't is estimable based on the analysis of y..

We can add some specificity to these ideas by noting that one matrix meeting the requirements specified
for Uis I-X; (X;'X;)X;" = I-H;, the projection matrix associated with the compliment of the column
space of X;. From this, models for y; and y, can be rewritten in more familiar terms as:



We can add some specificity to these ideas by noting that one matrix meeting the requirements specified
for Uis I-X; (X;'X;)'X;" = I-H;, the projection matrix associated with the compliment of the column
space of X;. From this, models for y; and y, can be rewritten in more familiar terms as:

yi=(I-H)Xor +€ Var(e) =c*(1-H,) (8.1)

y2 = kpsl + X Xor + €2 Var(ea) = k(ko? + o)L (8.2)

Analysis based on the first model leads to normal equations of form:

-:!{I - HI]EJE(I = Hl”-{l e HIJX?'i'u'nrr*u - x—;‘_(I = HI}LUE(I = Hl ”“yl‘

or eliminating o2 from each side,

x:!{l o HI}(I e HI}_‘{I = Hl]x2+lrlt!'tr — x:e{l o HI]{I = Hl}d—yl-

Here, note that the identity matrix is a generalized inverse of I — H;, because

(I-H)I(I-H,;)=(I-H,)

s0 we may rewrite the reduced normal equations as:

2(I — Hy)XoT inra = X5(1 - Hy)yr = X5(I- Hy)y, (8.3)

exactly the same reduced normal equations we have seen for the fixed-block scenario. In this context,
taucirc;, is called the intra-block estimate of T, because it relies on the data only through linear
combinations that are contrasts within each block (since U’X, = 0). Analysis based on the second model is
a regression of the vector of block totals (y:) on a model matrix of form (41| X;'X;) and parameter vector
of form (pg, '), and resulting in the inter-block estimate taucirc .- (via reduced normal equations
corrected for pp):

XX, (1 i %J) X! X # inter = X4X4 (1 = %J) ya.

This inter-block estimate represents the additional. sometimes called “recovered.” information about t



J{.’_,Kt (1 = %J) X;x2+1ﬂtt1' — x;xl (I = %J) ya.

This inter-block estimate represents the additional, sometimes called “recovered,” information about t
based only on block totals, that comes as a direct result of the random-blocks assumption. Analyses of 131
this form are sometimes used with extended complete block designs and balanced incomplete block e
designs, and are usually used with split-plot designs.

Because this approach to analysis is based on two different statistical models, we can think of the design
as having two different design information matrices. The intra-block analysis information matrix is as
we have previously defined it for fixed-block analysis:

Zintra = X5(I — Hy ) Xo.
The inter-block reduced normal equations feature a “left side” mairix of form

X.X, (1 - %J) X! X

which might be regarded as the design information matrix for this analysis. However, recall that the full
(Fisher) information matrix and noncentrality parameters each depend on both the design information
matrix and a variance, specifically

Var(c't) = ¢'T co? and A= 0'70/c>

respectively. Hence any common factor can be added to both the design information matrix and the

1
variance without influencing the result. We apply the factor ¥ here, and define the inter-block
information matrix to be

Iiﬂ.te'r = %xf_}x] (l > %J) X'}Kg

relative to the variance element
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relative to the variance element

%{kzr}:‘:’; + 02) = A‘a:‘i + 2.
The latter variance is estimated unbiasedly by MSE;, ... = %MSEH where MSE;;is the mean square error
for the regression model of block totals (8.2). This adjustment has two practical advantages. First, it
yields inter- and intra-block variance elements (kos* + 0° and o?) that are directly comparable, because
the coefficient of o® is 1 in each case. Second, MSE;,..-1s a “natural” component of unified ANOVA
decompositions that are used in the analysis of split-plot experiments (one of the most important
applications of combined inter- and intra-block analysis, to be discussed in Chapter 10).

8.3 Complete block designs (CBDs) and augmented CBDs

Recall the experiment of Kocaoz et al. (2005) described in subsection 4.1.1, involving the comparison of
t=4 coatings on the tensile strength of steel reinforcement bars. The experiment was organized

following a randomized complete block design in which four experimental units (steel bars) were treated
together (one with each coating) and tested together in a process involving a single batch of cementitious ..
grout. Each block contained one unit assigned to each treatment (k= 9, and &= 8 blocks were used. The ™
design information matrix associated with the usual intra-block analysis is

Ilﬂf.!'r'l = x;(l e HI}XE = b (l - %J) =8 (1454 — iJ,;,,;.;).

If, throughout the course of the experiment, coatings were consistently applied to each batch of bars,
batches of grout were prepared in a consistent manner, and there was no reason to believe that any
systematic differences could be associated with any of the experimental material used or time periods
within which groups of bars were tested, it might be reasonable to think of block-to-block differences as
being random, i.e., a second source of unexplainable random “noise” akin to, but not necessarily of the
same general magnitude as, that associated with individual strength determinations.



within which groups of bars were tested, it might be reasonable to think of block-to-block differences as
being random, i.e., a second source of unexplainable random “noise” akin to, but not necessarily of the
same general magnitude as, that associated with individual strength determinations.

If we attempt to construct an inter-block model for the block totals in this experiment, we find that the
block totals all have the same expectation:

and so no informative inter-block estimator is available. Another way to see this is to observe that X, 'X,,
the matrix of “regressors” associated with Tt in the model for block totals, is Js - 4, so that the matrices in
both sides of the reduced normal equations:

XiX, (1 - %J) x;xg] B ot = [x:_,xl (1 - %J)} va

have only zero elements. A little thought shows that this would a/ways be true for complete block designs
in which each treatment is applied to one unit in each block. More generally, it is also true of any blocked
design in which any given treatment is applied to the same number of units in each block, even if this
number is not the same for each treatment, since each column of X;'X; would still be some multiple of 1.
Hence, a minimal requirement for recovery of some inter-block information is that the pattern of
treatment assignments not be the same in each block.

Suppose the experiment of Kocaoz et al. had been enlarged so that five bars were included in each of the
eight blocks, and that this was done in a balanced fashion so that the “extra” bar received coating 1 in
blocks 1 and 2, coating 2 in blocks 3 and 4, et cetera. Note that in this augmented CBD, Nwould be 5 x 8 =
40 rather than 32 as in the actual experiment described in Chapter 4. In this case, X;'X; = 5I;, and H; is a

l-]:',

block-diagonal matrix, with eight blocks of 5¥5%5 and other elements equal to zero. The design

information matrix associated with the usual intra-block analysis is

48 1
Tintra = X5(I - H; )X, = =3 (14,<4 - 1-]4,«.4)-
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information matrix associated with the usual intra-block analysis is
’ 48 1
Tintra = Xo(I - H; )X, = 3 (1414 - EJ"H)'

The inter-block model matrix 124
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is not of full column rank because the sum of columns 2-S equals column 1, but inter-block information
about T can be recovered under an assumption of random block effects. The design information matrix

]
(l;y_.l - EJ-]Y.[)-

8.4 Balanced incomplete block designs (BIBDs)

associated with this analysis is

el ko

I;ﬂtrr — lX';Xj (I — lJ) xax; =

5 -

Yates (1940) first demonstrated how inter-block analysis can increase the information available in BIBDs
with random blocks. Characterization of this additional information takes much the same form as in the
case of “balanced” augmented CBDs, due to the first- and second-order balance properties of BIBDs.
However, inter-block estimates can sometimes be of more practical value in BIBDs, especially when there
are many blocks (i.e., the “sample size” for inter-block analysis is large) and blocks are small relative to
the number of treatments (so that there is non-negligible loss of efficiency in the intra-block analysis). Of
course, this depends on the size of p as well; the value of an inter-block analysis will always be limited,



mowever, Inter-DlocK estimates can somemnimes De oI more practical value 1n blbls, especlally when there
are many blocks (i.e., the “sample size” for inter-block analysis is large) and blocks are small relative to
the number of treatments (so that there is non-negligible loss of efficiency in the intra-block analysis). Of
course, this depends on the size of p as well; the value of an inter-block analysis will always be limited,
regardless of the design, if oy is large relative to o.

Recall that BIBDs are characterized by five related design “parameters”:

» p=the number of blocks,

» f=the number of treatments,

» k=the number of units in each block (less than 1,

* r=the number of units allocated to each treatment in the design, and

* A =the number of blocks in which any two treatments are both applied to units.

The intra-block analysis for BIBDs was developed in Chapter 7, where we found the reduced normal
equations to be:

A .
[T~ I inera =T — ﬁ{xgx.)ﬁ (8.4)

where T is the felement vector of treatiment totals and B is the Aelement vector of block totals, and the 1=
associated design information matrix is:

At 1
intra = 5 R . HP"
Tintra = (1 tJ) (8.5)

Inter-block analysis again depends fundamentally on the matrix X,'X,, which for general BIBDs has
« elements of 0 and 1 (since treatments are applied either once or not at all in each block),

» rl'sand b/-ro0'sin each column, and
* Arows in which both entries in any two columns are 1.

_ = . | .
Because I = Hi = Ioxp b‘]b“b‘, and since



» rilsand fo-r0sineach column, and
* Arows in which both entries in any two columns are 1.

Because 1 — Hi = Lyxp — j—).];,,;;,., and since
(X1 X2)" (X1 X2) = (r = A)Lexce + Adixe
and

1 4 re
E(XIXQ}’J(K’IXQ = ‘EJH:.

the reduced normal equations for inter-block analysis are

(r— }'-) [I - %J:I Pinter = x:fle{B — El} (R'ﬁ)

where B is the average block total. The corresponding design information matrix for the inter-block

analysis is

Ris 1 p r— A ]
Iinh.".!' = EXEXI (I - EJ) {X|K;] — k (l — IJ). {3.?]

8.5 Combined estimator

Because intra- and inter-block estimators are uncorrelated, a weighted average of the two, with weights
proportional to the inverse of their respective variances, is their optimal (minimum variance) linear
combination. To see this, write a general combined estimate of any estimable function c’t as

—
——— ——

i !
C'T = wWC Tintra + W2C Tinter,

constrain m; + W5 = 1 to ensure unbiasedness, and minimize

——

Var(c't) = wi Var(c'Tintra) + w3 Var(c'Tinter)



constrain mw; + W5 = 1 to ensure unbiasedness, and minimize

e,

Var(c'T) = wi Var(c'Tintra) + w3 Var(c'Tinter)

with respect to choice of w; and ms using the Method of Lagrangian Multipliers (subsection 3.4.1). For

— AL 1 —_ r—A 1 ) : g
the BIBD, since Tintra = F (I = 7J) and Linter = 21 = $J) the variances of the intra- and inter-

block estimates of any estimable function are proportional to

e, - k
I"hr{c"rmtra} & Jz}k_!

V&F{E’mger] "1 {ﬁ'ﬂg =+ ﬂi]

r—A
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which leads to: L

(kaj +0?)/(r — X) o2 /(A\t)
uy = urg

(ko + 02)/(r — A) + o2/ (M)’ 2T kad +a2)/(r—A) + o2 /(M)

In nearly all applications, the values of the variance components are not known and so the weights
cannot be computed exactly. o* can be estimated unbiasedly by MSE;, .., the mean square error for the
fixed-block analysis based on model (8.1). Aus® + o can be estimated by MSE.., the mean square error
for the regression analysis of block totals based on model (8.2), divided by the block size & Substituting
these estimates for their parameter counterparts leads to expressions for estimated weights:

. ﬂ’fSBmh:r)”{r o A}
~ MSEinter/(r — A) + MSE a0’

= Jl'irb'E"”mf)‘t
J'IJSE;-,””/{T‘ - A) + iil"“r*‘j"'Ez1';ul'.1r'n/"M' :

T.E.l'l

ﬁ'z

Due to the imprecision in variance component estimates, the actual variance of the combined estimate
based on estimated weights can be larger than that of the intra-block estimate alone, especially when og/o
1s large or A/ NVis small, since either condition suggests that the inter-block analysis brings relatively little
additional information to the inference.
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based on estimated weights can be larger than that of the intra-block estimate alone, especially when op/o
is large or A/ Nis small, since either condition suggests that the inter-block analysis brings relatively little
additional information to the inference.

8.5.1 Example: dishwashing detergents reprise

Return to the experiment reported by John (1961) described in subsection 7.2.2, performed to compare
the effectiveness of nine dishwashing detergent formulations. Reduced normal equations for the intra-
block analysis were developed and solved in Chapter 7. The inter-block analysis can be performed as a
regression of the 12 block totals with a model matrix of form (&1 | X;X,), i.e., a fit of the model:

(4T (3] 11100000 0y
55 3000111000
68 31000000111

A7 31100100100

62 3010010010
69 3100100100 1|/[us
71513l 10001000 1|\+)7
65 31010001100
40 31001100010

63 31100001010
52 31010100001
\50/) \3|o00101010 0

TABLE 8.1 Intra- and Inter-Block Estimates of 7, -1, /=1, 2, 3, ..., 8,
for the Data of John (1961)

Contrast TNT—Tg To—Teg T3—Tg T4—Tg T5—Tag Te —T9 T7 —Tg TR —To
Intra-Block
Estimate —-9.778 —11.222 —-16.333 —23.000 —5.000 —-7.111 —9.000 —-10.333




Contrast Ti =T THO=TH T2 =78 T4“~=To TH—To TE=—"Th THI—-=T8 T —=TH
Intra-Block

Estimate -9.778 —11.222 -16.333 —-23.000 —-5.000 -7.111 —=9.000 -10.333
Inter-Block

Estimate —10.667 —13.333 —17.000 —24.000 —4.333 —4.667 —9.000 —11.000v

< >

Note that the model matrix is rank-deficient; the sum of columns 2 through 10 is equal to the first
column, reflecting the fact that the only estimable linear combinations of T are contrasts, as in the intra-
block analysis. Because detergent 9 was regarded as the control or standard treatment, differences
between each of the other treatment parameters and 1, are likely of interest to the experimenters. Table
8.1 displays intra-block estimates for these quantities described in the analysis of subsection 7.3.1, as
well as the inter-block estimates computed from fitting the above model using a linear regression
program. From the analysis of Chapter 7, we have MSE;, = 1.0325, while MSE;,..-1s 0.9876 (computed as
%times MSE from the regression fit of block totals, ¥: = 8.8887). These lead to estimates iy = 0.896 and i, =
0.104 for a combined estimator, indicating that the bulk of information about these contrasts comes from
the intra-block analysis.

8.6 Why can information be “recovered”?

The reader may find it less than intuitively obvious w/hy an assumption of random block effects should
permit the recovery of more information about T. Generally, for a given amount of data, an increase in
information that leads to decreases in expected standard errors and more powerful tests requires an
increase in the strength of assumptions the analyst is willing to make. For example, in simple linear
regression, the standard deviation of the estimated regression coefficient in the first-order term is no
greater under an assumed first-order model (a relatively stronger assumption) than under an assumed
second-order model (a relatively weaker assumption), and this difference can be substantial for some
experimental designs. In the present case, we are not talking about different algebraic forms of the
model, but whether the ;s should be regarded as random or fixed-but-unknown. Is the random-
assumption actually “stronger,” in this sense, than a fixed-p assumption?
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experimental designs. In the present case, we are not talking about different algebraic forms of the
model, but whether the /s should be regarded as random or fixed-but-unknown. Is the random-3
assumption actually “stronger,” in this sense, than a fixed-p assumption?

Although it may not be as clear in this case as it is in the example of the regression model mentioned

above, the answer is “yes.” Saying that block effects are “fixed” is really saying nothing at all about them;

the unknown elements of p could equally well be any set of Zreal numbers. The intra-block analysis is 137
not affected by what these values might be because it relies only on linear combinations of data that are '
contrasts within each block, so that the elements of p “cancel out” in the expectations of these contrasts.

An assumption of random block effects does not specify “hard” structure on the data, such as
deterministic relationships among elements of f. However, it does imply a “softer” probabilistic
relationship among them that goes beyond the fixed-block assumption. For example, in a CBD (= &) if 1,
+ ¥ ;.17T; were a quantity of interest to us, in addition to the usual intra-block analysis, an assumption of
random blocks would imply that the collection of block totals is an i.i.d. sample of size hwith mean #u; +
¥ :-1°1; the inter-block analysis would be a one-sample inference on this common mean. But if (for
example) the actual value of p in this case were (0,0,0,..., 0,10000)’, one of these block totals would likely
be an outlier, and the intra-block analysis would likely give an invalid result. The same is true of the
more realistic inter-block inferences about estimable functions of T in augmented CBDs or BIBDs. A
random-blocks assumption is certainly “stronger” than a fixed-blocks assumption, because it effectively
rules out values of p containing any extreme outliers relative to the rest. Like any other statistical
assumption, this can lead to more informative inference if it is justified, but to invalid inference if it is
not.

8.7 CBD reprise

In Section 8.3, we noted that an assumption of random block effects does not yield additional
information with a CBD; the inter-block estimator is noninformative because the data totals from each
block have a common expectation. This would seem to indicate that a random blocks assumption is of no
benefit with CBDs. There is, however, an additional advantage to assuming random blocks with an CBD.
Sunnose that we do assume random block effects. but add ireatment-bv-block interactions to the model:



information with a CBD; the inter-block estimator i1s noninformative because the data totals from each
block have a common expectation. This would seem to indicate that a random blocks assumption is of no
benefit with CBDs. There is, however, an additional advantage to assuming random blocks with an CBD.
Suppose that we do assume random block effects, but add rreatment-by-block interactions to the model:

Vij = a+ B +7; + 0ij + €i5
€ij Lid. with E(e;) =0 and Var(ey) = o
G iid. with E(8;)=0 and Var(3;) = Jﬁ
f;; i.id. with E(#;)=0 and Var(d,;)=c}.

Because each observation contains independent, random components associated with both e and 0, these
sources of variability are essentially inseparable in the experiment, and for purposes of data analysis
they can be viewed as combined:

Yig=a+Bi+7i+e€;
+ o
fiiid. with E(8)=0 and Var(3)= o3

€;; Li.d.  with E'{f',-'_,_,) =0 and Va’-"{f:_;) -

138

This model is functionally the same as the random blocks, additive model for a CBD. That is, we can =
justify the usual intra-block analysis if we assume either:

1. blocks and treatments do not interact (whether block effects are treated as fixed or random), or
2. block effects are random (whether there are block-by-treatment interactions or not).

8.8 Conclusion

When block effects are regarded as fixed, standard intra-block least-squares estimates of estimable c't
are unbiased because the weights associated with each data value sum to zero within each block,
resulting in cancellation of additive block effects. When block effects are regarded as random, additional
information can sometimes be “recovered” through differences between block totals. Such inter-block
estimates are generally less precise than intra-block estimates because the random block effects add to

- c L B | » LR * 520y a = k] 2 - a L



LAl o RASBAAIRA LM fd A iAo LAl 'H'i'\..J.E,,.I.I.I.nJ Al f RS IR AR W ALEL A hdf AR RARAREA WEALRAR, HRAEEL LAF 4 AF WWALILLIEE Woidf-AL BALR B vy

resulting in cancellation of additive block effects. When block effects are regarded as random, additional
information can sometimes be “recovered” through differences between block totals. Such inter-block
estimates are generally less precise than intra-block estimates because the random block effects add to
the “noise” component of between-block differences, but they are unbiased under the random-blocks
model because the expected difference between any two random block effects is zero. Inter-block
estimation cannot be used with designs in which each treatment is assigned to the same number of units
in each block because the block total responses all have the same expectation. But for designs in which
treatment assignment patterns are different from block-to-block, such as BIBDs, inter-block estimators
can provide additional information about the estimable functions of interest. Because inter- and intra-
block estimators are uncorrelated, the optimal (minimum variance) combined estimator is a weighted
average of the two if the variances associated with blocks and units are known, and can be approximated
based on estimated weights when they are not known.

8.9 Exercises

1. Consider the following two data sets resulting from two executions of the indicated small BIBD:
Experiment A Experiment B

Treatment Treatment
Block | 1 2 3 Block | 1 2 3
1 10 21 - 1 15 26 -
2 8 - 29 2 6 - 27
3 - 22 31 3 - 31 40 v

138

Without doing any more than a few simple mental arithmetic operations:

(a) Comment on the difference or similarity between the intra-block estimates of c't for these two
experiments.
(b) Which experiment provides a more informative inter-block analysis, and why?
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(a) Comment on the difference or similarity between the intra-block estimates of ¢'t for these two
experiments.

(b) Which experiment provides a more informative inter-block analysis, and why?

(c) Why could the combined estimator based on estimated weights (w1,1%2) not be calculated for
either of these data sets?

For each experiment listed below, write a brief paragraph arguing why blocks might or might not be
considered a random source of variation based on what you have been told about each study.

(a) Rainfall and Grassland Experiment, Fay et al. (2000), Section 1.1.

(b) Web Page Design Experiment, Murphy et al. (2006), subsection 5.1.1. Make arguments
separately for the row-blocks and column-blocks of the Latin Square.

(c) Drug Sequence Experiment, Kraiczi et al. (2000), subsection 7.1.1.

Consider an experimental setting in which there are 7treatments to be investigated in blocks of two
units. Treatment 1 is a control condition. The two units in each block will be treated with treatment 1
and one of the other treatments; specifically, blocks numbered 1 through rcontain units receiving
treatment 1 and treatment 2, units in blocks numbered r+ 1 through 2rreceive treatments 1 and 3,
..., and units in blocks numbered (¢ - 2)r+ 1 through &= (- 1)rreceive treatments 1 and %

(a) Write a random-blocks model for the data to be collected in this experiment, including a full
explanation of all indices, and a characterization of all random quantities. Use the notation you
develop here to work parts (b) and (c).

(b) Derive a closed form expression for the intra-block estimate of t.—1;, and a closed form
expression for its standard deviation.

(c) Derive a closed form expression for the inter-block estimate of 1,—13, and a closed form
expression for its standard deviation.

Suppose you have executed a BIBD under circumstances that lead you to believe that the effect of
blocks can be regarded as random. You compute intra- and inter-block estimates of the treatment
comparisons of interest, and calculate residual mean squares from each analysis in preparation for
computing a combined estimate. However, you are surprised by the fact that A/SE for the intra-block

arnnalrrois 10 Tavenan than thnat FAar tha imtar hlasls analrreie TAThat fathae than anlanlatian avwanl okt
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blocks can be regarded as random. You compute intra- and inter-block estimates of the treatment
comparisons of interest, and calculate residual mean squares from each analysis in preparation for
computing a combined estimate. However, you are surprised by the fact that MSE for the intra-block
analysis is larger than that for the inter-block analysis. What (other than calculation error) might

cause this to happen? Does this have implications for whether you should “trust” either the intra- or 4
inter-block estimates, and whether the combined estimate should be computed? (Hint: “Surprises” in ™
statistical analysis often come as the result of erroneous assumptions; think about the “standard
assumptions” that would be made here, and whether some specific kinds of violations of them might
lead to this result.)

Consider the following design in five treatments, ten row-blocks and four column-blocks, and

resulting data:
Column Blocks

Row Blocks 1 2 3 4 -
1 trt 1, y=32 trt2,y=29 trt3, y=31 trt4d,y=24
2 trt 2, y=30 tut3, y=31 trt4d,y=25 trt5 y=34
3 trt 3, y=23 trtd,y=21 trtS,y=29 trtl,y=24
! trt4,y=26 wtd5y=32 trtl,y=32 trt 2, y=230
) trt 5, y=30 trtl,y=31 trt2,y=33 trt 3, y=30
6 trt 1, y=34 trt2,y=28 trt3,y=32 trt4,y=24
7 trt 2, y=22 trt3,y=22 trtd,y=17 trtd5,y=23
8 trt3,y=22 trt4d,y=23 trit5,9y=28 trtl,y=24
9 trtd,y=33 trtd,y=41 trtl,y=39 trt 2, y= 36
10 trt 5, y=37 trtl,y=32 trt2,y=34 trt3,y=29 v

Assume that row-blocks, column-blocks, and treatments can be regarded as additive effects (i.e., that
no two of them interact).

(a) Using a computer, calculate the least-squares estimates of all 10 treatment parameter
differences T, — t;under a model in which row-blocks and column-blocks are each assumed to
have fixed effects. Compute the common margin of error for these differences corresponding to
95% confidence (i.e., half the length of the usual 95% confidence interval).

(b) Calculate the inter-block estimates of the 10 treatment parameter differences under a model in
which row-blocks are assumed to be random but column-blocks are assumed to be fixed.
Compute the common margin of error for these differences corresponding to 95% confidence



95% confidence (1.e., half the length of the usual 95% confidence interval).

(b) Calculate the inter-block estimates of the 10 treatment parameter differences under a model in
which row-blocks are assumed to be random but column-blocks are assumed to be fixed.
Compute the common margin of error for these differences corresponding to 95% confidence
(again, based only on inter-block information).

6. Consider again exercise 3 at the end of Chapter 7, the 8-block version of the radon detector problem.

(a) Assuming that chamber sessions are represented by fixed effects, compute the least-squares
estimate of T, — T,, and compute MSE for the full model (blocks and treatments). Use statistical
software to work this and all parts of this exercise.

(b) Assuming that chamber sessions are represented by random effects, construct a separate inter-
block estimate of T; — T, using only the chamber session totals, and calculate the MSE for this 11
model. 1

(c) Use the estimates and MSES of the two models you have fit to construct a single combined
estimate of T, — T, appropriate for the random-sessions model.

(d) Suppose your estimates of the unit and block variances are exactly correct, rather than

estimates. Pretending this is true, what is the standard deviation of each of the following?

» The intra-block (i.e., fixed-block) estimate of t; — .
*» The inter-block estimate based on block totals.
* The combined estimate.

7. Consider an experiment designed to estimate the difference in mean response between two
treatments, executed in nine blocks of two units each. Suppose units are assigned to treatments as
follows:

» In each of blocks 1-3, one unit is assigned to each treatment.
» In each of blocks 4-6, both units are assigned to treatment 1.
* Ineach of blocks 7-9, both units are assigned to treatment 2.

Letting yjrepresent the jth response recorded in the jth block, and for convenience letting j= # of the
applied treatment in blocks 1-3:

RN -_— - . . . T - .. - - a E . L P | Pl
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(d) Suppose your estimates of the unit and block variances are exactly correct, rather than
estimates. Pretending this is true, what is the standard deviation of each of the following?

» The intra-block (i.e., fixed-block) estimate of t; — 1.
* The inter-block estimate based on block totals.
* The combined estimate.

7. Consider an experiment designed to estimate the difference in mean response between two

treatments, executed in nine blocks of two units each. Suppose units are assigned to treatments as
follows:

» In each of blocks 1-3, one unit is assigned to each treatment.
* In each of blocks 4-6, both units are assigned to treatment 1.
» In each of blocks 7-9, both units are assigned to treatment 2.

Letting y;represent the jth response recorded in the ith block, and for convenience letting j = # of the
applied treatment in blocks 1-3:

(a) Derive the intra-block estimator of 1,—1, and compute the number of degrees of freedom on
which its standard error would be based.

(b) Assuming block effects can be regarded as random, derive the inter-block estimator of 1,—T,
and compute the number of degrees of freedom on which its standard error would be based.

8. Consider a BIBD to compare 7= 4 treatments in 12 blocks of size &= 3. For analysis purposes, suppose
the model:
Yij = Bi + T + €5
1s adequate, where 7= 1,2,3,..., 12 indexes blocks and j= 1,2,3,4 indexes treatments. (Note that not all
combinations of 7and yare used.) If the j;are i.i.d. random variables with variance 1, and e;are i.i.d.
random variables, also with variance 1:

(a) What is the standard deviation of the intra-block estimate of 1;,—1,?
(b) What is the standard deviation of the inter-block estimate of 1, —1,?
(c) What is the standard deviation of the (optimal) combined estimate of 1,17



CHAPTER 9 Factorial treatment structure

9.1 Introduction

To this point, the experimental designs discussed in this book have been presented in the context of
“unstructured” treatments, identified only as a collection of distinct operations, additives, procedures,
recipes, et cetera, that can be applied to experimental units in the interest of comparing the resulting
responses. In some cases, we have discussed how one or more of the treatments might be regarded as a
control, indicating that it serves primarily as a base-line or reference condition. But otherwise, our
mathematical description and handling of treatments have included no assumptions about relationships
between any pair of them — they have played essentially exchangeable roles in our development.

In contrast to this, many experiments are designed to compare treatments defined by selecting a /eve/
related to each of a collection of factors. For example, a mechanical engineer might have interest in
understanding the properties of a certain kind of metal part that can be formed by either of two different
forging processes, and coated with any one of three types of surface plating. As a result, there are six
different treatments of interest (types of parts that can be produced), each defined by specifying one
level of the forging factor, and one level of the plating factor. We describe any experiment in which the
treatments have factorial structure as a factorial experiment. In general, if ffactors are used to define a
treatment, and the ith of these factors has /;levels, the number of treatments that can be defined is 7= [];-
,f I. For any treatment, exactly one level of each factor is specified, and we shall restrict our attention to
situations in which all possible combinations of factor levels are meaningful. Fisher (1971) was an early
advocate of factorial experimentation, and contributed many of the basic ideas that are still important in
the design and analysis of such studies.

In factorial experiments, the most interesting or important experimental questions are generally framed
in a way that do nottreat relationships between treatments symmetrically. For example, in the
hypothetical experiment involving metal parts, the difference between average response for the three
treatments involving one forging process, and the average response for the three treatments involving
the other, might be relatively interesting because it is a natural “overall” indication of the physical
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hypothetical experiment involving metal parts, the difference between average response for the three
treatments involving one forging process, and the average response for the three treatments involving
the other, might be relatively interesting because it is a natural “overall” indication of the physical
{nfluence of one factor. But the difference between average response for:

(forging 1, plating 1), (forging 1, plating 2), (forging 2, plating 1)
143
144

. A
TABLE 9.1 Factors and Levels from the Concrete Experiment of
Soudki et al. (2001)
Factor Levels (unitless)
Water/cement ratio 0.4, 0.5, 0.6
Total aggregate/cement ratio 3,4,5,6
Coarse aggregate/total aggregate ratio 0.55, 0.60, 0.65, 0.70 v

L 4 >

and the average response for:

forging 1, plating 3), (forging 2, plating 2), (forging 2, plating 3)
ging 1, | . g 2, | . sng <, | 2 9,

would usually not be so interesting since it is not so easily interpreted relative to the physical factorial
structure of the treatments. In this chapter we will consider the structure of fu//factorial experiments,
1.e., those in which all possible combinations of factor levels are represented.

9.1.1 Example: strength of concrete



structure of the treatments. In this chapter we will consider the structure of fu//factorial experiments,
1.e., those in which all possible combinations of factor levels are represented.

9.1.1 Example: strength of concrete

Soudki, El-Salakawy, and Elkum (2001) described an experiment carried out to test the effects of a
number of factors on the compressive strength of concrete in hot climates. Batches of concrete were
prepared with differing relative quantities of water, total aggregate, coarse aggregate, and cement. Since
relative concentration of each component in the mixture is the meaningful characterization, the four
quantities can be represented as three ratios that serve as the factors in this experiment. The factors and
their respective levels are listed in Table 9.1, representing 3 x 4 x 4 = 48 experimental treatments. As a
part of the experiment, samples of concrete were cast from batches made according to each of the 48
formulae, emersed in water heated to 52 degrees Celsius for 28 days, and then tested for compressive
strength at room temperature. The average strength of samples associated with each treatment is
summarized in Table 9.2.

9.2 An overparameterized model

Despite the definition of treatments via factors, it is certainly possible to frame the analysis of data from
a factorial experiment within the context of unstructured linear models. Let (£ /, ..., £) be a set of findices
representing the levels of each factor, thatis, 7=1,2,3, ..., 4;7=1,2,3, ..., 5 .... k=1,2,3, ..., [ Then, a cell
means model and an effects model for an unblocked experiment in which each treatment is replicated r
times can be written as:

Yij...kt = Hij.. .k 15 €ij...kt and Yij..kt = O + Tij...k T €ij...kt
A TS P T, -

€ij..ke 1.i.d. with E(ei; x) =0 and Var(e;;. i) = a? (9.1)

TABLE 9.2 Average Response Values (Megapascals, MPa) for the
Concrete Experiment of Soudki et al. (2001)



TABLE 9.2 Average Response Values (Megapascals, MPa) for the

Concrete Experiment of Soudki et al. (2001)

CA/TA
TA/C W/C 055 0.60 0.65 0.70
3 04 337 342 332 319
3 05 21.6 33.0 23.7 27.3
3 06 186 17.3 19.9 182
4 04 325 327 336 30.1
4 05 251 29.3 282 239
4 06 200 21.8 21.3° 239
5 04 135 249 256 18.0
5 0.5 27.3 20.8 28.7 22.5
5 0.6 202 194 196 19.6
6 04 96 62 77 108
6 05 27.0 150 23.6 22.5
6 0.6 19.6 18.3 21.6 13.6

* Recorded as 2.13 in Soudki et al.

<

respectively, where the subscript 7identifies a unigque unit and response associated with any specified
treatment. These models are essentially the same as those presented in Chapter 3; the only difference is

>

that, rather than using a single subscript to identify a treatment, a collection of fsubscripts is used to

identify the treatment through the selected factor levels. In most applications, however, a

ol
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treatment. These models are essentially the same as those presented in Chapter 3; the only difference is
that, rather than using a single subscript to identify a treatment, a collection of fsubscripts is used to
identify the treatment through the selected factor levels. In most applications, however, a
mathematically equivalent facforia/ model is more useful. Suppose for specificity that = 3 factors are
being used to define treatments. Then, a factorial model for a CRD might be written as:

Yijkt = B+ G+ B + A + (@) + (@) + (B j + (@BY) i + €ijie- (9.2)

Here we are following a common notational convention in which “a”, “p”, and “y” are used to represent
effects associated with the first, second, and third experimental factors; “u”, like “a” in preceding
chapters, is a component common to all response expectations representing the summary of all
experiment-specific effects. (The over-dots are used here to distinguish this parameterization from a
different one to be introduced in Section 9.3.) In this parameterization, the collection of 4 parameters
(v, dra, Gra, ... G, describe the main effect associated with the first factor, and likewise for the 7 and 7

parameters and the second and third factors, respectively. [(”"ﬂ}ii is the two-factor interaction associated
with levels 7and jof factors 1 and 2, respectively, and represents the nonadditive component of the joint
contribution of these two factors, i.e., that which cannot be expressed by the sum of associated main

effects, @ + 5, to the mean response. (The notation ((”'-‘ri]fi is intended to denote a single parameter; the
parentheses are used to make it clear that this is not a product of main effects.) Similarly, synergistic 145

effects of pairs of levels of factors 1 and 3, and factors 2 and 3, are denoted by indexed parameters ((ﬂ":) e

and (/ f“r) ), respectively. Finally, (al@/ 3 ) denotes a three-factor interaction, the component of a cell mean
that cannot be reproduced by a sum of effects each involving fewer than all three factors. The definition
of these factorial effectsis extended in the obvious way for situations involving more than three factors;
for example, where £= 5, the interactions of Aighest order are five-factor interactions, and there are five
groups of four-factor interactions, each representing the synergistic effect of the specified levels of four
of the five factors.

TABLE 9.3 Cell Means for Three-Factor Example




TABLE 9.3 Cell Means for Three-Factor Example

Level of Factor: Level of Factor 3 (k)
1) 2(j) 1 2 3 4
1 1 12 22 17 7

30 40 39 25
o0 60 5o 45
20 30 25 15
42 52 47 37
60 70 65 D9 v

< >

O DO B =
Co b — W N

As noted above, statistical models for factorial treatment structures can be written just as in the case of
unstructured treatments. But in many applications, a large proportion of the variation among responses
for different treatments is associated with factorial effects of relatively low order, i.e., main effects and
interactions involving relatively few factors. Factorial model parameterization such as (9.2) facilitate the
examination of data for this characteristic, and the description of the treatment structure when it occurs.
For example, suppose that, in our three-factor example, factors 1,2, and 3 have /=2, L, =3,and ;=4
levels, and that the cell means are actually as presented in Table 9.3. (For illustrative purposes, these
hypothetical values have less complex structure than what would be expected in many real applications,
but they represent the kind of physical simplicity that is often present in real factorial studies.)

Examination of the table reveals that most differences among cell means can be described simply with
reference to the individual experimental factors. The most dominant pattern of variation is associated
with factor 2; within the neighboring groups of three rows representing a single level of factor 1, moving
from row to row produces an increase of approximately 20 when jis changed from 1 to 2, and another
increase of approximately 20 when ;is changed from 2 to 3. Major systematic variation is also apparent



reference to the individual experimental factors. The most dominant pattern of variation is associated
with factor 2; within the neighboring groups of three rows representing a single level of factor 1, moving
from row to row produces an increase of approximately 20 when 7is changed from 1 to 2, and another
increase of approximately 20 when ;is changed from 2 to 3. Major systematic variation is also apparent
in comparing the sections of three neighboring rows associated with the first factor; changing 7/from 1 to
2 is associated with an increase of approximately 10 in the response, regardless of the specific values of ;
and A chosen. Finally, within any row in the table, moving from left to right, i.e., changing from kof 1 to
2 to 3 to 4 for any specified ( j) pair results in an exact (not approximate in this case) increase of 10,
followed by a decrease of five and a second decrease of 10.

In fact, extending the observations made in the preceding paragraph, the tabulated cell means can 1
actually be written as:

Mijk = B+ G4 + _I.:fj + 9k + ((l'ﬁ)lj

where
p =10
| (0, k=1
‘ 0, =1
Jo, i=1 - ,__{10, k=2
Tl =2 T T T s k=3
£ | -5, k=4

3),. =
(o )” 0. otherwise

{2. (i) = (1,1),(2,2)

The other factorial effects — two-factor interactions associated with factors 1 and 3, or 2 and 3, and
three-factor interactions requiring specification of levels of all factors — are not needed to explain the
patterns observed in the table. The fact that changes in index Aresult in exactly the same changes in cell
means (i.e., the relationships among elements within each row of the table) is reflected in the fact that no
interactions involving the third factor are needed. The fact that marginal changes in 7and jresult in
nearlythe same changes in treatment means in each section of the table is reflected in relatively large
main effects for factors 1 and 2. and a relatively small two-factor interaction that represents the minor



means (i.e., the relationships among elements within each row of the table) is reflected in the fact that no
interactions involving the third factor are needed. The fact that marginal changes in 7and jresult in
nearlythe same changes in treatment means in each section of the table is reflected in relatively large
main effects for factors 1 and 2, and a relatively small two-factor interaction that represents the minor
deviations from that pattern. In fact, if the entries in the first and fifth rows of the table were reduced by
2 (i.e., if they ended in “0” or “5” as the other entries in their respective columns), the word
“approximately” would not be needed in the last paragraph, and the small two-factor interaction
parameters involving factors 1 and 2 would not be needed (i.e., they would be exactly zero) in the
factorial representation of the cell means. In this case, the differences among treatments are primarily
due to the additive action of the factors, and components of treatment differences attributable to the
additional joint action of factors are minimal and limited to factors 1 and 2.

9.2.1 Graphical logic

A major benefit of full factorial experimentation is that it is fully efficient for investigating the effects
associated with each factor. This means that a factorial experiment with N=rx f x L x ... x [;runs
provides as much information about {é1,62,..., &1, } as an experiment of Aruns in which only factor 1

is varied. But it a/so provides as much information about {31 9. S ﬂfz } asan experiment of Nruns in
which only factor 2 is varied, and so forth for all ffactors. That is, an Arun full factorial experiment in £
factors provides the same information about main effects as fsingle-factor experiments, each of size N.  '*
But further, the factorial experiment provides information on how the factors affect the response in
combination through interactions, something that cannot be learned from one-factor-at-a-time studies.

Taking this view, suppose we did momentarily regard an unreplicated (r= 1) factorial experiment as an
experiment designed to estimate the effects associated with changing factor 1 across its 4 levels. In this
case, we should think of it as a blocked experiment because, even if we temporarily say we are not
interested in the effects associated with the levels of the other factors, those effects are not constant
across runs. If factors 2 through fare regarded as variables that simply identify blocks, we might think of
the experiment as a CBD with 7=/ treatments (the levels of factor 1), and b= £ x k x ... x [r-complete
blocks (within which the levels of factors 2 through fare fixed). As in Chapter 4, we might then propose
plotting block-corrected values for each level of factor 1. i.e.. the bvalues ¥ for each 7= 1. 2. .... 4. Parallel



across runs. If factors 2 through fare regarded as variables that simply identify blocks, we might think of
the experiment as a CBD with 7= 4 treatments (the levels of factor 1), and b= £ x & x ... x [r-complete
blocks (within which the levels of factors 2 through fare fixed). As in Chapter 4, we might then propose
plotting block-corrected values for each level of factor 1, i.e., the bvalues ¥ for each 7= 1, 2, ..., 4. Parallel
boxplots might then be used, each representing the b values associated with one level of factor 1 after
correcting for, or “canceling out,” effects associated with factors 2 through £ Differences of location
between parallel plots reflect the main effect associated with factor 1, the differences in response
associated with its levels. The individual quantities used in each plot are actually the main effect
estimates for factor 1 that would be computed from each “slice” of the factorial study defined by the
selected levels of the other factors. Differences of spread between parallel plots indicate the possibility of
interaction between factor 1 and other factors in the experiment (i.e., the variation in the effect of factor
1 as the other factors change), but if this pattern is observed, more detailed examination of the data is
required to determine which factors are actually involved in the interactions. A collection of parallel
boxplots made for each of the ffactors gives an overall idea of which have the most dramatic individual
effects, and which are most likely interacting with other factors. These “main-effect boxplots” are shown
in Figure 9.1 for the total aggregate to cement ratio (TA/C) factor for the data of Soudki et al. given in
Table 9.2 (R9.1).

9.2.2 Matrix development for the overparameterized model

Model (9.2) is severely overparameterized, i.e., there are far more parameters than experimental
treatments. For our example with £= 3, the full model, including all main effects and interactions of each
order, for expressing the expected response of 2 x 3 x 4 = 24 unique experimental conditions contains 60
parameters — i, 9 main effects, 26 two-factor interactions, and 24 three-factor interactions. The degree
of overparameterization becomes even more severe for larger values of £ in fact, it is easy to see that the
number of interactions of highest order (alone) is always equal to the number of experimental conditions
defined by the factors. One result of this is that the set of solutions to the reduced normal equations is
especially ambiguous, and without external constraints offers little insight to the structure of the cell

means.

Main_Effact Ravnlate far TA /T NMata fram Candl-i at al
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especially ambiguous, and without external constraints offers little insight to the structure of the cell

means.
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Figure 9.1 Main-effect boxplots for TA/C, data from Soudki et al. (2001)(R9.17).

Nonetheless. we certainlv conld nroceed with characterization of model (9.2) hv develoning a model



TA/C
Figure 9.1 Main-effect boxplots for TA/C, data from Soudki et al. (2001)(R9.1).

Nonetheless, we certainly could proceed with characterization of model (9.2) by developing a model
matrix of indicator variables to select the correct collection of main effects and interactions in the
expectation of each response. In the three-factor example we are describing, there would be groups of
columns in X; corresponding to each main effect group and each interaction group:

e 2 columns of indicator variables corresponding to (dy.d3) = @
e 3 columns of indicator variables corresponding to (3, 2, 33)' = 3
e 4 columns of indicator variables corresponding to (41, 92,93, %) =%

e 6 columns of indicator variables corresponding to ((a3),,...(a0)y) =
(&)

e 8 columns of indicator variables corresponding to ((a7y),,...(d47).,) =
(ay)

e 12 columns of indicator variables corresponding to {(ﬁ‘}r)” s (;‘j‘y)a_,]’ =
(A7)

e 24 columns of indicator variables corresponding to ((&37),,4 - --

(‘}37}234}1 = (ﬂﬂ']")

A matrix model for the entire experiment could then be written as

(& )

y =1p+Xagp+ € = 1p+ (Xa| X3/X5 X 0] - - [X

{m:i"r}) (H,B)

\ (af37) ]
E(e) =0, Var(e) = oL (9.3)



\ (aBv)/

E(e) =0, Var(e) = ol (9.3)

(We use ¢ rather than T here to reflect a parameterization motivated by facrorial structure, rather than
the unstructured treatment coding employed in previous chapters.) In the following discussion, we call
the elements of each indicated section of the parameter vector a parameter group.

We can develop a systematic characterization of the model matrix and the various submatrices of X, and
X,'X, based on the use of matrix direct products. Briefly, let A be any s#by-m matrix with elements {A}; =
dzand let B be any sby-fmatrix with elements {B}; = b;. The direct product of these matrices, denoted by
A x B, is the ns-by-mf matrix:

{Abyy Abiz Abiz ... Aby\
Abyy Abype Abys ... Aby
AxB=| Aby; Absypy Aby; ... Aby
\Abyy Absy Abg ... Aby/

Note that in general, A x B + B x A, even though the two direct products are of the same dimension. Two
useful (and easily verified) properties of direct products are:

* (AxB)=A"xB
* (AxB)(FxG) = (AF) x (BG)

where the indicated matrices have conformable dimensions for (regular) matrix products. A more
complete discussion of direct products and their use in linear statistical models is given by Graybill
(1983).

Now suppose that the elements of the response vector are ordered as:

r
Y =(¥y1111---Vi11rs Y1121---V112rs Y1211 -+ - Y12059-+-+ Y2341 - - - Y2345 )
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Now suppose that the elements of the response vector are ordered as:
Y = (V1111 -« Y1aaes Y1121 Y112 Y1210 - Y1205 00y Y2341 -0 y‘l:ﬂr},

1.e., with the index for the first factor changing most slowly, and that for the third factor changing most
quickly, in lexicographical order, and replicates within experimental treatments (represented by the 4th
index) are grouped together. Given this ordering, the submatrices of X; in model (9.3) can be written as:

Xas=1, X 14 X 13 X Ipx2 Xﬁzl,.xl.,xl;hgxlg
X:,,:l X Igxqg X 13 X 12

X{"m 1 Xl;XId!i}(IJ,g X
x[ﬂ-‘”

X aizy) = Lr X Liea X T3xg X Tayo

(o) = 1o X Rysca X 13 X kaxa

=1, X Ijxq X Igxa X 19

where 1 is a column vector of 1's and Iis an identity matrix, each dimensioned as indicated. Given these
representations, it is easy to verify that in X,'X,, the diagonal block corresponding to any parameter
group is a multiple of the identity matrix. For our example:

X Xa=(1, x 14 x 13 x Inx2)'(1, X 14 x 13 x Iox2)
= (1, x 1) x 1§ x I5,5)(1, x 14 x 13 x Iaxo)
= 1;-1r X 1':114 b 1&13 X If_;legxg = 12rlax2.

Similar calculations show that
xl' x i 8? Ijx 3 xl:.'.x-y — ﬁ'rl-lx.i

' —
(ﬁf?"‘ﬂx{ ady) — rl?-ly'z-l-

= 3rlgxs XH 1Ry = 2rhizxaz

'
I['_u-d'ﬁ (avy) —

Off-diagonal blocks of X,'X; for which the parameter groups associated with matrix rows and columns do
not reference common factors are multiples of a matrix of 1's; for example

XEX; = (1, x 14 x 13 % Inya) (1, % 14 X Iz X 12) = 4rJay;.

150
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Off-diagonal blocks of X,'X; for which the parameter groups associated with matrix rows and columns do
not reference common factors are multiples of a matrix of 1's; for example

XaXs = (1, x 14 x 13 x Izx2)"(1; x 14 X I3xa % 12) = 4rdaxa.

Similarly,

r
x‘}x[ﬂ'j} = r-]‘_‘.:r 12.

Finally, off-diagonal blocks for which the parameter groups associated with rows and columns do
reference common factors have both zero and common nonzero elements; for example

1. 31000
x:ix{a'ﬁ} = (1, x1gx13xIax2) (1, X 1y X I3xa % Iaxa) = 4r (U 0011 I)q

Some thought about the structure of X4 and xl{n':i.\ reveals that the nonzero elements of this matrix
appear at the intersection of matrix rows and columns that reference the same level of factor 1 (that
symbolized by a), that is:

(aB) 1 (ﬂ'ﬂ] 12 (ﬂ}i) 13 (“"i}zi l“"-"i)'zz (“3 )23
xy 4r 4r 4r 0 0 0
o 0 0 0 4r 4r 4r
!

Similarly, ™ (e« (#7)is a 6 x 12 matrix in which elements corresponding to ((”’?)i.ﬁ‘ (*h);‘k} are r; and all
other elements are 0.

151
152

Given this structure, an overwhelming variety of solutions to the least-squares problem exist. Some are
of relatively simple form while others are quite complicated, reflecting the particular generalized inverse
selected for X'X. In any case, the overparameterization of the problem makes the unconstrained reduced
normal equations fairly difficult to fully characterize.

9.3 An equivalent full-rank model
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normal equations fairly difficult to fully characterize.

9.3 An equivalent full-rank model

Advantages of the model parameterization presented in Section 9.2 include an intuitive interpretation
and a simple representation of each factor level within each main effect and combination of factor levels
within each interaction. However, because this model is overparameterized, it leads to technical
complications from the viewpoint of the general linear model, associated primarily with characterization
of solutions to the reduced normal equations. In this section we present an alternative full-rank
parameterization that eliminates many of these complications, at the cost of some interpretative
simplicity.

The alternative representation is facilitated by thinking of the modeling problem in a context of
regression with continuous prediction variables (even though that does not actually need to be the case
in the application being studied). Consider models that may contain independent variables other than
binary-coded indicator variables, and write:

E(y)=1p+Xa¢p + €
or in matrix form
E(y) =p+x¢+ ¢

where the row vector X and model matrix X, can contain elements other than 0 and 1, and ¢ represents a

set of treatment-related parameters that are related to, but not the same as, those denoted by € in
Section 9.2. In order to construct a convenient model, we need to define a set of /; — 1 “regressors” for the
fth factor, 7=1, 2, 3, ..., £ For example, the levels of a three-level factor can be “coded” using x; and x;
defined as:

Factor Level 1z, T2 N
! Vi -7
2 0 +V2

2 + /3 _ 1 "



Factor Level T T2

: My
-Vi -
0 42
+ 3 -:}‘E v

For our purposes, the key features of these values are:

*» The sum of values for each of x; and x; is zero.
* The sum of squared values for each of x; and x; is 3 (= J.

* The sum of values of products x; x; is Zero.
152

153

It is convenient to specify such a coding by defining a Zby-(/- 1) matrix F containing the elements of the
code as listed in the table above; for our example, that matrix is:

(_\/g _:ﬁ\
0

+v2 |
3 1
\*\/; vy,

Similar codings can be easily constructed for factors with any number of levels. For example, factors

with /=2 and 4 levels could be represented by:

+1 -

wGl=

+
+

Il
~
.2
o S
=
Il
=
+ + |
Slesl-sl-gle
|
|
~Sles

éj_



T = =i ===

V5
3 1

+1 +

respectively. Suppose we denote the matrix of this type selected for the first factor as F%, denote the ih
row of F* by £#, and use similar notation for matrices associated with the other factors. With this, we may
write a model for data from a three-factor experiment as:

Yigke = ptEF o] B v+ (X < £ ) (aB) +. . A4 (£ < £ x £ ) (aBy) +eijie
(9.4)

where a = (ay, az, a3, ..., a;-1)" and likewise for the other groups of factorial parameters. Note that while
we are using parameter notation similar to that in the overparameterized model, the symbols (now
without over-dots) do not represent the same quantities. However, the general role of the parameters in
this model is similar to that of the parameters in model (9.2); parameters denoted by single Greek letters
are still associated with single factors and can still be called “main effects,” those denoted by pairs of
Greek letters are still associated with pairs of factors and can still be called “two-factor interactions,” and
so forth. In this model, the collection of all a's collectively describes the variation associated with the
levels of factor 1, rather than each clearly describing the deviation of one level from the overall average
as in the overparameterized model. For example, the additive component of the mean responses that
depends only on the three-level factor 2 is

o /8= (—/3,—2)B=—1/361— J55: at level 1
o f8 = (0,V2)B8 = +V23, at level 2, and

. f:flﬂ = (\E r-ﬁ}ﬁ = +\/§r31 - ;-},5;32 at level 3.

153

Averaging over the levels of all other factors, the difference between expected responses at level 1 and
level 3 of this factor is V6p;, and the difference between expected response at level 2 and the average of

expected responses at levels 1 and 3 combined is 3p,/v2. In fact, any contrastin E{y 5.3 E{y -.)and E[y g
can be expressed as a linear combination of , and .. Similarly, 2q, = E['yz__‘) —~ E[yl___]J and any contrast

ar ar ar at



level 3 of this factor is V6p,, and the difference between expected response at level 2 and the average of
expected responses at levels 1 and 3 combined is 3p./v2. In fact, any contrastin E{y D, E(y ,.) and E(y )
can be expressed as a linear combination of (§, and .. Similarly, 2q, = E[y - E[y ), and any contrast

in E[y“i_), E[y“p_,}, E[y_,g,}, and E[y_.4.} can be represented as a linear combination of y4, y,, and ys;. Likewise
(for example), any contrast in the six expected responses specified by the levels of factors 1 and 2, after
averaging over the levels of factor 3, restricted so that the sum of contrast weights over either the levels
of factor 1 or factor 2 alone is zero, can be represented as a linear combination of the two parameters in
(af). As a result, the test for differences between levels of factor 1, averaged over the levels of factors 2
and 3, is based on the null hypothesis:

Hypg : a = 0.

Similarly, the test for the three factor interaction is based on the null hypothesis:
Hypg : (aB~) = 0.

A second difference between the models is that (9.4) contains far fewer parameters. Specifically, in the
full-rank model:

Main effects for Flevel factors are defined by /- 1 parameters.

Two-factor interactions for 4- and 4-level factors are defined by (4 — 1) (4 — 1) parameters.

Ffactor interactions are defined by [[;-.1/; — 1) parameters.

In fact, the (overall) number of model parameters used to describe the mean structure, including , is
exactly the same as the number of treatments. Further, there is a one-to-one linear relationship between
the 7cell means py; 4, 0f (9.1) and the relements of the parameter vector in the full-rank model (u, ¢")".

9.3.1 Matrix development for the full-rank model

In matrix notation, the full-rank model may be written as:



9.3.1 Matrix development for the full-rank model

In matrix notation, the full-rank model may be written as:

y=X(:;) +e=1p+ Xo¢p+ €

E(e) = 0, Var(e) = o°1,

where X contains rx J];-,%;rows and [];-,%7; columns. In fact, writing the expectation of both sides of the
model with r=1 yields the one-to-one relationship between cell means and model parameters referenced s

E(y) =X (;)

since in this case X is a square matrix of full rank. In characterizing X, it is convenient to define square

155

at the end of the last paragraph:

martrices for each factor comprised of the associated matrix F with an appended column of 1's, e.g.,

G* = (1|F°).

A key property of these matrices is that, apart from a factor of #7, they are orthogonal, e.g.,

Gl’.ij G!‘..'I. — I‘i-_llq-

In the more general case (r= 1), the complete model matrix may be written as:

Xz]rx...xG*xG'axG"‘.

The analytical simplicity associated with this model comes from the structure of the model matrix and
implications for X'X:

X'X=(1;,%...xG" x G? x G*)'(1; x ... x G x G? x G?)
=Y e GG x GF G x @Y @

AF .. s T .. W . T AY .. T



implications for X'X:

X'X=(1:%...XG"x G x G*Y(1; x ... x G x G® x G%)
=11, Xx...x GTG" x GF G x G*'G°
=N x...xIxIxI=NxI

due to the orthogonal structure of each G. Note that this convenient notation results in an ordering of
columns in X that does not place all main effect together, et cetera. Columns associated with a can be
reconstructed as 1,x1,x 1, % ... x 1, x F% while those associated with (ery) can be reconstructed as 1,x 1,
x ... x FYx 1, x F% et cetera. Because all pairs of columns in X are orthogonal, matrix forms associated
with estimation are especially simple. In this case, X;,; = X;, and so the reduced normal equations are:

X-EXQQ‘:? = }'(f_,y.

But since X;'X; = M, this leads immediately to the unique least-squares estimator:

3 |
(,fl — Ex:;y

The experiment offers equal information about each parameter in ¢, as reflected by the fact that:

T = X’EXE = NI{J.—E}HU-U‘

9.4 Estimation

As noted earlier, factorial structure generally has implications for the interesting contrasts in expected
treatment responses. For example, questions associated with the “overall” effect of factor 1 may be 155
addressed by linear contrasts of form

E(i...)
P E(g2...)
b[-{}h)
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E(g,...)
Under the full-rank model, this may be written as ¢'F*a, and its (unique) least-squares estimator is:

S _ I :
cFea=cF*a=cF*—-(1"x1"x1"x...xF*)y

d

= %{1’ x1' x1 %x...x ¢'FF%)y
]

= ‘1‘;(1’ x1'x1" x... xc(LI-J))y

1
= 5(1'x 1" x 1" x ... x he)y

where the last matrix notation step is possible because ¢’1 = 0. That is, the estimate of the linear contrast
of expected average responses is the same linear contrast of the observed average responses. The
variance of the estimate is simple, and can easily be represented in general form since the design
information matrix for any subset of ¢ is 7= M of appropriate dimension. In particular, the variance of
the estimate described above is:

Var(0) = 0*c¢'F*T"'F* ¢
2 ¥
= %C’F“F” c
2
= %c’(hl - J)e

_h g c'c
N '

Similarly, a comparison among levels of the first two factors, averaging over the third:

f Bn.. X



= —0o°CC.

N

Similarly, a comparison among levels of the first two factors, averaging over the third:

E(i11..)
E(th2..)

(¢} x ¢3)
E(in,,..)

where the elements of each of ¢,” and ¢,” sum to zero, is estimated by

Yi1..
(€} x h)(F? x F*)(@B) = (¢} x &) | ¥1*

Ui, ls..

and has variance

Ll ,
'Fgrr‘!{c’, X ch)(cy X €2) =

lila

N o*(cier)(che).

An example of the latter, for 4, =2 and £ = 3, is:

¢ =(-1,+1), ;= (-1,0,+1)

expressing the component of the factor-1-by-factor-2 interaction
E(gn..) — E(iha.) — E(21..) + E(f23..).

The least-squares estimator is the corresponding contrast of data averages:

1. — Phs. — ¥, + ..

with variance

2x3
N

o’(2x2) = %n’z.




with variance

9.5 Partitioning of variability and hypothesis testing

The ANOVA decomposition is also especially simple in the case of model (9.4), and facilitates the
examination of variability that can be associated with each parameter group (e.g., the variation
attributable to the effects of individual factors through main effects, attributable to synergisms between
pairs of factors through two-factor interactions, et cetera). The general from of the treatment sum of
squares can be written as:
SS5T = }’IHE 1y
1
- N Y ;x;z Xaoy
= .""Jqf-)"t,i-l.

This expression can be further reduced to individual sums of squares of estimates from each parameter
group (1.e., each segment of 0) as, in our three-factor example:

SST=N(&'&+ B B+ 44 + (EE)*(;S) - (5?}’(3;) + (5‘?)’(5-?)
+(aB7) (aBy)).

If € has a multivariate normal distribution the seven terms in this sum are independent sums of squares

. | ’ e _ 1w
because they are orthogonal contrasts in the data. For example, ® = N XoY and (aB) = 5 Xopy are 157
independent because X,"X,g = 0. Each has degrees of freedom equal to the number of elements in the -

parameter group, because the corresponding submatrix of X is of full rank, e.g., (4 — 1)(4 — 1) degrees of

freedom in the case of V(87) (87). Finally, these representations can be easily shown to be equivalent
to the familiar scalar notation formulae for ANOVA sums of squares in the case of balanced data; for
example:
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freedom in the case of N (87) (87). Finally, these representations can be easily shown to be equivalent
to the familiar scalar notation formulae for ANOVA sums of squares in the case of balanced data; for
example:

=T R i 1A _ L g
‘\ﬂﬂ—-"\ (E:x" ) (_xﬂy) - }T}r Xﬂ‘xf]y

N
V...
1 - -
= Wt )FOF |
is...
S
TABLE 9.4 ANOVA Format for Three-Factor Example, 4=2,46=3, L=
A
Source Degrees of Freedom Sums of Squares
main effects:
factor 1, « 1 12r Zi(fﬁ'm =
factor 2, 3 2 8r Z_j(ﬂ*j“ -4..)°
factor 3, v 3 6r>  (F.k —H..)°
two-factor interactions:
factors 1 and 2, (af3) 2 r Z.,-?-('Eij. Gi.. — 4. +7..)°
factors 1 and 3, (ary) 3 3rd  (Fik —Ti.. — Gk + 7 )
factors 2 and 3, (3v) 6 2r) . (Gik. —Gj. — Gk + )2
three-factor interaction 6 difference
residual (or “error”) 24(r — 1) Z_Ukt(yfjkf; — Fijk.)?
corrected total 24r — 1 Z“M(yfjm, —-7.)° v

< b



residual (or “error”) 24(r — 1) ZUH (Yijkt — Jijk.)"
corrected total 24r — 1 Z?—Ijkt(y-jjkf; -7.)° v

< >
Denote the vector of data totals specific to the levels of factor 1 by y,, and note that

FnF”' _ Gnt,’ N 1.1.r saigs I]I —_ J-g

so the above can be written as

l

PR ! . 1, N .
,P\rﬂ’ﬂ — ?yl “]l — J}}"; — ﬁ ny e Eyl =7 Z“}'l i yle'
> i=1 =1

Independent sums of squares can be written for each of the 271 parameter groups, although zests for

these groups are not independent because each relies on the same denominator mean square error

(MSE). An ANOVA decomposition for our three-factor example is presented in Table 9.4. Here, for ik
example, a test of Hyp,: (By) = 0, 1.e., that there is no interaction between factors 2 and 3, can be carried '

out by comparing:

NBY BN6 20 YTk — G — Gk, +5..)2/6
MSE Zijkr[ﬁrjk! = S‘;'r.jk.]?)"?"l{r o

to an appropriate quantile from a central A6,24(r - 1)) distribution. Since the design information matrix
for (B y) is 24;,¢, the noncentrality parameter assoclated with this test is

24r(B7)' (B)/o*.
So for nonzero (By) the power of the test performed at level 0.01 is

Prob{W > Fy.99(6,24(r—1))} where W ~ F'(6,24(r—1), 24r(87) (8v)/c>)

9.6 Factorial experiments as CRDs, CBDs, LSDs, and BIBDs
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9.6 Factorial experiments as CRDs, CBDs, LSDs, and BIBDs

The three fundamental experimental design plans discussed in Chapters 3, 4, and 5 can be employed in
factorial settings by simply ignoring the factorial structure. Hence a three-factor treatment structure
with 4 =2, £ =3, and £ = 4 can be examined via a CRD with 24runblocked units, a CBD in rblocks of 24
units each, or a Latin square design (LSD) in 576 units organized in 24 rows and 24 columns in which
each treatment is applied r= 24 times. For each plan, treatment-to-unit randomization can be carried out
exactly as described in previous chapters, again by simply ignoring the factorial nature of treatments.

For each of these designs, inference can be based on a partitioned model separating the nuisance
parameters (overall mean, and block effects where applicable) from parameters used to quantify
differences between treatments (main effects and interactions). Blocking terms do not affect the form of
the reduced normal equations because blocks and treatments are orthogonal in these plans; the reduced
normal equations for factorial treatment effects in each case are the same as those that “correct” only for
the overall mean. As usual, ANOVA decompositions include components associated with blocks, and for
CBDs and LSDs these are calculated ignoring treatment assignments — that is, each block is represented
in the block sum of squares by:

block size x ( block average — overall average )2_

As with experiments organized around unstructured treatments, association of this variability with

blocks reduces the residual variation against which significance of the factorial treatment “signals” are
assessed, but also reduces the number of degrees of freedom available to estimate this residual

variability. So, for example, a two-factor experiment with 4 = 2 and £ = 3 (and so 7= 6 treatiments), with

siX units assigned to each treatment (and so a total sample size of 36), would yield 30 degrees of freedom s
for the MSEIn a CRD, 25 degrees of freedom for a CBD, and 20 degrees of freedom for a LSD, just as with '
unstructured treatments. And as usual, A/SE1s used as the denominator for tests of overall treatment
differences or of the presence of specific groups of factorial effects (a, f, and (aff)), and as the basis of
standard errors for estimates of these parameters or of other contrasts in the cell means.
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unstructured treatments. And as usual, MS5E1s used as the denominator for tests of overall treatment
differences or of the presence of specific groups of factorial effects (a, f, and (aff)), and as the basis of
standard errors for estimates of these parameters or of other contrasts in the cell means.

Experiments for factorial structures can also be implemented using BIBD plans, again by ignoring the
factors and using randomization of treatments to units as in the unstructured case. So for example,
letting (Z /) denote the treatment specified by the ith level of a two-level factor and jth level of a three-
leve] factor, a BIBD in 10 blocks of size 3 could be arranged as:

(L) (1,2) (2,2) | (1,2)
(L1) (1,3) (2,1) | (
(L,1) (1,3) (23) | (1,3)
1,1) (21 (22)](

As with BIBDs used with unstructured treatments, all treatment contrasts are estimable, with a sacrifice
k(e=1)
in efficiency resulting in an increase in the estimation standard deviation by a factor of V t¥=1) (or

v 1.25 in this case) compared to a CRD with the same number of units assigned to each treatment and the
same value of o°.

9.7 Model reduction

One substantial and practical difficulty that often arises with factorial experiments is the potentially very
large number of parameters included in the model. However, as described in the hypothetical example
of Section 9.2, it often turns out that the interactions of relatively high order are not especially important
for accurate representation of the response mean structure. That is, it is often the fortunate case that the
parameters that are most easily explained physically (main effects and interactions of low order) are
associated with the majority of variation in the data, while the factorial parameters associated with the
most complex patterns of potential variation (interactions of high order) are zero or near zero.



parameters that are most easily explained physically (main effects and interactions of low order) are
associated with the majority of variation in the data, while the factorial parameters associated with the
most complex patterns of potential variation (interactions of high order) are zero or near zero.

There are substantial statistical advantages to reducing the number of parameters in the model used in
analyzing data from a factorial experiment. Suppose we rewrite the full-rank model in further
partitioned form as:

Ely)=1p+Xa¢p =1+ W ¢, + W,

where the columns of W, and W, form a partition of those in X;, and ¢, and ¢, form the corresponding
partition of ¢. Further, say that we have made the decision to assume that ¢, = 0. Adopting the reduced
model, the least-squares estimate of ¢, is:

. 1
¢ = Ewﬂ'

T80
and, since the columns of W; are taken from X,, the estimates included in this vector are exactly the same ™
functions of y as they would be under the full model. Now, any contrast in cell means is estimated by

1’X2*§E’ under the full model, or 1'W2¢"| under the reduced model. The variance of this estimate is:

i)
o

M "X, X51

I'X, Var(¢)X5] =

under the full model, or

72

N

I'W, Var(d) Wil = —1'W; W/l

under the reduced model. But since
X, X, = WiWi + WoW,  I'XoX)1 = 1'W, Wil +1'W, Wil

the estimation variance based on the reduced model can be no more than that based on the full model,
and depending on the specific vector 1 of interest and partitioning of ¢, may be much less.



ShJLAan — ¥¥ ] ¥¥ 4 57 ¥¥2¥YS L Aadsaol — 41 ¥Y ] ¥y 1157 1 ¥¥Y2¥yYyal

the estimation variance based on the reduced model can be no more than that based on the full model,
and depending on the specific vector 1 of interest and partitioning of ¢, may be much less.

In any particular setting, the questions that must be answered are whether the full model can be
reduced, and if so, which terms can be eliminated. One approach is to construct a series of up to 2°-1
Fstatistics, one appropriate for testing the null hypothesis of “no effect” for each parameter group. These
tests are generally performed on the parameter groups of highest order first, and are often performed
with “side conditions” requiring that when a three-factor interaction group is included in the model (for
example), all two-factor interaction groups and main effect groups involving the same factors must also
be retained. This particular restriction is often called a hlerarchical modelrequirement, and is discussed
in more detail for two-level factorial experiments in Chapter 11.

Because the number of unique treatments increases exponentially with the number of factors, and
multiplicatively with the number of levels used with any factor, a seemingly simple and even modest
factorial structure can lead to suggested experimental designs requiring more units than can be easily
accommodated in an experiment of practical size. However, especially in the early stages of an
experimental program, a primary goal is often to understand which of several factors or combinations of
factors are responsible for most of the variation in the response or responses of interest. One

compromise between what is statistically desirable and operationally feasible is to execute an

unreplicated experiment — that is, to include only one experimental unit representing each treatment,
resulting in a data set for which &= . The statistical disadvantages of this are obvious, and the most
important of these is the lack of an “honest” estimate of o2 against which the estimates of treatment

effects can be compared. If one is willing to assume that the highest-order interaction terms are actually
absent or negligible, the corresponding component of the ANOVA decomposition can be used as the basis ™
of a [];-17(/;— 1) degree-of-freedom estimate of o*. In this case, one model-trimming strategy can be
organized as follows:

1. Initialize 7= £ and compute a “denominator sum of squares,” $80, as the sum of squares for the
highest-order (£ interaction group, and a “denominator degrees of freedom,” df;, as the degrees of
freedom for the Forder interaction.



Initialize 7= £, and compute a “denominator sum of squares,” 50, as the sum of squares for the
highest-order (# interaction group, and a “denominator degrees of freedom,” dfy, as the degrees of
freedom for the Forder interaction.

Compute a “denominator mean square” as MSD = SSD) dfy.

3. Test each parameter group of the order 7 - 1 by constructing an Fstatistic comparing the parameter

group mean square to MSD. Use a fairly liberal level for this test, e.g., a = 0.25, to avoid accidentally
removing small-but-real effects from the model.

For each parameter group of order 7for which the null hypothesis of “no effect” is not rejected, add
the sum of squares to $§D and the degrees of freedom to dfs. (At this point, SSD and dfp include sums
of squares and degrees of freedom for all effects from order 7 - 1 through fthat are assumed or
appear to be negligible or absent). Decrease the value of 7by 1, and return to step 2.

. When no terms of a given order appear to be negligible, stop the process, and tentatively adopt a

“working model” that contains all parameter groups of this or lower order, and all higher-order
parameter groups for which the null hypothesis was rejected.

In order to preserve hierarchical model structure, step 3 can be modified to test only fth-order

interaction groups for which the associated factors are not a subset of higher-order interactions for

which the null hypothesis was rejected at an earlier iteration. While approaches of this kind can be

useful at the factor-screening stage of an experimental program, follow-up studies focusing on the

apparently active factors, designed so as to include true replication, should also be planned to provide

more dependable inferences.

9.8 Conclusion

In many important settings, experimental treatments are defined by selection of levels corresponding to

a number of factors. Strictly speaking, this does not change the broad approach outlined for

experimental design and analysis presented in previous chapters, for example:

Factorial experiments can be executed as CRDs, CBDs, or LSDs, in which least-squares estimates are
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experimental design and analysis presented in previous chapters, for example:

+ Factorial experiments can be executed as CRDs, CBDs, or LSDs, in which least-squares estimates are
unaffected by blocking, and the variation associated with blocks can be easily computed and
removed from unexplained variability in an ANOVA decomposition.

« Factorial experiments can be executed as BIBDs in which blocks have the same impact on analysis as
15 described in Chapter 7.

However, factorial treatment structure generally doeshave implications for what treatment contrasts
are of most scientific interest. In particular, differences in expected response that can be associated with
changes in the levels of an individual factor or small groups of factors are described by the main effects
and low-order interactions in factorial parameterizations. In many applications, interactions of higher
order have less influence on responses, and where this is true and can be verified in data analysis, it can
lead to a reduction in the number of parameters in the model required to summarize the systematic
differences in observed responses. Since factorial studies often involve many treatments, methods that
can be used to assist in “trimming” unneeded high-order interactions are useful. Reduced models
provide more precise estimates of treatiment contrasts, and more degrees of freedom for estimating error
variance.

9.9 Exercises

1. The rainfall example of Fay et al. (2000) featured in Chapter 1 described four experimental
treatments defined as a 22 factorial structure. But the experimental design also featured a fifth
experimental condition used as a “control.” Re-read the description of that study, and discuss how
the data from this experiment might be most usefully analyzed, given the scientific questions of
apparent interest.

2. A cell biologist designs an experiment to study the joint effect of exposure to ionizing radiation and a
particular toxic chemical to the survival of marrow stem cells taken from a specific strain of mouse.
He designs a factorial experiment to study all combinations of three radiation doses (including no
radiation) and four concentrations of the chemical (including zero concentration). Thirtv-six cell



2. A cell biologist designs an experiment to study the joint effect of exposure to lonizing radiation and a

particular toxic chemical to the survival of marrow stem cells taken from a specific strain of mouse.

He designs a factorial experiment to study all combinations of three radiation doses (including no

radiation) and four concentrations of the chemical (including zero concentration). Thirty-six cell

cultures are prepared, each consisting of a standard number of cells in medium in a petri dish, and
three cell cultures are exposed to each treatment. After exposure to the treatment, the data value
associated with each culture is a cell count that reflects the viability of the culture after exposure.

(a) Suppose the experiment can be executed as a completely randomized design, i.e., with each of

the 36 cell cultures prepared independently, and assigned randomly to treatments with only the

restriction that each treatment be applied to three cultures. In an analysis of variance that might
be used following this experiment, what are the degrees of freedom that would be associated
with:

the main effect for radiation

the main effect for chemical concentration

the radiation by chemical concentration interaction
residual (error) variation

(b) Suppose the experiment can be executed as a randomized complete block design, using three e
batches of 12 cell cultures each. Assuming that blocks and treatments do not interact, what are
the analysis of variance degrees of freedom, under this design, for:

the main effect for radiation

the main effect for chemical concentration

the radiation by chemical concentration interaction
blocks

residual (error) variation

(c) Suppose that using the randomized complete block version of the experiment results in 5% less
unit-to-unit variability (represented by ¢? in our model notation) than what would be realized in

the completely randomized design, because batches of 12 cell cultures can be made somewhat

more uniformly than batches of 36. Is this sufficient information to determine which design
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unit-to-unit variability (represented by ¢? in our model notation) than what would be realized in
the completely randomized design, because batches of 12 cell cultures can be made somewhat
more uniformly than batches of 36. Is this sufficient information to determine which design

would result in a more powerful test for the radiation main effect if, in fact, E{yg__] = E{yp__) +1=

E{yh)+2? If so, determine which design would be preferred from this point of view. If not, what
minimal additional information would be needed to make this comparison?

(d) Continuing with the information supplied in part (c), is this sufficient information to determine
which design would result in smaller expected squared lengths of 95% confidence intervals on
treatment contrasts? If so, determine which design would be preferred from this point of view.
If not, what minimal additional information would be needed to make this comparison?

3. Suppose now that the experiment described in exercise 2 is to be executed as a CRD, but that 40 petri
dishes are prepared, and different numbers of petri dishes are to be allocated to some treatments.
Specifically,

» two cell cultures are allocated to each treatment including both nonzero radiation and chemical
exposure

» four cell cultures are allocated to each treatment with either no chemical exposure, or no
radiation, but not both, and

« eight cell cultures are allocated to the “control” treatment with no radiation or chemical
exposure.

Derive the nnncentrahty parameter associated with the test for a radiation main effect under this

design. If o = 3 and E(y )-1-= E[y )= E{y ), what is the power of this test performed at level 0.05
under this design?

4. Using the data from the concrete experiment of Soudki et al. (subsection 9.1.1), compute a three-way
analysis of variance, and test for the presence of each group of main effects and two-factor 164
interactions, assumingthe three-factor interaction can be removed from the model. 15

5. Continuing to use the data from the example of subsection 9.1.1, make two sets of parallel boxplots
from the data as described in subsection 9.2.1 to depict the effects of the total aggregate/cement
ratio and the coarse aggregate/total aggregate ratio. Together with the similar graph presented in



Interactions, assumingthe three-factor interaction can be removed from the model.

Continuing to use the data from the example of subsection 9.1.1, make two sets of parallel boxplots
from the data as described in subsection 9.2.1 to depict the effects of the total aggregate/cement
ratio and the coarse aggregate/total aggregate ratio. Together with the similar graph presented in
subsection 9.2.1 for the water/cement ratio, is the appearance of these graphs consistent with the
results of the ANOVA? What (if anything) could you not infer from looking at the plots, that is
apparent in the ANOVA?

Consider an industrial experiment carried out to improve the properties of a certain kind of
manufactured sandpaper. The sandpaper is made of several layers of material. These layers are
glued together — glue is inserted between the layers, and pressure is applied to both sides for a fixed
length of time. The measurement of interest in this experiment is the amount of force that is
required to pull the layers of the finished sandpaper apart (that is, to destroy the product). The
controlled experimental factors in this experiment are the kind of glue used (two kinds), and the
amount of pressure used (three levels) in the assembly of the sandpaper, resulting in six unique
experimental treatments. A specific measurement of force will be denoted throughout as y;; where 7
= 1,2 denotes the level of the glue factor and j=1,2,3 denotes the level of the pressure factor. The
following quantities may be used as needed in working exercises 6 and 7. In each case, the sum is
over all combinations of values of the indicated indices that appear together in the experiment.
(Some of these values may not be useful or meaningful in both of the experiments described.) Note
that most of these quantities are nofactually ANOVA sums of squares, but that ANOVA sums of
squares can be easily computed from them.

2 i(Wigt — g..)* =360
¥ (W5 — 9...)> =60
> i@ — #i.. — 94 +9..)2 =10
> @i —9.)=10
>.;(H;—9.)=10
Yifi—-9.)=5
>alUii—1y.)* =60
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6. Suppose the experiment is executed using a completely randomized design. Each piece of sandpaper
is individually manufactured, independently from all others used in the experiment. For each
combination of glue and pressure, four pieces are made, and /indexes these. For example, 53, 1s the

measurement on the 4th piece of sandpaper from those made with glue 2 and pressure level 3. For 15
an Ftest for the main effect of pressure, what are the values of:

(a) The numerator sum of squares

(b) The numerator degrees of freedom
(c) The denominator sum of squares

(d) The denominator degrees of freedom

7. Suppose the experiment is executed as a randomized complete block design. Sets of six pieces of
sandpaper are made together, one using each of the glue-pressure combinations. Four such sets are
made, and /indexes these sets. So for example, j51, is the measurement taken from the single sample
made with glue 2 and pressure level 3, in set (or block) number 4. Assume that effects associated
with blocks are fixed and additive (i.e., blocks do not interact with treatments). For an Ftest for the
main effect of pressure, what are the values of:

(a) The numerator sum of squares

(b) The numerator degrees of freedom
(c) The denominator sum of squares

(d) The denominator degrees of freedom

8. An experimenter wants to understand the effect of a three-level factor (“factor 1”) on a response. She
also has some interest in the effects of “factor 2” and “factor 3,” each of which has three levels, and
can be used jointly with factor 1 to define treatments, but these factors are not the focus of her
current research. She is considering three different experimental designs, each requiring &= 54

units:
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(a) The numerator sum of squares

(b) The numerator degrees of freedom
(c) The denominator sum of squares

(d) The denominator degrees of freedom

Suppose the experiment is executed as a randomized complete block design. Sets of six pieces of
sandpaper are made together, one using each of the glue-pressure combinations. Four such sets are
made, and /indexes these sets. So for example, J51, is the measurement taken from the single sample
made with glue 2 and pressure level 3, in set (or block) number 4. Assume that effects associated
with blocks are fixed and additive (i.e., blocks do not interact with treatments). For an Ftest for the
main effect of pressure, what are the values of:

(a) The numerator sum of squares

(b) The numerator degrees of freedom
(c) The denominator sum of squares

(d) The denominator degrees of freedom

. An experimenter wants to understand the effect of a three-level factor (“factor 1”) on a response. She
also has some interest in the effects of “factor 2” and “factor 3,” each of which has three levels, and
can be used jointly with factor 1 to define treatments, but these factors are not the focus of her
current research. She is considering three different experimental designs, each requiring &= 54
units:

» Design A: A 3! design in factor 1, with each treatment applied to r= 18 units.
» Design B: A 32 design in factors 1 and 2, with each treatment applied to r= 6 units.
» Design C: A 33 design in factors 1, 2, and 3, with each treatment applied to r= 2 units.

Each design can be executed without blocking.

(a) For each design, what is the expected squared length of a confidence interval for a, (full-rank
model) if 6> =17

(b) For each design, what is the power of the test for Hyp,: a = 0if, in fact, a; = a; = 0.1 and o2 = 1?



CHAPTER 10 Split-plot designs

10.1 Introduction

Suppose an engineer wishes to perform an experiment to examine how a chemical reaction takes place
in a small reactor. In particular, he would like to compare product made using all combinations of three
different reaction temperatures and four different stirring rates, and so naturally thinks of the study as a
factorial experiment with two factors with three and four levels, respectively. If his budget allows
enough material for 24 runs, r= 2 data values can be collected under each of the =12 treatment
conditions. He will perform the study using a single reactor, and so must develop a schedule for
sequential execution of all 24 experimental runs. If the experiment were executed as a completely
randomized design (CRD), good practice would suggest that the entire schedule be constructed randomly
to avoid any uncontrolled and unknown systematic changes in reactor operating conditions that might
occur over time.

Suppose, however, that operational circumstances suggest that four runs of the reactor are the most that
can reasonably be accomplished in a day, and possible day-to-day variations in the experimental
environment suggest that the runs made during a given day should be regarded as a block. One possible
approach would be to consider whether a balanced incomplete block design (BIBD) for 7= 12 treatments
in b= 6 blocks of size k=4 might be constructed. (It is simple to show that such a BIBD does not exist;
think about how large the experiment would have to be in order to accommodate BIBD structure.)
Suppose, further, that the levels of the second factor, stirring rate, can be changed very quickly, simply
by turning a knob and waiting a few minutes for the mixture in the reactor to change. However, raw
material is preheated in a relatively large vessel outside of the reactor, and the uniform temperature of
this material cannot be changed quickly. In fact, the only way that four runs can be executed in one day
1s if all four treatments are run at the same temperature, i.e., that changes among the levels of the
relatively easy-to-change factor, stirring rate, be the only changes made from run to run within a block.

If the effects associated with blocks are treated as a fixed source of variation, these constraints present
an obvious problem. Since temperature is completely confounded with blocks, there can be no



relatively easy-to-change factor, stirring rate, be the only changes made from run to run within a block.

If the effects associated with blocks are treated as a fixed source of variation, these constraints present

an obvious problem. Since temperature is completely confounded with blocks, there can be no

{nformation available from the data on the main effect of temperature once correction has been made

for blocks/days. However, if day-to-day differences can be regarded as random, an inter-block analysis -
can be used to recover information about the fixed main effects associated with temperature. The quality ™
of this information will likely not be as high as that provided by the intra-block inference about the main
effects associated with stirring rate, since the former requires characterizing patterns attributable to
differences in temperature through noise that includes random components associated with both day-to-
day variation, and unit-to-unit variability and measurement errors attributed to each experimental run.

In this setting, blocks are sometimes called p/ors, and the experimental design is often called a split-plot
design (SPD). This terminology originated with agricultural experiments in which, for example, the joint
effects of crop variety and fertilizer type on yield were important, but only one of the two factors could
be easily varied in a small spatial area. Other studies called repeated measures experiments make use of
test subjects that can only be treated at a single level of one factor, but for which a series of data values
can be collected corresponding to all levels of another factor in a collection of “repeated” tests. For
example, in an evaluation of the effect of sleep deprivation, each subject (the plot/block) may be assigned
to one of several levels of sleep deprivation (the among-subjects factor), and then asked to perform a
series of tests to evaluate ability to concentrate under different levels of distracting noise (the within-
subjects factor). While split-plot studies and repeated measures studies are generally not physically
similar, they share a common statistical structure in that one or more treatment factors are confounded
with blocks (plots or subjects), while all levels of one or more other factors are represented within each
block. We will use the “split-plot” label for both types of experiments.

10.1.1 Example: strength of fabrics

Rong, Leon, and Bhat (Z005) describe an experiment performed to characterize the effects of some
process variables on the strength of cotton-based nonwoven fabrics. Fabrics were produced under 24
different conditions defined by combinations of three experimental factors summarized in Table 10.1.



Rong, Leon, and Bhat (2005) describe an experiment performed to characterize the effects of some
process variables on the strength of cotton-based nonwoven fabrics. Fabrics were produced under 24
different conditions defined by combinations of three experimental factors summarized in Table 10.1.
One response variable was peak load (measured in kg), a measure of tensile strength of the resulting
fabric; average values for each of the 24 experimental conditions are given in Table 10.2.

The authors indicate that levels of calendering temperature could not be changed as often as the other

two factors, presumably due to operational characteristics of the process. Hence six treatments
corresponding to all combinations of binder fibers and binder content were processed while the process
was operating at each temperature. As a result, differences among fabrics that vary in binder fiber and ™
binder content can be assessed as differences among data values generated in close temporal proximity,
while differences attributable to temperature must be assessed by comparing “blocks” of six binder
fiber/binder content tests. Hence, while experimental material did not naturally come in batches

sufficient to make only six specimens, the authors recognize that samples made consecutively (and so

within a common temperature level) are likely to be more “alike” than those separated by more time.

TABLE 10.1 Factors and Levels in the Experiment of Rong et al. 8
(2005)
Factor Levels
Calendering temperature (°C) 90, 100, 110, 120
Binder fibers unicomponent, bicomponent
Binder content (%) 15, 30, 50 v
< >
™

TABLE 10.2 Average Peak Load (Kilograms, kg) for
Unicomponent/Bicomponent Fibers in the Experiment of Rong et
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TABLE 10.2 Average Peak Load (Kilograms, kg) for

Unicomponent/Bicomponent Fibers in the Experiment of Rong et

al. (2005)
Binder Content
Temperature 15% 30% 50%
90 0.10/0.24 0.12/0.42 0.13/0.54
100 0.14/0.30 0.15/0.54 0.15/1.15
110 0.17/0.36  0.30/0.65  0.36/1.21
120 0.17/0.29 0.30/0.56 0.31/0.85
< >

10.1.2 Example: English tutoring

Denton, Anthony, Parker, and Hasbrouck (2004) performed a study to compare the effectiveness of two
tutoring programs used to teach English reading to Spanish-dominant bilingual elementary school
students. Students in grades 2-5 were recruited from multiple schools. Because many conditions can
have a major impact on educational success, students from the same school and grade were matched in
pairs, one student in each pair to be assigned to one of the two tutoring programs, and the other to serve
as a control (i.e., standard curriculum without the additional tutoring program). Each student was given
a reading mastery test at the beginning of the study (that is, before tutoring began, sometimes called a
pretesn, and again at the end of the study. Hence a level of the factor furoring programis applied to a
student (or more precisely, to a block of two matches students, one of which is randomly selected to
receive the tutoring), while both levels of the factor fzime are represented within each student.

Note that in the strict sense, this study cannot be called a true experiment because the order of
application of the time levels cannot be randomized. Other repeated-measures studies do admit within-
subject randomization, for example, where subjects are each asked to perform a series of related tasks
coinciding with a factor level, and the tasks can be performed in any order.

10 2 <SPN(R R)



subject randomization, for example, where subjects are each asked to perform a series of related tasks
coinciding with a factor level, and the tasks can be performed in any order.

10.2 SPD(R,B)

The critical distinction that makes split-plot experiments different from other factorial experiments is the
presence of two (or even more) definitions of the experimental unit. One way to see this is to think of the .
individual factors as being applied to units separately, rather than all factors (and therefore the entire 1
treatment) being applied together. The entities we are calling blocks are essentially the units to which

levels of the among-blocks factor or factors are applied. So, for example, in the hypothetical chemical
process experiment, “temperature” is set once for all data generated on a given day (or block, plot, or
“whole-plot unit”). This means that blocks-within-temperature level variation is the “noise” against

which differences between the levels of this factor must be judged. On the other hand, levels of the
within-blocks factor or factors are applied to the experimental material associated with a single data

value, e.g., the four individual reactor runs that are performed in a day using the four different stirring
rates. In fact, it is sometimes helpful to think of a split-plot experiment as being carried out in multiple
Strata, or even as a combination of distinct, nested experiments. In the case of our chemical plant

example, the “whole-plot” experiment is a CRD in which 3rdays (at this stratum, experimental units) are
randomly assigned to three different treatments (levels of the among-block factor). The “split-plot”
experiment is a complete block design (CBD) in which the four runs (now the units) made in each day

(now the block) are randomly assigned to the four levels of the within-block factor. We refer to the

design of a split-plot experiment organized in this way as a SPD(R,B), indicating that the portion of the
experiment executed at the “top” stratum is randomized, while that executed at the “bottom” stratum is
blocked.

10.2.1 A model

The portion of the model that expresses treatment structure is no different in this case than in any other
factorial model. What must be added here is a term to account for random block-to-block differences.
Consider a two-factor experiment; treatment structure can be expressed in overparameterized form as:



The portion of the model that expresses treatment structure is no different in this case than in any other
factorial model. What must be added here is a term to account for random block-to-block differences.
Consider a two-factor experiment; treatment structure can be expressed in overparameterized form as:

a; + J';j. .k (ﬁ"i'i}u
t=1.2.3,.:h,, J=1,2;3;:i:y8a:

If only one level of the factor represented by &, but all levels of the factor represented by ;'-'f, are applied to
the units within a block, we might write

'y;:;,- -— f-:l'i -+ .I;J + (ﬂ'_ﬂ}ij + {:;'“:,:} + ffﬂi}j
T T S bi; §w=1,2,..c.;00 Tm], 205047

Here, y;;represents the datum resulting from application of the jth level of factor 2, taken from the #th
block in which the first factor is applied at level £ Hence the number of blocks used in the experiment is
b= rh, and the total number of data values generated is N= bk = rh k. The two random elements in this
model are 8, and e;,,;, with

E(Cugy) =n¢, Var(Cugy) = 02
E(eui);) =0, Var(eyu;) = o°
170
representing block variation and unit-within-block variation, respectively. These two random terms are '
generally also assumed to be independent.

For our purposes, the full-rank parameterization described in Section 9.3 is helpful. Order the elements
of y lexicographically from top to bottom by (g, z ), that is, with all ; values associated with a block
together, and all subvectors representing blocks associated with the same level of the first factor
together. Then following the notation introduced in Chapter 9, and given that F* and F? have been
defined, we can write a model for all data from the experiment as:

y =X+ Xoa + X8 + X(ap (aB) + €
E(¢)=pcl  Var(¢) = ol
E(e)=0 Var(e) = 0’1
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Y= xlc s xﬂa + x.m@ + x{'mﬂ (ﬂ,ﬂ) T €
E(¢)=pncl Var(¢) = ofl
E(e)=0 Var(e) = o1

where a, , and (aff) are vectors of length 4-1, £-1, and (4-1)(4-1), respectively, {is the 4 relement
vector of random block effects, and the model matrices can be written as direct products of simpler
matrices:

Xa=1p, x1, xF* Xjz= F7 %1, x 1,
X{‘_.,I-';J — F"!rj x 1,- x F“ Xl - 1;_‘], x Ip;.(rl x Ifl’”l'

10.2.2 Analysis

The intra-block model is based on y,, the projection of the data into the complement of the space spanned
by the columns of X, (Section 8.2). Let

1
H, = X,;(X{X;)'X] = E;;'[J:,».c.'2 X Lpxr X Ty xt;)

and define:

y1=(I-H,)y
= (I-H; ) Xqa+(I-H; ) X38+(I-H; )X (a5 (aB)+(I-H; )X, {+(I-H, Je.

Since H; projects vectors into the space spanned by the columns of X,, (I-H,)X; = 0. And since the
columns of X, can be formed as sums of those in X;, (I-H,)X, a = 0 also. Hence

yi=(I-H)Xz8+ (I1-H;)X.3(aB) + (1 - H))e.
This simplifies further as:

1 P
Y1 = (xﬂ = I:(Jl-th X Lrxr X Tyt )(F? x 1 x 1, ]) o



This simplifies further as:

| .
Y11= (X,g — E(Jl?xh X Irxr X Ii,xh :'(F.Jlj X 11" X 1I| }) ‘S

1 .
= (x{u:ﬂ - E{Jfgx!; X Ipser X ]flxh) [Fd X 1y X F“}](aﬁ)
+(I-H,)e
=XzB8 + x(t.,i}(ﬂﬁ) +(I-H;)e.
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The best linear unbiased estimators associated with this model form are weighted least-squares T
estimators, because:

E[(I-H,)e] =0, Var[(I-H,)e] =a*(I-H,).

Letting Xg os = (X3 | Xo p), the appropriate weighted normal equations in this case are

-

X oy (= H1)X 5, 000) ([;%)

) = X0 (T~ Hi)yr = X} (0 (T~ H)y.

(10.1)

But note that these are exactly the same as the reduced normal equations for the fixed-block model,
omitting the main effect associated with the first factor because it is confounded with block-to-block
differences. Inferences concerning the main effect for the within-block factor, and the interaction
involving the among- and within-block factors, are based on this model.

The design information matrix associated with this intra-block analysis is

Im.tru - xit(“*;}(l = Hl:'x.'j,;'rﬁi} = N1

as suggested by the reduced normal equations (10.1). Note that this matrix has rows and columns
associated with the elements of [ and (a ). We could add /4 rows and columns, containing only zero
elements, corresponding to the parameters a, but there is no practical reason to do this in the split-plot
context. The variance of the estimate of any linear combination of p and (a ) is then:
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associated with the elements of [ and (a f). We could add 4 rows and columns, containing only zero
elements, corresponding to the parameters a, but there is no practical reason to do this in the split-plot
context. The variance of the estimate of any linear combination of p and (a p) is then:

Var(8'|(B) )e) = €T ipypuco® = S70%.

The inter-block analysis is based on the transformed data vector:

Y2 = X';y - X‘; xﬂﬂ v xflx.};ﬁ + X’]X{m;}(aﬁ) “= X1X|c + K: E.

Due to the relationship between blocks and the levels of the first treatment factor, the inner products of
the columns of X; with those of the other partitioned model matrices take simple forms. Specifically:

X!1 =11
X1 Xa = (1}, % Ly X Iy, )1y X 1p x F*) = a1, x F®
X1Xp= (1}, % Lscr X Iyt )(F® x 1 x 1;,) =0
X X ag = (1, X Lixr X Lt sa, ) (F? x 1, x F*) = 0.

As a result, the inter-block model simplifies to:

yz = lz(1, x F")a + XX ¢ + Xje = I2(1, x F*)a + X (X { + €).

Finally, letting € = X1(X1({~#¢1)+€) we can write an inter-block model as:

va=lopel + (1, x F*)ax + €*
E(e')=0 Var(e') = (3of + l20°)1L. (10.2)
172
Model (10.2) provides the basis for comparative inferences that can be made about the main effect for e
the among-block factor.

The design information matrix associated with this inter-block analysis is

Zivter = I2{1:1- = F“}:{l,- > F“} = NI.



The design information matrix associated with this inter-block analysis is
Tintor = B [de X T ([T, WP .= NE
Again, we define this matrix with only (4-1) rows and columns corresponding to the elements of a since

there is no inter-block information available about  or (a p). The variance of the estimate of any linear
combination of the elements of a is

c'c
N

Var(c'a) = c'Z c[f;;nf 4+ 0% =

REPIE [lao? + 02).

The dual nature of split-plot experiments means that experimental “noise” is different for some
comparisons than for others. Block-within-factor variation is the noise against which the among-blocks
factor associated with a must be judged. Because a change in the level of the within-block factor implies
a change in both f;and (a () ; the noise against which within-block factor main effects andthe
interactions involving within-block factors must be judged is associated with units-within-blocks.

The split-plot ANOVA decomposition is often written in a unified form, in which degrees of freedom and
sums of squares for all factorial effects are computed by the same formulae that would be applied in a
variance decomposition associated with a CRD and CBD, but with two residual or error sums of squares
computed corresponding to the noise associated with the two strata of the experiment. Table 10.3
displays a general ANOVA format for the SPD(R,B) with one among-blocks factor and one within-blocks
factor.

Although the “two-experiments story” is usually most easily told beginning with the whole-plot portion of
the study, the ANOVA decomposition may be more easily understood by thinking about the split-plot

portion first. The second section of the ANOVA table of Table 10.3 shows a “corrected total” sum of

squares and degrees of freedom as they would be computed for a CBD in 4 rblocks, with A(£-1) degrees
of freedom used to describe treatment variation, which in turn is partitioned into 4-1 and (4-1)(4£-1) e
degree-of-freedom components associated with those treatment contrasts represented by p and (a [5).

Sums of squares and degrees of freedom associated with blocks, treatments, and residual each sum to

their corrected total counterparts, allowing the residual values to be computed as differences. The
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degree-of-freedom components associated with those treatment contrasts represented by p and (a [).
Sums of squares and degrees of freedom associated with blocks, treatments, and residual each sum to
their corrected total counterparts, allowing the residual values to be computed as differences. The
Fstatistics appropriate for testing Hypq: p = 0 and Hype: (a p) = 0 are formed as the ratios of the
corresponding mean squares to the 4(r-1)(4-1) degree-of-freedom split-plot residual mean square.

TABLE 10.3 ANOVA Format for a Two-Factor SPD(R,B)

Stratum Source Degrees of Freedom  Sum of Squares

whole-plot o I -1 Z: rla(gi.. — 9...)°
resid li(r=1) Yoo ol = 3:.)?
corrected total Lir — 1 th La(§ie. — E...}?'

split-plot blocks lir—1 > o l2(Hie. — 4., )?
3 -1 2hr(lg~1..)
(aB) (= 1)l —1) Y rFii — B — G +5..)°
resid Li(r=1)(2~1) difference
corrected total [irla — 1 Zh,j(y,u —~3.) i

< >

The experimental units in the whole-plot portion of the experiment are the same physical entities as the
blocks in the split-plot portion, and so the ANOVA component for whole-plot corrected total is the same
as that for split-plot blocks. This is the basis for the first section of Table 10.3, where the corrected total
sum of squares and degrees of freedom are partitioned as they would be in a CRD with / treatment
groups of equal size. The whole-plot residual sum of squares represents variability among whole-plot
units (or split-plot blocks) within groups assigned to the same level of the factor associated with a. The
Fstatistic appropriate for testing Hyp,: a = 01s formed as the ratio of the 4-1 degree-of-freedom mean
square associated with this factor, and the /(r~1) degree-of-freedom residual mean square from this
section of the table.

Because we are working with the full-rank factorial parameterization of treatment effects defined in
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square assoclated with this factor, and the 4(r—1) degree-of-ireedom residual mean square from this
section of the table.

Because we are working with the full-rank factorial parameterization of treatment effects defined in
Chapter 9, all linear combinations of the elements of a, f§, and (a p) are estimable. (Due to the way the F
matrices were constructed, factorial effects all correspond to contrasts in the treatments, and so for
example, ¢’ ais a treatment contrast for any(4-1)-element vector c.) Based on

Y2 = .f-_z.u,cl + la(1, x Fe Jex + €

the unique least-squares estimate of a 1s:

& = L;E{I:li ¥ Fﬂ}l{lr % Fn}}—liz(lr » Frt}F}rz - %Fn’ y'..’..
1
i,
S0
..
da=cF | ¥ |
3
Uty
and

Vur({d::a] = l1':"F""‘F“'.t: 102 + Lag = E (lao? + o?)
2 r ¢ rlp N V4% ‘
The quantity enclosed in parentheses in the last expression is the expectation of the whole-plot residual ..
mean square, and so can be estimated by this mean square in #based confidence intervals: iz

¢c

catty_anli(r- 1)_1\/ < MSE uy.
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. p
catty_aplly(r - 1]]\/5 MSE.,.

The intra-block (or split-plot) analysis leads to point estimates of similar form:

f] _ ng“ Y.2
lo
U1y
Y11
e I 3 1 !
(aB) = - (F* x Foy [
Il
Wiy lg

But in this case, the same whole-plot blocks are represented in a// elements of the vector of averages.
Because the rows of F¥” and (FF xF%)’ have zero sums, the correlations among these averages cancel out in
the variance formulae, leaving:

Var{tﬁ;] = %JE¢
— !
Var(c'(af)) = E{—ng.

In this case, confidence intervals can be based on the residual mean square from the split-plot portion of
the ANOVA, for which the expectation is o, e.g.,

B £ ty_asa(ly(r— 1)(I - 1})\/1—?&1553,,.

10.3 SPD(B,B)

A two-factor split-plot experiment can also be organized so that both the among-blocks and within-blocks
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10.3 SPD(B,B)

A two-factor split-plot experiment can also be organized so that both the among-blocks and within-blocks
components of the study are executed as CBDs. In our hypothetical chemical plant experiment, suppose

that instead of randomly allocating 4 rdays to 4 levels of the first factor (under the constraint that rdays

are selected for each level), the experiment is run in r replicares, each replicate executed during a

different week. Within a given replicate/week, 4 days are randomly allocated to the / levels of the hard-
to-change, among-blocks factor, temperature. As a result, the top stratum of the design is a CBD in which

the / treatments (levels of factor 1) are applied once each to the units (days) of each replicate/block

(week). The bottom stratum of the design is a CBD as before, with the £ treatments (levels of factor 2) 175
applied once each to the units (individual runs) of each block (day). The potential advantage of operating
in this way is the improvement in power and precision that might be attained in comparing levels of the
whole-plot factor. This is possible because factor 1 contrasts can now be calculated from the data

collected within weeks, rather than across all days used in the experiment. We denote a split-plot design
organized in this way as a SPD(B,B), indicating that the portion of the experiment executed in each

stratum is organized in blocks. As with any CBD, we must be willing to assume that the influence of

weeks and factor 1 levels are additive.

10.3.1 A model

For this experimental strategy, we may write an overparameterized model for the data as:

Ytij = Pr + Qi + 6t1 o .";},} o7 [ﬂ'“.i}jj +Eﬁj
i=1¢2.,”“.f|; _,i':}.g .... f-g: f=1,2““,i‘1

where

Gi ~iid.,  E(Cu) =pe.  Var(by) = of
Crij ™~ iid., E([h‘j} == (), 1‘1‘11’*{{”_.‘;] = {'}"2.
In this model, the influence of the new blocking structure (weeks) is represented by p, = 1,2,3,...,r. This

-~
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€ij ~ 1id.,, E(eij) =0, Var(eij) = o
In this model, the influence of the new blocking structure (weeks) is represented by p, = 1,2,3,...,rn This
requires that we re-allocate r~1 degrees of freedom that would have been included in the whole-plot
residual in a SPD(R,B). But if the random effects associated with the days within a week are small relative
to week-to-week variation, and effects due to weeks and to the levels of factor 1 can be assumed to be
additive, the (r~1)(4-1)-degree-of-freedom source of variation remaining among days after accounting
for the effects of weeks and factor 1 levels may be smaller than would be the case with a SPD(R,B).

Following the conventions of the last section, a matrix formulation of the full rank model
parameterization for the full experiment may be written as

y=Wp+X,(+Xa+ X8+ Xg(ap) +e

where p is an relement vector of fixed-effect block parameters,

W 1;2 K Irxr b4 1;1

and all other matrices and parameter vectors are as defined in subsection 10.2.1. A little thought should
make it clear that intra-block estimators of ¢’ p and ¢’ (a ) are not affected by the addition of whole-plot
blocks to the model because the columns of W (representing groups of whole-plot units or split-plot

blocks) can be formed as linear combinations of the columns of X,. As a result, the data transformation y,

= (I-Hy)y has already “eliminated” effects associated with the columns of W. The model on which inter- 5
block estimates is based must be modified to reflect the new stratum of blocking with the addition of: v

xiwp —& {1:1 X Ir‘.-ur X Ih‘.-:h)(li-_» X Ir'xr X lh ]P - ("'2 X Irxr' X lh )p
leading to:
y2 = l(I,, x 11,)p + l2(1, x F")a + €°.

However, thisis just another way of writing a model for a CBD with rblocks, each containing 4 units
distributed among the / levels of the factor associated with a. Because CRDs and CBDs that each assign r
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However, thisis just another way of writing a model for a CBD with rblocks, each containing 4 units
distributed among the /4 levels of the factor associated with a. Because CRDs and CBDs that each assign r
units to each of 4 treatments are Condition E-equivalent, the inter-block estimates are also not affected
by the addition of whole-plot blocks.

10.3.2 Analysis

While estimates of treatment-related parameters have the same form whether orthogonal blocking is
used at the whole-plot stratum or not, the additional structure must be taken into consideration in the
ANOVA decomposition. Because there is no pure replication when the whole-plot section is cast as a CBD,
the whole-plot-block by a-main-effect interaction (assumed to be absent) becomes the source of
information about residual variation, i.e., the denominator mean square for testing Hyp,: a = 0 and the
variance estimate for calibrating confidence intervals for ¢’ a. The format for an ANOVA decomposition
for a SPD(B,B), with rwhole-plot blocks, one whole-plot factor, and one split-plot factor, is given in Table
104

Estimates of linear combinations of a, p, and (a ), and their standard errors, are computed just as in the
case outlined for SPD(R,B), with the whole-plot residual mean square used in inference about a and the
split-plot residual mean square used in inference about p and (a p). The only adjustment necessary to the
formulae in this case is the reduction of degrees of freedom for the whole-plot residual component,
reflecting the fitting of nuisance parameters corresponding to whole-plot blocks.

TABLE 10.4 ANOVA Format for a Two-Factor SPD(B,B)

Stratum Source Degrees of Freedom Sum of Squares
whole-plot  blocks r—1 > hla(ye. —y..)*
x 51 -1 Zf. '-""1{2 (§1 == 3,_9")2

resid (r—1)(l — 1) difference



whole-plot  blocks r— 1 S 3132@;_. -9.)°

a I —1 Yo rha(@i—7..)°
resid (r—1)(l1 —1) difference
corrected total rl; —1 S le(@ —7..)°

split-plot  blocks rly — 1 > o bo(Fe. — y..)?
3 la —1 Zj rli(y.5 —9..)°
(af3) (L —1)(l2—1) > i T@is —Fi — 9.5 +7.)°
resid (r=1)l(l2—-1) difference
corrected total rlils — 1 Z“J(yn’j —4..)? v

re >

10.4 More than two experimental factors

To this point, our focus has been on explaining how split-plot designs are organized when one factor is
applied at each of two strata of experimental material, referred to as “plots” and “units.” However, more
than one factor may be applied at either or both strata in experiments designed to investigate more than
two factors. For example, in the fabric experiment of Rong et al. (2005) (subsection 10.1.1), temperature
is the single whole-plot factor, while binder fiber and binder content are both applied in the split-plot
stratum. The ANOVA decomposition of this experiment would be organized so as to compare the
temperature main effect to whole-plot residual (groups of six runs within temperature levels), and all
other factorial effects to split-plot residual (associated with individual test specimens). It should be fairly
obvious why binder fiber and binder content main effect are tested in the split-plot portion of the table,
since these factors are exercised “within blocks.” Writing out the contrasts associated with any
interaction will reveal that they are also contrasts within blocks, and so should be evaluated against the
same measure of noise as the binder fiber and binder content main effects.

Suppose the fabric experiment had actually been organized so that both temperature and binder fiber
had been held constant within each random block, and only binder content varied within blocks.
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Suppose the fabric experiment had actually been organized so that both temperature and binder fiber
had been held constant within each random block, and only binder content varied within blocks.
Maintaining the number of levels of each factor, this means that only three specimens would appear in
each block — one assigned to each binder content level — and eight kinds of blocks would be present in
the design, one kind for each combination of temperature and binder fiber levels. In this case, the
temperature and binder fiber main effects andthe temperature-by-binder fiber interaction would be
analyzed as whole-plot effects (i.e., compared to whole-plot residual variation) because any data contrast
associated with these effects is constant within blocks, and its uncertainty is reflected by the block-
within-temperature-and-binder fiber variation. The factorial effects estimated with split-plot precision
(or tested against split-plot residual variation) would be the binder content main effect, and all
interactions involving this factor.

The general rule for determining the organization of a split-plot ANOVA is that a factorial effect appears
in the whole-plot section if a//involved factors are applied at the whole-plot stratum (i.e., change levels
only between random blocks), and appears in the split-plot section if anyinvolved factor is applied at the
split-plot stratum. Table 10.5 offers a final demonstration of this decomposition of variance for a four-
factor experiment in which the first two factors (A and B) are applied to whole-plots, and the second two
(C and D) are applied to split-plots.

10.5 More than two strata of experimental units

Split-plot designs can often be identified easily because the experimental material is organized in a

nested structure, and different factors or groups of factors are applied at different strata of that -
structure. The designs we have considered so far have employed two strata of experimental material, 1
sometimes referenced as plots and units. In the fabric example of Rong et al. (2005), the hierarchy of
experimental material was individual samples (or units) to which binder fiber and binder content were
applied, and temporally sequential groups of six samples (or blocks) to which temperature was applied.

TABLE 10.5 ANOVA Format for a Four-Factor SPD(R,B) with Two



applied, and temporally sequential groups of six samples (or blocks) to which temperature was applied.

TABLE 10.5 ANOVA Format for a Four-Factor SPD(R,B) with Two
Factors Applied in Each Stratum*

<

Stratum

Source

Degrees of Freedom

Sum of Squares

whole-plot

split-plot

&
5]

(exf3)
resic

corrected total

blocks

Y

&

all interactions
except (o)

resid

corrected total

h~—1

fa—1

(L =1)(l2-1)
f;f-_;(’r~ I]
E.Igr—l
hfgr‘—ul

s —1

I —1

>, larlala(ii.... — §....)°
ZJ flr.!';p"..g“i s ™ !} ]E
difference

Z,J, lala(@ige.. — 935..)°

Zi;‘.‘ f:;h{,l:-'r_;r._. -§....)°

Ziﬂ f!ii-l(?}t';f.. = ﬂ ....}2
> hlarla(f . = §...)°
Z” Lhilarla(f...e — 7. .]2

[ylglaly = lyla — I3 — 14 4+ 3 ignore blocking structure

Lilalsla(r — 1) = ljla(r — 1) difference

[ylarlaly — 1

2

Zpﬂur(?h;hw =i ' AT :lh

* Data notation is ¥ijtue where i = 1...l; denotes the level of factor A, j=1...12
denotes the level of factor B, t = 1...r denotes the plot assigned to a specified level

of factors A and B, u = 1...15 denotes the level of factor C, and v = 1... 13 denotes

the level of factor D.

>

In some experiments, the available experimental material has a more extensive hierarchical structure

involving more than two strata. As an example, consider a hypothetical alternative form of the concrete

experiment of Soudki et al. (2001) presented in subsection 9.1.1. Suppose that it is most convenient to

mix coarse and fine aggregate together in quantities of 2 cubic yards. The bulk aggregate can then be

divided into four subquantities, each of 0.5-cubic yards, and these randomly assigned to the four levels of

total aggregate/ cement ratio (i.e., a different quantity of cement added to each). Finally, the 0.5 cubic-

yard units of aggregate with added concrete are subdivided into three equal quantities, and each

randomly assigned a level of the water/cement ratio, and samples produced and tested as described in



divided into four subquantities, each of 0.5-cubic yards, and these randomly assigned to the four levels of
total aggregate/ cement ratio (i.e., a different quantity of cement added to each). Finally, the 0.5 cubic-
yard units of aggregate with added concrete are subdivided into three equal quantities, and each
randomly assigned a level of the water/cement ratio, and samples produced and tested as described in
subsection 9.1.1.

Note that the factorial treatment structure in this hypothetical experiment is exactly as described in
subsection 9.1.1, but the process of producing experimental units now results in a three-stratum nested
hierarchy — preparations of coarse/fine aggregate, subdivided into preparations of aggregate/concrete,
subdivided into the final aggregate/concrete/water samples. Hence the significance of the aggregate ratio
factor should be assessed relative to variation among the largest batches, while aggregate/cement 178
differences should be compared to variation among the intermediate batches, and variation among final ™
samples is the noise against which the differences among levels of the water/cement ratio should be
compared.

The “general rule” cited in the last section for determining the organization of a two-stratum split-plot
ANOVA can be easily generalized to an arbitrary number of hierarchical strata of blocking. A factorial
effect appears in the section of the table associated with the lowest stratum (often the the smallest
experimental unit) to which any involved factor is applied. Hence in a three-stratum system of units, if
factor A is applied at the top (largest) stratum, and factors B and C are applied at the intermediate
stratum, then the associated three-factor interaction is tested in the intermediate section of the table. If
factor D is applied at the bottom (smallest) stratum of experimental unit, the associated main effect and
any interaction involving factor D is tested at the bottom section of the table. Table 10.6 offers a
demonstration of this decomposition of variance for a four-factor SP(R,B,B) experiment arranged in this
way.

10.6 Conclusion

Split-plot designs are factorial plans in which a hierarchy of nested experimental units is used, and the
factors are not all applied at the same stratum of units. This occurs as the natural consequence of
operational constraints in a number of contexts, e.g.,



Split-plot designs are factorial plans in which a hierarchy of nested experimental units is used, and the
factors are not all applied at the same stratum of units. This occurs as the natural consequence of
operational constraints in a number of contexts, e.g.,

+ where the levels of one factor are easy to change quickly, but changes in the levels of another are
much more difficult or time-consuming,

* where treatments are applied to individuals, and this is most easily done by assigning any given
individual to only one level of one factor, but measurements representing all levels of another factor
are collected on each individual, or

+ where the physical material constituting an experimental unit is sequentially divided or subsampled
as time progresses, and the levels of different factors are most easily applied to the experimental

material at different stages of this process.

Because the random noise in an experiment is largely associated with the differences among
experimental units, the “signal-to-noise” comparisons made in split-plot studies must be made with
multiple components of residual variation. The inferences that can be drawn concerning main effects
associated with among-plots factors are of generally lower quality (power or precision) than those
associated with within-plots factors, or the interactions between among- and within-plots factors,
because the benchmark for the former is variation associated with plots while that for the latter is

associated with units-within-plots.

Split-plot experiments can be organized using more than two strata of experimental units and/or more

than two treatment factors. In each case, so long as the design remains balanced and the units at each -
hierarchical stratum receive only one level of some factors and all levels of the others, estimable 15
functions and ANOVA components associated with factorial effects are computed as in a CRD. The critical
difference is that hypothesis tests and confidence intervals for each factorial effect must be constructed

using the appropriate residual mean square. Generally, this is identified as:

TABLE 10.6 ANOVA Format for a Four-Factor SPD(R,B,B) with One ,
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using e appropriate residaudl mean square. Generaily, uis 1s ijaentnea as:

TABLE 10.6 ANOVA Format for a Four-Factor SPD(R,B,B) with One
Factor Applied in Each of the Top and Bottom Strata, and Two
Factors Applied in the Intermediate Stratum*

Stratum Source Degrees of Freedom Sum of Squares
largest plots o h—1 3 ribalsrala(Fe... — §...)°
resid lifri = 1) 2., lalarala(@is.... = B ¥
corrected total hr -1 Y., blarala(fis... §....)°
intermediate plots  blocks liri =1 Zu lalaraly(ifis.. 5. )?
3 la -1 }:J hrilsrala(§. 5. = §......)°
Y I3 -1 Yo brlarala(§.w. — 4.
(A7) (2 = 1)(ls = 1) ¥ hinirale(fgue. = Bege = B + 1 )®
(a3) (L = 1){la—1) E,J rilarala(Geg.. — Bioo. — §og. +8.....)°
(ary) (fr = 1){ls = 1) 2 Nilarala(fi. .. = Bi..... = §oone. + B......)°
(exf3v) (i = 1)l = 1)(la = 1)
resid Lilgly(rara — 1) = Li(ry = 1) difference
correcied total Lirilalgre =1 E._Jml;ty,”“. - Wisju )2
smallest plots blocks Lirmlalsre — 1 EI”“!!;{H..J.,. - Pisjw. ¥
8 =1 El_hrﬂgf;irzfﬁ__ o=...)
interactions involving 8 ({y — 1)(l1la2la — 1) ignore blocking structure
resid Lilslala(rira = 1) = Lilala(rirz — 1) difference
corrected total Lirlzlaraly — 1 Y ijute WVissute — ¥...... )

* Data notation is Yisjuse Where i = 1...1; denotes the level of [actor A, s =1...r, denotes the (highest-stratum) plot assigned to

a specified level of factor A, j = 1...[s denotes the level of factor B, uw = 1...13 denotes the level of factor C, t = 1..
the (intermediate-stratum) plot assigned to a specified level of factors B and C, and v =1..

L4

.2 denotes W
.1y denotes the level of factor D.

>

« for main effects, the residual mean square corresponding to the units to which the associated factor

levels were applied, and

» for interactions, the residual mean square corresponding to the smallest units (those resulting in the

smallest number of data values) to which the levels of any associated factor were applied.

As with all controlled experiments, randomization is an important part of the execution of a split-plot
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smallest number of data values) to which the levels of any associated factor were applied.

As with all controlled experiments, randomization is an important part of the execution of a split-plot
design. And, as with all other blocked designs, an appropriate randomization procedure gives equal
probability to all possible unit-to-treatment assignments that are consistent with the constraints required
by the blocking structure.

10.7 Exercises

1. The data reported in subsection 10.1.1 for the fiber experiment of Rong et al. (2005) are summary
averages for responses for each of the 4 x 2 x 3 = 24 treatments. Suppose that:

* For each temperature, three “batches” of runs were made, where each batch contains one
sample of fabric made for each of the six possible combinations of binder fiber and binder
content.

» The between-batch (within-temperature) sum of squares is 0.300.

* The residual sum of squares for a model accounting for all experimental factors (main effects
and all interactions) and batch-within-temperature is 3.000.

Based on this information, and assuming that effects associated with batches can be regarded as
random, construct a complete ANOVA table for the experiment, including Fstatistics for testing
each group of main effects and interactions in the model.

2. The following table contains data collected from a factorial experiment involving a three-level factor
A, and a four-level factor B. Fifteen batches of experimental material were drawn randomly from
those available, and were split into three groups of equal size. The first level of factor A was applied
to each batch in the first group, the second level to the second group, and the third level to the third
group. Then, each batch was divided into four separate sub-batches; the sub-batches were numbered
1-4, and each was treated with the corresponding level of factor B.

(a) Using a statistical analysis program, fit a fixed-effects model with an intercept and terms for -
factor A, batch-within-A, factor B, and A-by-B interaction ONLY. 15



1-4, and each was treated with the corresponding level of factor B.

(a) Using a statistical analysis program, fit a fixed-effects model with an intercept and terms for
factor A, batch-within-A, factor B, and A-by-B interaction ONLY.

(b) From the five sums-of-squares (including the residual) reported in part (a), construct a split-plot
ANOVA decomposition, with Fstatistics for A and B main effects, and the A-by-B interaction.

(c) What is unusual about the numbers in your ANOVA decomposition, and what assumption
should this lead you to question?

(c) Refit a fixed-effects model with terms for only A and B main effects, and the A-by-B interaction
(e.g., no batch this time), and calculate the 60 residual values. How can you plot these residuals
to further check the assumption in question? (Hint: It may be easier/clearer to do this using

three plots.)

Batch A B Response Batch A B Response Batch A B Response
| I 1 40.98 6 2 36.50 11 3 -3 nl).89
1 ¥ 2 38.37 6 : 2 A7.10 11 5 2 50.07
1 1 3 47.48 6 2 3 0l1.21 11 3 3 58.49
1 T 4 48.36 § 2 4 62.11 11 3 4 o8.56
2 1 1 42.00 ¢ 2 1 36.92 12 g 1 54.70
2 1 2 39.16 T e 2 46.87 12 3 2 49.66
2 1 3 02.40 T 2 3 22.09 12 3 3 61.02
2 1 4 46.93 7 2 4 60.75 12 3 4 60.37
3 1 1 49.11 X 2 1 44.43 13 ;T 53.49
3 ik 2 47.31 8 2 2 26.74 13 3 2 50.08
3 1 3 415.89 o) 2 3 46.38 13 3 3 60.93
3 1 4 41.92 8 2 4 HR.T0 13 3 4 59.61
4 1 1 43.04 9 e 1 42.97 14 3 1 51.37
4 1 2 41.26 9 2 2 54.95 14 3 2 49.37
4 1 3 50.34 9 2 3 45.93 14 3 3 59.51
4 i 4 46.50 9 2 4 bt.17 14 3 4 5T.57
D y 9 36.59 10 2 1 45.51 15 3 1 51.12
5 1 2 32.63 10 2 2 51.93 15 3 2 51.38
3 1 3 57.48 10 2 3 48.88 15 3 3 58.95
3 1 4 52.25 10 2 4 a7.83 15 3 4 57.58

3. A consumer products research firm carries out tests of roofing material by installing it on rural
buildings throughout the country and measuring wear and other qualities after five years of
exposure. In one test, they compare five kinds of roofing shingles by installing sections of all five
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3. A consumer products research firm carries out tests of roofing material by installing it on rural
buildings throughout the country and measuring wear and other qualities after five years of
exposure. In one test, they compare five kinds of roofing shingles by installing sections of all five
kinds on each building used. Because climate has an important effect on roofing wear, they test
product in southern Arizona, western Massachusetts, and northern Minnesota. Four buildings are
used in each region (for a total of 12), and some differences in roofing durability can be expected
because of building differences (e.g., ventilation, roof pitch, et cetera). The investigators regard
climate and shingle type as the two factors of interest.

(a) Carefully define blocks, units, and treatments for this study. Although studies like this are often
analyzed as though they are experiments, why is this study nor an experiment in the strict 183
sense’?

(b) Explain in physical (not mathematical) terms why the random “noise” associated with climate
differences might be different from that associated with single-type differences.

(c) Calculate degrees of freedom for an ANOVA decomposition for this study.

(d) Suppose this experiment were analyzed as CRD. What hypothesis tests would be affected by this
decision, and what are the likely consequences?

4. In a clinical trial organized to compare three pain medications, 48 patients who suffer from chronic
pain were recruited. The patients were randomly divided into two groups (A and B) of equal size.
Over a 4-week period, each patient received each of the drugs for one week, and was treated with no
drug (a control condition) for one week. The order of the four medical treatments was independently
randomized for each patient. The patients in group A were given the drugs on a rigid schedule, while
those in group B took the drugs “as needed.” Experimental interest centered on understanding the
effects of the drug regimens defined by the four levels of pain medication and the two levels of

dosing.

(a) Carefully define blocks, units, and treatments for this experiment.
(b) Explain in physical (not mathematical) terms why the random “noise” associated with dosing

differences might be different from that associated with medication differences.
(c) Calculate degrees of freedom for an ANOVA decomposition for this experiment.
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(b) Explain in physical (not mathematical) terms why the random “noise” associated with dosing
differences might be different from that associated with medication differences.

(c) Calculate degrees of freedom for an ANOVA decomposition for this experiment.

(d) Suppose this experiment were analyzed as CRD. What hypothesis tests would be affected by this
decision, and what are the likely consequences?

(e) Ignoring blocking and units (i.e., thinking only about treatments), what is unusual about this 2 =
4 factorial treatment structure; are there simplifications in the model that might be reasonable
because of this?

5. The production of semiconductors involves many steps (acid washes, etchings, coatings, et cetera)
that are performed in a particular sequence. At the beginning of the sequence, the raw material is a
relatively large “wafer” of silicon, which is subdivided into smaller and smaller pieces at specified
points in the process, with the final (smallest) pieces being the individual semiconductors. Suppose
the research division of a semiconductor manufacturing company planned an experiment to
compare different “versions” of a process for making a particular kind of semiconductor, where a
version is defined by the selection of one of three acids applied to entire wafers (at the beginning of
the process), one of three etching techniques applied at an interim point, and one of three coatings
applied to individual semiconductors (at the end of the process). Hence the treatment structure of 184
interest is a 33 factorial arrangement. Suppose the study is actually carried out by: 15

» selecting 15 wafers from production, randomly dividing them into three groups of five, and
treating all wafers in one group with one of the acids,

» from each acid-treated wafer, selecting 15 interim-size pieces, randomly dividing them into
three groups of five, and treating all pieces in one group with one of the etching techniques, and

» from each acid-and-etching-treated interim pieces, selecting 15 individual semiconductors,
randomly dividing them into three groups of five, and treating all semiconductors in one group
with one of the coatings.
Hence the final data set will have measurements of 3375 semiconductors!

(a) Carefully define blocks, units, and treatments for this experiment.
(b) Explain in physical (not mathematical) terms why the random “noise” associated with acid
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Hence the 11nal data set will have measurements oI 32 /o semilconauctors!

(a) Carefully define blocks, units, and treatments for this experiment.

(b) Explain in physical (not mathematical) terms why the random “noise” associated with acid
differences might be different from that associated with etching technique differences, and why
both might be different from that associated with coating differences.

(c) Calculate degrees of freedom for an ANOVA decomposition for this experiment.

(d) Suppose this experiment were analyzed as CRD. What hypothesis tests would be affected by this
decision, and what are the likely consequences?

In a popular classroom demonstration of factorial experiments, students make paper helicopters
that are variants of a standard design, differing in the length of “tail” and the number of paperclips
attached at the bottom for ballast. A simple version of this experiment is conducted as a CRD. Some
number of helicopters are made according to each of all possible “recipes” associated with the two
factors, and data are collected on “flight times” for each helicopter under standard conditions.
Consider an extension of this experiment in which four helicopters are made according to each of
the four “recipes,” defined by “short” or “long” tails, and one or two paperclips. Now suppose each
helicopter is “flown” four times under standard conditions except thatthe four flights are made
under four sets of “environmental conditions” defined by two additional two-level factors; a fan is
set up 10 feet away from the “drop zone” and is either running or not, and flights are launched with
the room lights on or off. Using the 64 data values collected, interest is in comparing the treatments
defined by the four two-level factors.

(a) Carefully define blocks, units, and treatments for this experiment. -

(b) Calculate degrees of freedom for an ANOVA decomposition for this experiment.

(c) Suppose this experiment were analyzed as CRD. What hypothesis tests would be affected by this
decision, and what are the likely consequences?

“Split-unit” designs can be constructed with more complicated block structures than those described
in this chapter. Consider a situation based on a replicated Latin Square design. Suppose the levels of
factor A (with / levels) are applied to entire Latin Squares, we'll say that 1/ must be an integer so
that each level of A is applied to the same number of squares. Individual £ x £ Latin Squares are set

11t rnnmara thao lotrale Af o carnmd fortne T anth L lawraled wihila cimniltananncelor cantralling fae
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(a) Carefully define blocks, units, and treatments for this experiment. -

(b) Calculate degrees of freedom for an ANOVA decomposition for this experiment. 15

(c) Suppose this experiment were analyzed as CRD. What hypothesis tests would be affected by this
decision, and what are the likely consequences?

“Split-unit” designs can be constructed with more complicated block structures than those described
in this chapter. Consider a situation based on a replicated Latin Square design. Suppose the levels of
factor A (with / levels) are applied to entire Latin Squares, we'll say that 77/, must be an integer so
that each level of A is applied to the same number of squares. Individual £ = £ Latin Squares are set
up to compare the levels of a second factor B (with £ levels), while simultaneously controlling for
two kinds of blocks. Suppose the row-blocks and column-blocks are different physical entities in
each Latin Square.

(a) Calculate degrees of freedom for an ANOVA decomposition for this experiment.
(b) Suppose this experiment were analyzed as CRD. What hypothesis tests would be affected by this
decision, and what are the likely consequences?

In repeated measures studies, the “within subjects” (or split-plot) factor is often time, while the
“among subjects” (or whole-plot) factor(s) represent treatments applied at an initial, or reference,
timepoint. Suppose the among subjects factor of such a study has two levels, say two competing
drugs, and that rsubjects receive each drug. Responses, say the blood concentration of the drug, are
then measured in each subject at 1, 2, 3, ..., 8 hours after administration. So the treatment structure is
a 2 (drug) by 8 (timepoint) factorial. Letting y;; represent the drug concentration in the jth subject
given drug 7 at the Ath timepoint, interest might center on estimates of the eight quantities:

O = E(fhe — 2x), k£=123,...,8
and tests of the eight hypotheses:

Hypor : 0 =0, £=1,23,...,8

If the variance of measurements for a single subject is 02, and the variance of subject effects is o052,
write:

(a) The formula for the expected squared length of a 95% two-sided confidence interval for 6.
(b) The parameters of the distribution of an Fstatistic used to test Hypgx.
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(a) Carefully define blocks, units, and treatments for this experiment. 185

(b) Calculate degrees of freedom for an ANOVA decomposition for this experiment.

(c) Suppose this experiment were analyzed as CRD. What hypothesis tests would be affected by this
decision, and what are the likely consequences?

“Split-unit” designs can be constructed with more complicated block structures than those described
in this chapter. Consider a situation based on a replicated Latin Square design. Suppose the levels of
factor A (with / levels) are applied to entire Latin Squares, we'll say that 1/ must be an integer so
that each level of A is applied to the same number of squares. Individual £ x £ Latin Squares are set
up to compare the levels of a second factor B (with £ levels), while simultaneously controlling for
two kinds of blocks. Suppose the row-blocks and column-blocks are different physical entities in
each Latin Square.

(a) Calculate degrees of freedom for an ANOVA decomposition for this experiment.
(b) Suppose this experiment were analyzed as CRD. What hypothesis tests would be affected by this
decision, and what are the likely consequences?

In repeated measures studies, the “within subjects” (or split-plot) factor is often time, while the
“among subjects” (or whole-plot) factor(s) represent treatments applied at an initial, or reference,
timepoint. Suppose the among subjects factor of such a study has two levels, say two competing
drugs, and that rsubjects receive each drug. Responses, say the blood concentration of the drug, are
then measured in each subject at 1, 2, 3, ..., 8 hours after administration. So the treatment structure is
a 2 (drug) by 8 (timepoint) factorial. Letting y;; represent the drug concentration in the jth subject
given drug 7 at the Ath timepoint, interest might center on estimates of the eight quantities:

O = E(ihk —P2.x), k£=123,...,8
and tests of the eight hypotheses:

Hypop : 0 =0, k=1,23,...,8.

If the variance of measurements for a single subject is 0%, and the variance of subject effects is o5?,
write:

(a) The formula for the expected squared length of a 95% two-sided confidence interval for 6;.
(b) The parameters of the distribution of an Fstatistic used to test Hypgz



CHAPTER 11 Two-level factorial experiments: basics

11.1 Introduction

In many applications, experiments designed to examine the effects of two-level factors are especially
common; Mee (2009) is an excellent reference focused entirely on designs for these situations. Because
the minimum meaningful number of levels a factor can take is two, restricting factors to two levels
minimizes the number of treatments that must be considered for a given number of factors. Conversely,
In preliminary or screening contexts, representing each factor at only two levels maximizes the number
of factors that can be examined in a factorial experiment of a given number of included treatments. Of
course, the nature of the application-specific questions is the most important issue to be considered in
selecting the number of levels for each factor. For example, if one experimental goal is to learn about the
relative merits of three different catalysts in a chemical process, the catalyst factor cannot be restricted
to two levels without compromising some of the experimental goals. But two-level factorial experiments
do provide an efficient means of collecting useful information in a wide variety of applied contexts, and
this justifies our in-depth treatment of this special case.

In this context, each of the 27treatments can be completely identified by an ordered string or vector of 1
binary “bits,” each symbolized by (0,1), (1,2), (-,+) or (“low”,“high”), each designating the level to be
assigned to the corresponding factor. As in previous chapters, our discussion here will allow the two
levels of each factor to be either qualitative (e.g., choice of catalyst 1 or catalyst 2), or quantitative (e.g.,
20 mg of additive or 50 mg of additive in a standard solution). Following a standard convention, we will
often use “low” and “high” as arbitrary labels here; where the levels of a factor are values on an ordinal,
interval, or ratio scale, it will be natural to let “high” refer to the larger one, but no order is necessarily
implied so long as the level labels are used consistently throughout the design and analysis of an
experiment.

11.2 Example: bacteria and nuclease

Jepsen, Riise, Biedermann, Kristensen, and Emborg (118'?) performed a laboratory experiment to



11.2 Example: bacteria and nuclease

Jepsen, Riise, Biedermann, Kristensen, and Emborg (1187) performed a laboratory experiment to
investigate the influence of three factors on the amount of nuclease produced in cultures of bacteria. For
each strain investigated, two replicate flasks of culture were prepared at each of eight experimental
conditions determined by initial pH (7.4 or 8.2), temperature (30 °C or 37 °C), and the number of baffles
in the flask (0 or 2). The culture containers used were “shake flasks,” and the baffles controlled the
amount of aeration that took place in each culture. Hence sixteen flasks (two replicates for each of eight
experimental conditions) were prepared for each strain examined. The response variables measured on
each flask at the end of a standard protocol were units of nuclease produced, and number of viable cells
produced, each per ml of culture. Table 11.1 contains the values of nuclease produced in the experiment
performed using the bacterium strain Serratia marcescens W280. Note that for this strain, only one value
was reported for the treatment defined by pH 7.4, 30 °C, and two baffles, leading to a mild imbalance in
the design and A= 15.

TABLE 11.1 Nuclease Concentration for Serratia Marcescens 280,
Jepsen et al. (1987)

Initial pH Temp. (°C) Flask Baffles Nuclease (U/ml)

7.4 30 0 340 310
7.4 37 0 70 80
8.2 30 0 700 440
o n 97 n nen 20N



8.2 30 0 700 440

8.2 2 0 260 200

74 30 2 770 =

14 57 2 130 70

8.2 30 2 1270 1380

8.2 37 2 470 570 \
< >

11.3 Two-level factorial structure

Two-level experimental designs are often depicted “spatially” by representing treatments as the corners
of a square (7= 2), cube (= 3), or hyper-cube (/> 3), where each spatial dimension is associated with a
factor. Figure 11.1 presents such a representation for the cell biology experiment just described.

high pH




high Temp

low pH low Temp

low Buffer high Buffer

Figure 11.1 Geometric representation of a 23 factorial experiment.

Te8
Following the notation of Chapter 9, we may define a cell means model for an equally replicated, two- i
level, three-factor experiment as:

Yijkt = Hijk + €ijkt t=1,...,7,

where each of f j and ktake values of 1 or 2 to indicate the level of the corresponding factor, and ¢
indexes the within-treatiment observation. An equivalent factorial effects model of overparameterized
form (Section 9.2) can be written as:

Yijkt = M T f-:'J + *F;IJ + ¥k + [”!’q},'j ¥ (n"?},:}; + U}‘I}jk T (“-‘Iiﬂ.’},‘jk + €ijkt

where the four indices take the same values and have the same meanings as in the cell means model.
Writing this model in matrix notation, each factorial effect would be associated with a model matrix
column containing values of an indicator variable (0's and 1's). The corresponding parameter is
interpreted as the additive increment in expected response for conditions in which that indicator is “17,
compared to conditions in which it is “0”, after considering all effects of lower order. For example,
Figure 11.2 graphically identifies the treatments (model matrix rows) that are coded with 0's and 1's for

the main effect associated with the “low” level of pH, al, the two-factor interaction associated with the

“low™ levels of pH and temperature, (Q'B ) 11, and the three-level interaction associated with the “low™



Figure 11.2 graphically identifies the treatments (model matrix rows) that are coded with 0's and 1's for

the main effect associated with the “low” level of pH, al, the two-factor interaction associated with the
“low” levels of pH and temperature, (leﬁ ) 11, and the three-level interaction associated with the “low”

levels of pH, temperature, (G’B ’}() 111, and number of flask baffles in the cell biology experiment.

For analysis purposes, a more convenient parameterization for two-level factorials is a special case of the
full-rank form introduced in Section 9.3. Recall that in the general case, the number of parameters
required to express a main effect is one less than the number of levels associated with that factor, and
that an interaction for any collection of factors is the product of numbers, each one less than the number
of levels for one of the involved factors, e.g., for the interaction associated with the first three factors,
(4-1)(5-1)(5-1). Where all factors are represented at two levels, this means that each main effect and
interaction (of any order) can be represented by a single parameter. The only contrast needed in
defining the model for this parameterization is F’ = (-1,+1), leading to an effects model of full rank that
can be easily defined in the following way.

Let (-)121_ - represent any gth order factorial effect from the overparameterized factorial effects model,
where the g subscripts identify the levels of the g associated factors. Denote by (-) a new gth order effect
that is identified only by gfactors, not their levels. Then a full-rank effects model can be written by
replacing each (—)2:...; in the overparameterized model by (-) = (-1)% where f1is the number of 1's in
subscript string. That is, the sign of (-) is reversed for treatments in which an odd number of associated
factors are set at their respective “low” levels, relative to the value it takes when an even number 180
(including 0) of factors are set to “low” levels. For example, in a 2° factorial experiment, the cell mean py,;, '
can be written as either:

high pH




high pH

1 1  high Temp

low pH low Temp

low Buffer high Buffer
0 0

high pH 0/

0 0  high Temp

low pH low Temp

low Buffer high Buffer
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low Buffer

high pH

low pH

low Buffer
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high Buffer

0
0  high Temp
low Temp

high Buffer

Figure 11.2 Geometric representation of model matrix column entries corresponding to

(ul,ﬂ}“, and iﬂ.ili"r}lu,

i1 = 4+ Gy + ‘éZ + % + (ﬂ'.ﬁ]jz T {ﬂ'”f}ll -+ {37}21 + (r—r.ﬁﬂ!'}lgl

using the overparameterized effects model, or

iz =p—a+ B —v—(af) + (ay) = (87) + (afy)

120

using the full-rank parameterization just described. The full-rank parameterization requires a total of 2 ™

parameters, the same as the number of cell means. Furthermore, all parameters are used in the

representation of any cell mean; only the plus and minus signs differ to accommodate the specific

treatment. Finally, each parameter (except for p) in this representation corresponds to a conitrastin all 21
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parameters, the same as the number of cell means. Furthermore, all parameters are used in the
representation of any cell mean; only the plus and minus signs differ to accommodate the specific
treatment. Finally, each parameter (except for p) in this representation corresponds to a contrastin all 21
cell means, where the coefficients for half (27?) of the cell means are —2-fand the other half are +2-7
These contrasts are displayed graphically in Figure 11.3 for «, (af), and (afy) from a three-factor model.

The necessary pluses and minuses needed to complete the model in this parameterization can be
represented by defining an “independent variable” for each factor — essentially a recoding of the
subscript identifying the level of that factor. For £= 3 factors, define:

-1 i=1 -1 j=1 -1 k=]
Tl = g = : Iz = .
+1 1=2 +1 =2 +1 k=2
Then any cell mean can be expressed as:

fijk = p+xya+ x84+ w3y + 11 x2(0B) + Tixs(ay) + xaxa(B8y) + xixeza(aby).

Hence we have an expression in the form of a regression model with x's that are always either -1 or +1.
In matrix form, the data model for the complete, unreplicated 2° factorial design (with obvious extension
to the general 27case) can be written as:

(?flll\ (+———+++—\(ﬂ.\

Y112 H = = o HE = = ¥ &
h2 B = e = = R = 3
a2 + = 4 e = = o - -

<l l=ls % = = = = + 2| &n [** *H
Y212 + + - + - 4+ - - (av)
Y221 b oShe e e o == o= (3v)
\y:rzz) K+ + + + + + <+ +) \ (a37)

When r> 1, the unique rows of X are as given above, but each appears rtimes in the matrix. The number
of parameters is 2 because each is specified by the presence or absence of each of fsymbols (o, B, ...).
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When r=> 1, the unique rows of X are as given above, but each appears rtimes in the matrix. The number
of parameters is 2because each is specified by the presence or absence of each of fsymbols (o, B, ...).

Note that, apart from a factor of VN, Xis an orthogonal matrix:

X'X = 12157 ,.2r = Nlyr,ar
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Figure 11.3 Geometric representation of model matrix column entries corresponding to a,

(a B), and (a By).

where M is the 27 x 2’ model matrix for an unreplicated design, Y is the vector of treatment-specific
averages, and 0 is the parameter vector in model (11.1). Anylinear combination of elements of 6 is
estimable because M is square and of full rank. (That is, any ¢ of dimension 2¢can be expressed as a
linear combination of the rows of M.) But we generally don't regard anything invelving the first element
as meaningful since it includes experiment-specific effects.

182
Note that model (11.1) is written in unpartitioned notation; 6 actually contains one nuisance parameter, =
. We could partition the model as in previous chapters, to emphasize which parameters are
experimentally meaningful and which are not:

y=1p+ Xo¢h + €,

but since all columns of X; have zero sums,

HjX? == (], Xgil . X?

and this means that “correction for the mean” or (thinking of this form as a regression model) intercept
is automatic in this parameterization. As a result,

x:zuxﬂll = T'Q'rlfzzf-lh{zf-u _— NI{EI-U;.:*.U_[;.

50
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11.4 Estimation of treatment contrasts

11.4.1 Full model

Suppose we order both the treatment mean vector and the corresponding data average vector
lexicographically by their indexes so that:

= (.00 11,120 1,215 1,225« - - 3 Ha.. 22)

and £(¥) = p_ By our definition of factorial effects, p = M 0. Because M is square and of full rank, there
1s a one-to-one relationship between p and 0; we can discuss estimation of these vectors interchangeably
depending on whether we want to focus on the factorial effects (elements of 6) or more specific functions
of cell means (elements of p). So:

cpp=c'MO = c’M = c'M2 /M’y =c'y

with the last equation holding because MM’ = 241. As an immediate result, Elc'p] = C'#, and

Vm'[E’-ﬁ[ = (0*/r)c’c_ That 18, we can unbiasedly estimate linear combinations of the elements of p, with
precision that is worse with more noise (o?) or larger coefficients (c’c), and better with more replication
(r). Note that while this shows we can estimate any linear combination of p under this model, those that
are not contrasts would not be considered interesting from a strict experimental perspective.

11.4.2 Reduced model

Now return to the = 3 examnle. and suppose we know or are willing to assume that interactions



11.4.2 Reduced model

Now return to the /= 3 example, and suppose we know or are willing to assume that interactions
involving y don't exist, that is, that:

(a7) = (B7) = (aBy) = 0.

We can partition the model as: 184

;= xlﬂ| . Xgﬂ-_:

where 0; contains the p, terms we have decided to omit, and 0, contains the p terms that remain in the
model (p+p, = 29. Under our assumption, the second term in the partition (X, 0.) is zero, so we fit the
model of form

y=X0, +€

A - lwre - .
leadingto @1 = ¥X1¥ = 77 MY twhere M = (M; | M) is the full model matrix for an unreplicated

design, and Y is the vector of treatment-specific averages, with information matrix /= M. Then,
according to our assumptions:

e i = = )
+ - - + +
e
+ = + + - =

L e o s o i = M,8,.
+ + - + - __
ol D \{ﬁ'd])
\+ 4+ 4 + %

In this case, ¢'pt = ¢/'M,8, = ¢'M, o 1, but this is not necessarily the same thing as €'¥, as follows when
the full model is used. Instead,
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In this case, €' = c¢/'M,; 80, = ¢'M, él, but this is not necessarily the same thing as c'y , as follows when
the full model is used. Instead,

p=c'M;(M/M,;)" M}y = 2~ /¢'M,M,¥.
The difference here is that M;M,’ is not equal to MM’ = 2411. Hence
E(c'p) =27 7e/M M| (M, 0,) = 2-72/¢/'M, 0, = ¢
If the reduced model is correct. Whether the reduced model is correct or not,

Var(c'p) = ¢'M, Var(0)M/c
=c'M;(M{M,;)"'M] Var(y) M;(MM,)"'Mic
= (o?/r)2~ Y MMM M| c
= (% /r)2~!c'M  Mic.

Recall that for the full model, MM’ is 21, so Var(c'p) = (sz?‘)crc, which we can write as:
Var(c'p)(full model) = (¢2/r)2~f¢'MM'c
; M'e¢
= trr*f-rm'f(c’mlic’mz}( J )
Me
=(o?/r)2~/c'MMic + (02 /r)27/c'M;M)c
= Vﬂr{a)(rmiuced model) + a non-negative quantity.

104

So estimates based on a reduced model have variance no greater than, and sometimes less than, L

estimates of the same quantity derived under the full model.

11.4.3 Examples

The following examples demonstrate how the particular treatment combination being estimated
influences the amount of variance reduction that can be achieved by using a reduced model.



11.4.3 Examples

The following examples demonstrate how the particular treatment combination being estimated
influences the amount of variance reduction that can be achieved by using a reduced model.

Single cell mean.In this case, ¢=1(0,0,0...1...0)", i.e, ¢’ nis a single element of . It follows that ¢'M, is a
single row from M,, and therefore ¢'M;M, "c is the number of parameters included in the reduced model,
. But ¢'MM'c = 27 for the full model, so the reduced model yields a sampling variance that is smaller by
a factor of m/27than the full model. (Note that this example is of mostly academic interest, since the
estimate being considered is not in the form of a treatment contrast.)

Treatment contrast corresponding to a reduced model effect: Here, let ¢ be a column from M,, i.e., a
treatment contrast associated with a factorial effect retained in the reduced model. In this case, ¢'M, = (0,
0,0 ...27... 0) because the collection of columns in M; are orthogonal. Therefore, c'M;M;’c = ¢'MM’c = (29
2, 50 the sampling variance is the same for the contrast estimate constructed under either the full or
reduced model. In fact, the estimate itself is the same function of the data in either case.

Treatment contrast corresponding to an effect removed from the reduced model: In this case, cis a
column from M., i.e., a treatment contrast associated with a factorial effect excluded from the reduced
model. Because all effect contrasts are orthogonal, this means that ¢'M; = (0,0,0,...,0), and that the sample
variance under the reduced model is zero! But this is exactly what we should expect because “excluding
an effect from the model” is the same as adding a modeling assumption that the effect is (exactly) zero —
there is no uncertainty in its value.

A more general case.: Consider the treatment contrast r = 2ps, -2~ Lz, In cell-means notation for a 22
factorial experiment. This does not correspond to a single factorial effect, but can be written as = 2a +
2p + 4(ap). Under the full model:

0
2 2 2 2
Fo e 2 . ﬂ-_ f r . J_ ! - la_
Var(n) = 4rc MM'c = 4_r({1.2,2.4]| 0 br i

—



2 2 2 2
Foasf o} — ﬂ._ ' F oo = J_ d = H—
Var(n) = i MM'ec = = (0,2,2,4) 0 6 =
4
But if we can justify a reduced model that does not include (af),
0
2 2 2
Var(i) = —c'M;M\c = =—(0,2,2)' | 2 | =2=-.
4r dr 5 r

In summary, the potential benefits of using a reduced model include improved precision associated with
some treatment contrasts. The degree of improvement depends on the contrast of interest and the form
of the reduced model, i.e., the selection of retained effects. Butthere is also risk in adopting a reduced
model, specifically that the estimates will be biased and tests potentially invalid if the omitted effects are
actually present (i.e., nonzero).

11.5 Testing factorial effects

In some cases, it may actually be known, either from theory of the system under study or long
experience with many similar experiments, that certain model terms can safely be assumed to be zero
and thus removed from the model. However in most cases, such decisions come about through analysis
of current experimental data, perhaps guided by system knowledge or experience. Formal tests of the
hypothesis that an effect, or a group of related effects, can be removed from the model are valuable
procedures in this process.

11.5.1 Individual model terms, experiments with replication

Suppose we wish to test Hyp,: (-) = 0, where “(-)” represents any factorial effect, e.g., a or (afy). The

. . = — ’ = / W = ..}—_'l' / ¥ .
least-squares estimate of (-) 15( ) = (M'M) M)y =< "M)¥ where m,_, is the column from M

that corresponds to the parameter (-). For any (-),

——— F o "
0 A n=2f___r I Y, a=2Fr 24 n___f "y 2 Inr
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(=)= (M'M)! m{_,y = Q‘Im‘[’_;_jr

least-squares estimate of (-) is , Where m,_, is the column from M

that corresponds to the parameter (-). For any (-),

Var((-)] = 27* m{_, Var(y) m_) = 27*/(¢®/r)m{_ym(_) = 0*/N

where the last inner product is 2¢since this is true for every column in M. The unbiased estimate of o? is
the mean squared error (MSE) — in this case a pooled sample variance computed from within-treatment
variability of measurements:

% J—— - E o2 af
a = Spooled = ""u...!{‘?' 1
5

where & is the sample variance of the rdata values collected under the treatment identified by its
—

subscripts, a statistic that is independent of ( o ) A standard test statistic that follows a #distribution
under Hyp, can then be computed by dividing the estimate by its standard error:

t = E:_jfl\,! ‘Hfawfrrif'w

again, noting that this form holds for any factorial effect (-), and the two-sided test is completed by
comparing this test statistic to its critical value, f_q(21~1)).

11.5.2 Multiple model terms, experiments with replication

Now consider the more general challenge of testing:

Hypg : p=M,0,
Hyp,y: p=M6 = M,8; + M:80:.

Especially with larger experiments and models, group tests of this form are useful because they reduce
inflated type-I error rates that would result from multiple testing of individual parameters, and allow
summary tests that may be physically meaningful or interesting, e.g., for “all interactions involving

2 iy N LR T |



Especially with larger experiments and models, group tests of this form are useful because they reduce
inflated type-I error rates that would result from multiple testing of individual parameters, and allow
summary tests that may be physically meaningful or interesting, e.g., for “all interactions involving
factor 3.”

For the full-rank factorial model with + “coding,” for any included collection of factorial effects,
SSE =(y — X8)'(y — X8)
=y(I-X(X'X) X')y
=y'y — (¢ X(X'X)" X)(X(X'X) " X'y)
=y'y - (6'X')(X8)
e SRR 7
=yy-—-1r2/'880.

In this case, it follows that the component of the treatment sum of squares associated with 6; is

SST, = SSE(Hypy) — SSE(Hyp,s) =Y’y — Né;@l -y'y + NE'6
~N(0'6-0,0,) = NOLO,
because omitting some parameters from the model does not change the estimates of the remaining
parameters in this case since the columns of M are orthogonal. The relevant Fstatistic is then the ratio of

the mean square corresponding to the omitted model terms, and the residual mean square based on the
full model:

il %
B == (htegaﬁfp?]fﬁﬁnutwi

and the test is performed by comparing the computed statistic to the critical value, F_.(p, 290~1)). For

2 2
example, in testing Hyp,: (ay) = (By) = 0 the numerator mean square is /V (ay) +(B7) |/2. Because the
information matrix for any subset of model parameters is 7= M, the power of the test is the probability
that a random variable distributed as F(, 24r-1), N0;" 0,/0%) is larger than the critical value of the test.

11.5.3 Experiments without replication
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that a random variable distributed as F(z», 29r~1), N0;" 0,/07) is larger than the critical value of the test.

11.5.3 Experiments without replication

Unreplicated studies (r= 1) are not uncommon with two-level factorials, especially when the number of
factors is large, and/or the experiment is viewed as “preliminary” with the goal of identifying the

potentially most important factors for more detailed study later. If the full model is correct and = is -
normally distributed, each effect estimate is distributed as: 15

—

(=) ~ N((-), o*/N)

r - crn
and the estimates are independent because Var(8) = F 1 coefficient estimates are linear statistics
giving equal weight to each data value, and so are approximately normally distributed (by the Central

Limit Theorem) even if £ is not normal. For effects that are actually zero:
(=) ~ N(0, a2/N).

If mosteffects are actually zero — a condition Box and Meyer (1986) called effect sparsity— procedures
developed to detect outliers can be used to identify the relatively few effects that appear to be “real.”

Graphical procedures

Normal plots and half-normal plots of the effect estimates are helpful in this regard, and can be
constructed as follows. For any group of effects, (-); 7=1 ... p, usually excluding p, order the

corresponding estimates from least to greatest, and refer to them as i }[1] < (- )[2} Sree S8 }[P]. Then

a normal plot is constructed by plotting the sorted (=) lil versus quantile values from a standard normal
distribution, L (B ‘é‘” P], i=1,2,3, .., pwhere ®(-) is the inverse of the standard normal
cumulative distribution function. Note that because the effect estimates are ordered, and that the same
order relationship holds for the corresponding plotted @-! values, the series of points plotted must
increase together along the two axes. Half-normal plots, introduced by Daniel (1959), are constructed by

——
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cumulative distribution function. Note that because the effect estimates are ordered, and that the same
order relationship holds for the corresponding plotted @-! values, the series of points plotted must
increase together along the two axes. Half-normal plots, introduced by Daniel (1959), are constructed by

e

plotting the sorted absolute values of effect estimates, K= H[i], versus quantiles from the “positive half” of
a standard normal distribution, s {;lz + (i %}/(2-””, =1, 2,3, ..., p. With either plot, the idea is that if
all parameter estimates actually have expectation zero, the plotted statistics are actually an i.1.d. sample
from a population with zero mean and standard deviation @ / ‘/T and the plotted points should lie
approximately along a straight line. Any “real” effects (those that are not zero) tend to appear as
“outliers,” typically below the line at the left side of the normal plot, or above the line at the right side of
the normal or half-normal plot. The normal plot is preferred by some investigators because there is some
loss of information involved in constructing the half-normal version, i.e., the latter can be constructed
from the former, but not vice versa. However, hali-normal plots have the advantage of being invariant to
changes in the assignment of “high” and “low” labels to factor levels.

To demonstrate the use of a half-normal plot, data were simulated for an unreplicated 2* factorial
experiment, where all factorial effects are actually zero except:

a=6, f=-4, (af)=2, and =3

0# 1840
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Figure 11.4 Half-normal plot of estimated effects from an unreplicated 2* experiment.
(R11.7).

and the resulting plot computed (R11.1) and displayed in Figure 11.4. In this case, we do visually detect

the three “real” effects. But if we also classify the 4th point from the right, representing (@87) as begin
“above the line,” we would also have one “false alarm.”

Finally, normal plots and half-normal plots can be useful techniques on/yunder effect sparsity, because
they rely on the few “real” effects (outliers) to be different from the many “absent” effects. When too
many factorial effects are nonzero, the “reference line” is not visually clear, and classification of effects

as “real” or “absent” becomes ambiguous.

Lenth's method

Lenth's Method (1989) is an algorithmic process for performing the visual half-normal plot analysis in a
more automatic and objective manner:

1. Denote by Bthe set of absolute values of estimated coefficients of interest.

2. Compute an initial robust estimate of & [VN:
so = 1.5 x median(B).

3. Let B* be the subset of B containing elements that are less than 2.5 x s, (that is. remove those -



1. Denote by Bthe set of absolute values of estimated coefficients of interest.
2. Compute an initial robust estimate of @ [VN:
so = 1.5 x median(B).
3. Let B* be the subset of Bcontaining elements that are less than 2.5 x s; (that is, remove those -
200

estimates for which the effects seem clearly nonzero by this rule).

4. Compute a refined estimate of o/ ﬁ the so-called “pseudo standard error”
PSE = 1.5 x median(B"*).

Here, we depend on robustness of the median to minimize bias due to any remaining estimates of
“active” effects in B*.
5. Treat any estimated effect as significant if it is greater than 7= PSE.

In the last step, 7is the critical value used in the procedure. Lenth published a table of values of £, for a =
0.05, and B of at least moderate size, 15 between 2 and 2.5.

11.6 Additional guidelines for model editing

Half-normal plots and test-like algorithms such as Lenth's can be used to help you find a reduced model
form that conforms well to the data. However, when used alone, they can sometimes lead to a suggested
model that “makes no sense” in the context of the way we generally view main effects and interactions.
For example, we might be led to conclude that a and (py8) are the only effects that are nonzero in a four-
factor experiment, but then worry that such a model has little physical credibility because the interaction
does not involve the only factor with an apparently active main effect. Two model-editing “principles”
have been suggested as guidelines for selecting additional model terms to remedy this situation.

Effect Hierarchy Principle: If an interaction involving a given set of factors is included in the model, al//
main effects and interactions involving subsets of these factors should also be included.

Effect Heredity Principle:(Hamada and Wu, 1992) If an interaction involving a given set of factors is
included in the model, af /east one effect of the next smallest orderinvolving a subset of these factors
should also be included.
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included in the model, at /easrt one effect of the next smallest orderinvolving a subset of these factors
should also be included.

The Effect Heredity Principle is actually used recursively. For example, including (afy6) implies that at
least one of the four three-factor interactions involving these factors must also be included. But if we
choose to include (apy), thisimplies that at least one of (aff), (ay), or (py) must be included. And given our
selection of a two-factor interaction, at least one of the two related main effects must be included.

For example, if a graphical analysis suggests that main effects associated with factors 1 and 2 are the only
effects necessary in a reduced model, neither principle would require the addition of any further terms.

If the analysis suggests that a and the (af)) interaction are needed, the (weaker) Effect Heredity Principle
requires no additional terms, but the Hierarchy Principle requires the addition of the main effect for

factor 2. If the analysis suggests that only the (af) interaction is needed, the Effect Heredity Principle 200
requires that one of the main effects associated with factors 1 and 2 be added, while the Effect Hierarchy "
Principle requires that they both be included. Finally, suppose an unreplicated experiment in four two-

level factors leads to a half-normal plot suggesting that only the (afy) and (ad) interactions as active.
Incorporating these effects, and following the Hierarchy Principle, the a, B, v, 6, (ap), (ay), and (py) effects
would also be required in the model. Following the Heredity Principle, a and (aff) (minimally) could be
added.

A heuristic motivation for these ideas might be suggested by the following. If the (aff) interaction is
present, factors 1 and 2 are clearly important, and A ) changes when the levels of either factor are
individually changed, at least in some cases. Given the right collection of factor levels (even if this is not
the collection of levels used in the experiment at hand), or the right set of factors (even if some of these
are not varied in the experiment at hand), at least one of the two main effects could well be necessary.
The Hierarchy Principle (relatively more conservative) is generally more popular than the Heredity
Principle, except when considerable knowledge about the action of factors is available so that informed
choices can be made about which terms to include and exclude.

11.7 Conclusion



choices can be made about which terms to include and exclude.

11.7 Conclusion

Two-level experiments are popular in many applications, especially when a large number of factors are
involved. They are also frequently used in preliminary “screening” studies where the primary goal is to
determine which factors may have the greatest influence on the response, but not necessarily what level
or combination of levels might be “optimal.” The algebra associated with modeling, testing, and
estimation can be simplified by formulating a full-rank effects model based on “regressors” that take
values of +1.

In many applications, the development of a reduced model that contains far fewer than all possible
factorial effects, but still accurately represents the structure of the data, is an important experimental
goal. This chapter covers the basic elements of inference for estimates and tests for replicated (r> 1) two-
level experiments, and also discusses how normal and half-normal plots, and Lenth’s Method, can be
used in unreplicated experiments to identify “active” effects when most factorial effects are zero or
negligible. In conjunction with the Effect Hierarchy and Heredity Principles, these analysis techniques
can be used to develop scientifically sensible, statistically efficient models of the factors-response
relationship.

11.8 Exercises

1. The following table contains data from a 2* experiment, with r= 2 observations collected at each set
of treatment conditions. 202

Factor Levels Response




10.7

8.7

10.1

7.9

9.8

9.2

11.2

10.3

10.8

10.2

11.9

11.0

8.0

11.7

9.5

9.5

8.2

11.0

9.6

11.6

8.6

11.4




2 1 2 1 11.9 11.4
2 1 2 2 10.8 9.4
2 2 1 1 11.6 11.5
2 2 1 2 10.4 11.5
2 2 2 1 11.2 114
2 2 2 2 11.8 8.9
v
< >

(a) Compute the 15 factorial effect estimates and MSE (the estimate of o?) under the full model.
(b) Using Fstatistics and the appropriate a = 0.05 critical values, test:

*  Hypg: (apyd) =0
* Hyp,: all three-factor interactions = 0
* Hyp,: all two-factor interactions = 0

1
(c) Suppose that, in fact, two of the three-factor interactions have (true) values of 37, while the
other two are zero. At level 0.05, what is the power of the second test specified in part (b)?

2. Now, suppose that the experiment described in exercise 1 had actually been unreplicated, and that
the single data value generated for each treatment had actually been the average of the two values
given in the table.

(a) Compute the 15 factorial effect estimates.
(b) Construct a half-normal plot of these effect estimates and interpret it. Use Lenth's Method to



given in the table.

(a) Compute the 15 factorial effect estimates.

(b) Construct a half-normal plot of these effect estimates and interpret it. Use Lenth's Method to
confirm (or otherwise) your visual analysis of the graph. (Use 7= 2.5.)

(c) Suppose your analysis of the above plot had led you to the conclusion that a, (af), and (fy) were
nonzero. In addition to these three factorial effects, what (if any) additional effects should be
included in a tentative model:

+ o satisfy the requirement of effect heredity?
» to satisfy the requirement of effect hierarchy?

3. Consider an unreplicated 2¢ complete factorial experiment. The corrected total sum of squares,
SSCT = Z l:yijklmﬂ — ... }2

ijklmn
has the value of 2856. Using Lenth's method, an informal analysis of the data suggests that there are
only three “active” factorial effects, with least-squares estimates: & = 3, (af) = 4 and (epy) =2.

(a) If a factorial model including only an intercept and these three effects is fitted to the data, what
is the value of the residual sum of squares?

(b) What minimal collection of additional effects, besides the three listed above, would have to be
reintroduced into the model in order to satisfy:

+ the effect heredity principle?
* the effect hierarchy principle?

(c) Suppose you are given that:
J.21. =14, §11.=15 @H.22.=13, and 2. =12,

Identify and give the value of any additional factorial effect estimates that can be computed
based on this information.

4. Consider a 25 factorial study with each treatment applied to two units. Suppose the analyst
determines that a model containing an intercept, all main effects, and all two-factor interactions
involving factor A is adequate. Put another way, the assumption is made that all two-factor

202



AU R LA Ly JARRRFE BRLEAL AR A,

4. Consider a 25 factorial study with each treatment applied to two units. Suppose the analyst
determines that a model containing an intercept, all main effects, and all two-factor interactions
involving factor A is adequate. Put another way, the assumption is made that all two-factor
interactions notinvolving factor A, and all interactions involving three or more factors, can be

eliminated. Based on this model, and apart from a factor of o*:

(a) What is the variance of the estimates of main effects and two-factor interactions? (Hint: The
variances of all these terms are equal.)

(b) What is the variance of the least-squares estimate of E(J41122,)? (Hint: The answer would be the
same for any collection of subscripts on y.) Why would this estimate not be of particular interest
in a “true” experimental setting?

(c) What is the variance of the least-squares estimate of EJi11222)— EJ411111) Under this model? (Hint:
The answer would notrnecessarily be the same for another pair of treatments.)

5. Consider a 23 experiment, in two replicates (r= 2), without any blocking.

(a) The investigator has particular interest in estimating py11—12.. If the full model (7 factorial
effects plus the intercept) is assumed, rewrite this quantity in terms of factorial effects (i.e., a, (a
p), et cetera), and give the variance of its least-squares estimate in terms of the unknown value
of oZ.

(b) Suppose instead that a reduced model containing only the intercept and main effects is
adequate. Rewrite the difference of the two cell means from part (a) in terms of factorial effects
included in zhis model, and give the variance of its least-squares estimate in terms of the

unknown value of o2.
(c) Finally, return to an analysis based on the full model, and suppose that analysis of the data

yields:
(af) =3 (apy)=2 SSE=16

In order to perform an Ftest for:
Hyp, : (aB) = (afy) =0

Hyp, : () #0or (afy) #0

calculate the value of the:
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In order to perform an Ftest for:
Hyp, : (a8) = (affy) =0

Hyp, : (@) # 0or (afy) #0
calculate the value of the:

« numerator degrees of freedom

* numerator mean square

+ denominator degrees of freedom
* denominator mean square

6. Four synthetic rubber compounds can be formulated by using one of two curing temperatures (360
or 420 degrees), and one of two different concentrations of oil (3% or 5% by weight). A chemist
would like to perform an experiment to compare properties of these formulations. However, there
are operational constraints imposed by the equipment available in his laboratory. First of all, the
oven he must use has enough room to make only two batches of rubber at a time. Second, there is
only enough time in a day to use the oven twice. So, four batches of rubber can be made each day,
one for each treatment, and in each operation of the oven (i.e., one of the temperature levels), one
batch can be produced at each of the oil concentration levels. It is anticipated that there will be
potential differences associated with oven runs and with days, and that both can be considered as
random effects.

(a) Compute degrees of freedom for an appropriate split-plot ANOVA decomposition for this
problem, for only one day's experimentation. Include lines for block (day), residual, and
corrected total in the whole-plot (oven run) stratum; block (oven run), residual, and corrected
total in the split-plot (batch) stratum; and include appropriate factorial effects in each.

(Remember, there are only four data values collected in a day. None of the factorial effects of
interest will be testable!)

(b) Suppose now that this design is run over r> 1 days (the same thing is done each day), and that ...
the effects of “day” are assumed to be additive (e.g., do not interact with the treatments of -
interest). Compute the degrees of freedom for an appropriate split-plot ANOVA decomposition
for this experiment.

(c) Suppose the true main effect associated with changing oil content from 3% to 5% is exactly the



total in the split-plot (batch) stratum; and include appropriate factorial effects in each.
(Remember, there are only four data values collected in a day. None of the factorial effects of
interest will be testable!)

(b) Suppose now that this design is run over r> 1 days (the same thing is done each day), and that = ..
the effects of “day” are assumed to be additive (e.g., do not interact with the treatments of o
interest). Compute the degrees of freedom for an appropriate split-plot ANOVA decomposition
for this experiment.

(c) Suppose the true main effect associated with changing oil content from 3% to 5% is exactly the
same as the main effect associated with changing the curing temperature from 360 degrees to
420 degrees. Give fworeasons why, for any r> 1 days, the test for the oil concentration main
effect will be more powerful than the test for the temperature main effect.

7. Consider a two-level factorial experiment in £> 2 factors, where it is understood that interactions of
order 3 or higher are probably negligible. The experimenter is especially interested in learning
whether, for factors 1 and 2:

a= 0= (af) #0.
In fact, he would like to know whether any pair of factors in the experiment have this property, i.e.,
the main effects parameters and the two-factor interaction parameter are all equal to some nonzero
quantity. What does this imply about two such factors? Can you think of physical situations in which

this could arise?

8. Consider a 27factorial treatment structure and 2ftreatment contrasts that compare the expected
response at a specified treatment with the average of expected responses at the f“neighboring”
treatments, each specified by changing the level of one factor. For example:

1
f121..2 = E(y121..2)— }[Eiyzm.,.EHE{yu 1..2)+E(y122...2)+ -+ E(h21..1)]-

Such a function can be interpreted as a “local” measure of the joint effect of all factors. For a CRD

with runits assigned to each treatment:

(a) What is the variance of the least-squares estimate of any such function?
(b) Specifically for = 4, rewrite 6,5, in terms of factorial effects. Use this expression to determine

the variance of #1221, and check your answer against the more general result from part (a).
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CHAPTER 12 Two-level factorial experiments: blocking

12.1 Introduction

As described in Section 9.6, blocking is often required in factorial experiments because the number of
treatments can be quite large for even a moderate number of experimental factors. For two-level
factorial studies, ffactors lead to a study of size N= rx ¢= r2fif each possible treatment is replicated r
times. If this is so large that consistent experimental control cannot be exerted throughout all runs, or if
several batches of experimental material must be used to complete the study, blocking the experiment
into a few or several subexperiments may account for substantial uncontrolled variation and so improve
the quality of inferences that can be drawn from the data.

12.1.1 Models

An overparameterized effects model for a two-level blocked experiment can be written as:

Ymijl... = | + ﬂm T [”1 T .":j_; ¥ e 3 {ﬂf‘il- . }‘J] + €mij...
where 6, denotes the additive effect associated with block m. A corresponding full-rank effects model
can be written as:
y:rni.ﬂ.,. o o 'ﬁm + i.?'[ﬂ + I‘.’.'fi + T ITIT2.-- {n‘ri -im }] 2 rmi;...
where, as described in the models discussed in Chapters 9 and 11, x; = +1 indicates that factor 71is at its

high or low level. Because the blocks form a partition of the experimental runs, an equivalent form for
the full-rank parameterization is:

Ymijl... = 91"" + IJ‘ln- - J-".!ﬁ +...21T2... [.ﬂ.'fi- . :'} + €mij...-

Using this model, a matrix form for the entire blocked experiment is:

y=X0+Xop+e€
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Using this model, a matrix form for the entire blocked experiment is:

y=X;0+ X+ €
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where, if each block contains &k observations and the elements of y are ordered by block, e
1 O ... O Jixk Opxk .. Opxk
0 1 = ww 0 I. D-x: 1] o L D b
X, = ko Lk k - ke k kxk e k
0 O ... 1; Ok Okxk ... Jkxk

If a complete block design (CBD) is used, &= 27and the rows of X; corresponding to each Arow section of
X, “code for” all 27factorial treatments. If incomplete blocks are used, &< 2fand the submatrices of X,
corresponding to blocks differ depending on the subset of treatments included.

12.1.2 Notation

While the notation we have introduced is adequate to handle our discussion of designs for two-level
experiments, the special structure of these studies has led to some convenient and commonly used
simpler forms. Facrors are often denoted by upper-case letters: “A”,“B”, ... Also, columns of the model
matrix are sometimes denoted using upper-case letters; e.g., “ABC” can refer to the column vector of x; x
X; values, the “regressor” associated with the parameter (afy). The upper-case “I” is used to represent the
column of 1's associated with p. (This reflects its role as the identity elementin a more formal algebraic
treatment.) A treatment is sometimes designated by listing lower-case letters associated with factors set
tolevel 2, e.g.,

+ “ac” = the treatment defined by setting factors A and C at level 2, and others at level 1

+ “abcd” = the treatment defined by setting factors A-D at level 2, and others at level 1
*  “(1)” = the treatment defined by setting all factors at level 1

Following common convention, most of the presentation in Chapters 12 and 13 will follow this pattern.



* "abcd” = the treatiment aelined Dy setiing ractors A-D at level 4, anda others at level 1
*  “(1)” = the treatment defined by setting all factors at level 1

Following common convention, most of the presentation in Chapters 12 and 13 will follow this pattern.
In order to avoid confusion, the reader should carefully note the important difference between how
letters of upper and lower case are used; for example “a” refers to a particular freatment, while “A”
denotes a factor. And upper-case letters are associated with co/umns, while lower-case letters are
associated with rows, of X. There is an ambiguity in this system since “A” can stand either for a factor, or
for the “regressor” associated with its main effect (a), but the distinction is always made clear by the

context.

12.2 Complete blocks

The most straightforward form of blocking in 2fexperimentation is the CBD, calling for a complete
replicate of all 27treatments to be applied in each block. For example, a CBD for 7= 2 factors, arranged in

rcomplete blocks, can be depicted as:

block 1 block 2 ... Dblockr
(1) (1) (1)

a a
b e
ab ab ab

Now, let M; be the 27x (2--1) model matrix associated with just the factorial effects (i.e., excluding p) for
an unreplicated 27 experiment. If the elements of y are ordered by block, and by the same treatment

M \
..

sequence within each block, X; can be written as:
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an unreplicated 2fexperiment. If the elements of y are ordered by block, and by the same treatment
sequence within each block, X; can be written as:

M.
M,
X, =
M.
From this,
Jorxar Oarxar ... Oarxar
1 | Oarx2r Jarxar ... Oaryar
-
27
Osr5ar Oarxor .. Joryar

and X;H - [[ - H1]XQ -- x; -0= x-g

because the sum of each column of M; is zero. Hence the estimates of factorial effects are computed as if
the experiment were not blocked.

As with CBDs for unstructured treatments, a standard assumption is that there is no block-by-treatment
Interaction, leading to an ANOVA decomposition as displayed in Table 12_1. The line for “residual” would

be “block-by-treatment interaction” if that term had been included in the model. The sum of squares for
“treatments” can be further decomposed into one-degree-of-freedom components for each factorial

effect, e.g., Na>. Note that this is just as in the unblocked case, where the treatment sum of squares can .
be decomposed into a one-degree-oi-freedom sum of squares for each effect. So, for example, for 7= 2, =

. o 2
SST = N&* + N3* + N(af3)

TABLE 12.1 ANOVA Decomposition for 27CBD in rBlocks

Source Degrees of Freedom Sum of Squares

11 1 1 L Aaf r= - %D




2 F L' B S IEIIll!.v'll”‘“vll]rvﬂlﬁlvll L. B Tt B 1 F W el L

Source Degrees of Freedom Sum of Squares

blocks r—1 S 2 (Gm... —7...)*
treatments 27 —1 Yt Tl — g..)?
residual 2f —1)(r —1) difference

corrected total 72/ — 1 Y i, Wi — j..)*
< >

12.2.1 Example: gophers and burrow plugs

Werner, Nolte, and Provenza (2005) conducted laboratory experiments to study the effects of various
environmental factors on “burrow plugging” behavior of pocket gophers ( Thomomys mazama,
Thomomys talpoides). In one experiment, 24 gophers were individually placed in an artificial burrow
system constructed of clear polyvinyl chloride pipe that included a nesting box, a food cache, and four
closed 1-m-long “loops” of pipe. Two 2-level factors were employed — intensity of artificial light (“light”
at a standard intensity, and “no light”) and the presence of small “burrow openings” in the pipe
(“openings” of a standard size, and “no openings”). Each of the four factor combinations, (“light,”
“openings”), (“light,” “no openings”), (“no light,” “openings”), and (“no light,” “no openings”) was applied
to one of the four loops in the system. A standard quantity of sawdust (“plugging substrate”) was placed
in the system at the beginning of each trial, and the response measured in each loop was the length of the
sawdust “plug” constructed by the gopher in a standard length of time. Hence each gopher produced one
measurement for each of the four treatments, and the differences among these 24 blocks were accounted
for as resulting from animal-to-animal or other trial-to-trial nuisance variation.

12.3 Balanced incomplete block designs (BIBDs)

The only class of incomplete block designs we have discussed extensively is the BIBD class (Chapter 7).



12.3 Balanced incomplete block designs (BIBDs)

The only class of incomplete block designs we have discussed extensively is the BIBD class (Chapter 7).
Recall that the structural balance properties of BIBDs result in some loss of efficiency, relative to CRDs of
the same size, of treatment contrasts, and that this loss is proportionately the same for all treatment

contrasts. As discussed in Section 9.6, this approach can also be taken in constructing blocked factorial
designs. For example:

block 1 block 2 block 3 block 4
(1) (1) (1) a
a b b
ab ab ab

15 a BIBD with 7= 2% treatiments, organized in b = 4 blocks, each of size &= 3. In the notation of Chapter 7,
the design is a BIBD because:

* each treatment appears in r= 3 blocks, and
» each pair of treatments appears together in A = 2 blocks.

Analysis of data from a factorial experiment organized as a BIBD follows easily from the results given in
Chapter 7, with the understanding that a factorial representation is really only a reparameterization of .,
the models we would use if we ignored the factorial structure of the experiment. For example, we can 2k
arbitrarily assign the 22 treatments in the above experiment to:

(1) = “treatment 1"
a = “treatment 2"
b = “treatment 3"
ab = “treatment 4".



(1) = "treatment 1
a = “treatment 2"
b = “treatment 37
ab = “treatment 4”.

Then expressions for treatment effects can be written in either notation:

unstructured factorial

T = —a-— [+ (af)

T2 = +4a—F-(ap)
T3 = —a+ - (af)
T4 = +4a+ 4+ (aff)

This relationship is 4-to-3, and can be inverted to express the factorial effects:

unstructured factorial <
1 1 | 1
_ZTI+ZT2_ZT3+ZT4 = «
1 1 1 1
g ET2+ZT3+ET4 = &)
-I-%ﬁ - ifa b= i?‘a + in = (ap) -

1 2 : : .
B Cle g ), leading to expressions for &

s o

. : P ;
Hence a = ¢’ Tin the notation of Chapter 7, where € = (—3:+
and Var(a),

But while BIBD structure canbe used in factorial settings, the most commonly used blocking technique in
2fexperiments is fundamentally different. In most factorial experiment settings, some factorial effects
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But while BIBD structure canbe used in factorial settings, the most commonly used blocking technique in

2fexperiments is fundamentally different. In most factorial experiment settings, some factorial effects
(e.g., main effects and low-order interactions) are of substantially more interest than others (most
higher-order interactions). As a result, the regu/arblocking schemes most often used in 27
experimentation sacrifice all information for one or a few selected effects of no or limited interest, while

preserving full efficiency for all others. The remainder of this chapter describes regular block designs for

complete two-level factorial experiments.

12.4 Regular blocks of size 277

The simplest case of regular blocking in 27 experimentation specifies that a “half-replicate” — one-half of
all possible treatments — be included in each block of size 2#1 so that each treatment appears exactly
once in each pairof blocks. But this involves some loss of information about treatments; that is, we need
to give up one of the “treatment” degrees of freedom to represent possible differences between the two
blocks. When the experiment is divided into regu/arblocks, we do this by intentionally confounding one
of the factorial effects with blocks. This is done by arranging blocks so that, for a selected factorial effect

(-),

* (-)is multiplied by + in the effects model representation for all treatments included in one block,
and

* (-)is multiplied by - in the effects model representation for all treatments included in the other
block.

This implies that (-) is no longer estimable because the contrast associated with it is exactly the same as
that associated with the block difference, so we generally want to select an effect that is:

« unlikely to be important or interesting, and/or
» likely to be zero or negligible.
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« unlikely to be important or interesting, and/or
« likely to be zero or negligible.

The highest-order interaction is often used. The rationale here is that by intentionally confounding one
factorial effect with blocks, full information about all other factorial effects is preserved. This is because
every pair of factorial effects is orthogonal (e.g., 1s associated with two model matrix columns that are
orthogonal). If ABC is confounded with the block contrast, i.e., those treatments for which the entry in
the ABC column is +1 are assigned in one block, while those for which it is -1 are placed in the other,
then all other factorial effects are orthogonal to (and therefore unaffected by) the effect of blocking. This
situation is sometimes summarized by the generating relation “I = + ABC,” indicating that ABC is either
always +1 or always -1 within each block. We sometimes say that the parameter (apy) is “confounded
with” the block contrast 6, — 8, in this case, because either has the same estimate if the other is omitted
from the model.

Listing treatments explicitly in each block, and remembering that we could have used any factorial effect
to “split” the treatments into blocks (e.g., AB rather than ABC) if this had made more sense, we have:

Treatment I A B C AB AC BC ABC Block g
(1) : - - - : : . _ 1
a + + _ _ _ _ + + 2
b + _ + _ _ + _ + 2
C + _ _ + + _ _ - 2




C - — _ - - — _ + 2
ab - - + — + — = = |
ac - - — - — - — - 1
b - _ - - — _ - _ 1
abc - - - + - + - - 2
W
£ b

or

block 1 block 2
(1) a
ab b

acC C

be abce

(ST 4
a P

All pairs of factorial effects are orthogonal, so all except ABC are orthogonal to “ABC+block.” Other
treatment estimates and sums of squares are unchanged by the introduction of blocks. If the design is
executed without replication, there is no component in the analysis of variance decomposition that can

be used to estimate o2. As a result, we might need to use normal plots omitting # and (@37) the latter of
which actually estimates (apy)+0:-8,, to determine which effects appear to be nonzero.
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executed without replication, there is no component in the analysis of variance decomposition that can

be used to estimate o2. As a result, we might need to use normal plots omitting # and (“-3?'), the latter of
which actually estimates (afy)+6,-0,, to determine which effects appear to be nonzero.

Now, suppose we can afford to apply each treatment r> 1 times, but must still use blocks of size 271:

block 1 block 2 block 3 block4 ... block 2r —1 block 2r
(1) a (1) a (1) a
ab b ab b ab b
ac c ac c o ac c |
be abc be abc be abc

Ordering y by replicate, and by block within replicate, we can write:

1
H, =
1 23:_!
(Ja1-1x21-1 Ogs-15ar-1 Ogr—1y25-1 Oar—1ya7-1 ... Ogr-1521-1 Ogs— 121-1\
Dz!-—!xg_r-nl Jgf—-LKEJ‘-—l Dgf-—lxg,r-l u-‘g_rqlng-—l .» .03:‘-1;;2{-—-1 Ug:—lhzjrl
0o5-1x97-1 Dar—1 xar-1 Jar-1597-1 Oar-1x27-1 ... Qar-1 5011 Oor-1 051

X | Oar-15927-1 0gr-152r-1 Og7-1527-1 Jar-1507-1 ... 0gr-1527-1 Ogr—1527-1

ﬂgj’—lhgj—l ﬂﬂf—'x21—1 Ugf—1x-2;—: 021-:,:2;4 i .J:g;-txzf-l ﬂ-__;,r—:x-z,r—L
021 Laciaf |0-_5; | w2 d 1023‘ 1yaf quf e | I-..og,f 1yl IJ2,F VxS I)
[Ma;
M: 2
M, ,




x: = M".I = [)h_ X2 sun ng_]]
M;
\ Mo /

M3 )
where (Mi‘-’ 1s a partitioning of M; into runs appearing in the two kinds of blocks. M:; and M;; each
have columns with zero sums except for the column corresponding to the confounded effect. So, letting
X, = (X4,X5,X3, ..., X225,X5-_ 1), If X524 1S the column corresponding to the factorial effect confounded with
blocks,

TABLE 12.2 ANOVA Decomposition for 27in Regular Blocks of Size
2™-1, Blocked by Confounding ABC

Source Degrees of Freedom Sum of Squares

blocks 2r — 1 S22 (G —7.)?

treatments 2F =2 N> (ﬂ:ﬁ)2 excluding (c;-ﬁ:y)z from the sum
residual 27 - 2)(r-1) difference

corrected total 72 — 1 Emﬂ_“(ymiﬂm —g.)° v

£ 2

}IIX‘E = [00‘ 0]{3;_[} X.-,-_.l = 'I:I — Hl.].K| = {X| X2 ... Xaf_o9 U),

formally showing that treatment comparisons involving this effect are not estimable.

Letting m=1,2,3,...,2rindex blocks in the design, an ANOVA decomposition is shown in Table 12.2. Note
that in the corrected total sum of squares, not all possible combinations of index values appear because
not all treatments (77...) appear in each block (). For r= 1, there are no degrees of freedom for residual

L | 1 kL " a 9 77 L 1 i~



Letting m = 1,2,3,...,2rindex blocks in the design, an ANOVA decomposition is shown in Table 12.2. Note
that in the corrected total sum of squares, not all possible combinations of index values appear because
not all treatments (Z/...) appear in each block (). For r= 1, there are no degrees of freedom for residual
variation under the full model, but an error estimate coul/d come from degrees of freedom in

“treatments” corresponding to terms omitted from the model (and not confounded with blocks). For
example, with f= 3 and r= 1, and continuing to confound ABC with blocks, if we have reason to assume
(cry) = (By) = 0, an alternate ANOVA decomposition is displayed in Table 12.3.

12.4.1 Random blocks

If blocks can be regarded as random entities, an experiment divided into regular blocks can be analyzed

as a split-plot experiment, with levels of ABC compared between blocks, and other factorial effects

compared within blocks. If ABC is confounded with blocks in each replicate, an ANOVA decomposition

can be written as shown in Table 12_4. The last three lines of the ANOVA decomposition — those 214
representing the split-plot portion of the experiment — are identical to their counterparts in the fixed 1

block ANOVA. But the whole-plot contrast, (@B7), is compared to the 2(r—~1) degree-of-freedom
“blocks | ABC” line representing block-to-block variation other than that which can be attributed to the
systematic effect of the three-factor interaction.

o, » . . . ~

TABLE 12.3 ANOVA Decomposition for Single-Replicate 23 In
Regular Blocks of Size 22, Blocked by Confounding ABC and
Assuming (ay)=(By)=0

Source Degrees of Freedom Sum of Squares

blocks 1 (.. —7..)% + (72... — 5. AR

treatments 4 8[a’+ P2 +4% + (o) ]

residual 2 H{(E}Q + {‘?:f]

corrected total 7 zm.je{#"“ﬂ -..)° Vv




treatments 4 8la* + 32 + 4% 4+ [;:?_]‘]
—_—2 2
residual 2 8l(ay) + (57) |
corrected total 7 E”“.”{yml_ﬂ -¢..)? i
< >
L] L] L] L ] h
TABLE 12.4 ANOVA Decomposition for 27in Regular Blocks of Size
271 ABC Confounded with Random Blocks
Stratum Source Degrees of Freedom Sum of Sr;uureﬁ
whole-plot ABC 1 J"'-"(f:;'.ﬂ.
blocks| ABC 2(r — 1) S 2l Y G —§...)°
—Nfr:?;.-lz
corrected total 2r —1 Zm 2" Y(gm... —9...)°
split-plot  other treatiments of 9 N Z (T)? excluding {rﬁ«f
residual (27 —=2)(r-1) difference
corrected total  r2/ — 1 Zm”,[_f;mu! - 8.} v
L 4 >

12.4.2 Partial confounding

The designs described above allow fully efficient estimation of all factorial effects exceprfor the effect
selected for confounding, for which formal inferences cannot be made if block effects are fixed, and for
which generally less informative whole-plot inferences can be made if block effects are random. But
what if the situation is such that:

» Dblock effects cannot reasonably be treated as random,
* thereis a need to make inferences about all effects, and
+ Dblocks of size 271 are required?

One option is partial confounding, in which different factorial effects are confounded with blocks in each
complete replicate. For example, with 23 treatments and blocks of size 4, a design that confounds a



» Dblocks of size 27! are required?

One option is partial confounding, in which different factorial effects are confounded with blocks in each
complete replicate. For example, with 23 treatments and blocks of size 4, a design that confounds a
different effect with blocks in each of rfull replicates might be depicted as:

replicate 1 replicate 2 replicate 3
(1) a (1) b
ab b be C
— 7 replicates
ac C a ab
be abc abc ac
ABC confounded BC confounded ... confounded
L L] L ] L] A
TABLE 12.5 ANOVA Decomposition for 27in Regular Blocks of Size
271 Demonstrating Partial Confounding
Source Degrees of Freedom Sum of Squares
blocks 2r—1 2om 2 Om... — §..)° :
unconfounded effects 2/ —1 —r 2/ Z (;}J excluding {r::]'-:‘r}z.
e,
confounded effects r ‘.Zfl:r - l]l[{ﬁ;ifﬂ;-} + (Bv) +...
residual (2 =2)(r=1)=1 difference
corrected total r2f —1 znlu[...{y"'”!' I Vv
£ >

Estimates and sums of squares for nonconfounded effects are computed as usual, e.g., Na? if A is not
selected as the confounding effect in any replicate. Estimates and sums of squares for confounded effects
are computed using only data from replicates in which they are notf confounded. For example, in the



Estimates and sums of squares for nonconfounded effects are computed as usual, e.g., Na? if A is not
selected as the confounding effect in any replicate. Estimates and sums of squares for confounded effects
are computed using only data from replicates in which they are nof confounded. For example, in the

design depicted above, ABC is confounded with blocks in the first replicate, so (@87) is computed from
the data in replicates 2 through ronly (assuming that ABC is not confounded with blocks again in any of
the remaining replicates), as if the design were an unblocked experiment of (r~1)2° observations, and the

2, 2
corresponding component of $S7would be (7 — 1)2*(a37) | A “sketch” of the ANOVA decomposition,
assuming that a different factorial effect is confounded with blocks in each replicate, is shown in Table
12.5.

12.5 Regular blocks of size 272

When blocks of size 271 are too large, smaller “quarter replicate” blocks, each containing 1/4 of all
possible treatments, can be used. We accomplish this by further splitting of 27*-size blocks, by selecting a
second factorial effect to confound with blocks. Continuing the previous f= 3 example where ABC was
chosen to generate the first treatment split, now add BC for the second. This means that in addition to
losing the ability to estimate (afy), we now are also sacrificing information about (Py). Treatments are
now sorted into blocks according to the four possible combinations of values for these two factorial

effects:

Treatment | A B C AB AC BC ABC Block A

6 ¥ - = - + + + - |

a e B = Ak =R - + + 2

b + = 4+ = = 4 = + 3

c + = = + + = = 4 3

ab + + 4+ - + - - - 4

ac + 4+ - 4+ - + - - 1

be + - 4+ $ - — + - 1
abe £ e £ H + 2 v
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or,



abe + + + 4+ 4+ + + + 2 v

or,

block 1 block 2 block 3 block 4
(-) a b ab

be abc C ac

So for this single-replicate design, eight observations are collected, two in each of four blocks. ABC and
BC are confounded with blocks, so (afy) and (By) are not estimable. But 3 degrees of freedom are
required to represent the systematic differences among blocks. This implies that another contrast among
treatments — or a third factorial effect — must also be confounded with blocks.

To identify the additional confounded contrast, note that within each block, some factorial effects are
constant. Specifically, ABC = x; % x;is “+” in blocks 2 and 3, and “~” in blocks 1 and 4, and BC = x; x3 15 “+”
in blocks 1 and 2, and “—” in blocks 3 and 4. These both follow immediately from the selections we made
in constructing blocks. But this implies that x; % X3 * X X3 = X = A 1s a/so constant within blocks; “-” in
blocks 1 and 3, and “+” in blocks 2 and 4, implying that a can't be estimated from within-block data
comparisons. Symbolically, within:

block 1,1 = —ABC = 4+BC = —A
block 2,1 = +ABC = +BC = +A
block 3,1 =+ABC = -BC=-A
block 4,1 = —ABC = —-BC = +A

where A = x; represents the column from X associated with a, and I = 1 represents the “regressor” for p.
By choosing to confound ABC and BC with blocks, we also confound their generalized interaction, A. As a
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where A = x; represents the column from X associated with «, and I = 1 represents the “regressor” for pu.
By choosing to confound ABC and BC with blocks, we also confound their generalized interaction, A. As a
practical matter, this is a poor choice of design for most purposes since it “sacrifices” information about a
main effect. In most cases, a better choice would be specified by the generating relation:

I=+ AB ==+ BC (=% AQ),

block 1

- A St

block 2

block 3

block 4

&

abe

C

ab

a

be

b

ac

“+” notation means that within some blocks AB = +1 (or I), and within others AB = -1 (or -I), but that it is
always constant within each block. “(= + AC)” means that the generalized interaction AC is actually
implied by selection of AB and BC as confounded effects. If AB and AC had been selected as the “splitting”
effects, BC would have been the generalized interaction; the design would be the same.

Now, suppose we replicate each of these blocks rtimes for rfull replicates of the design in 4rblocks, each
of size 2. Extending the notation of Section 12.4, and again ordering the elements of y by replicate, block-

within-replicate, and a standard treatment sequence within block, we have:

Jos-2y0f-2
1 ﬂg,r Iyof-2

H] = 2f—2
0p5-2,27-2

and X; = (X; X; ... X;=1) 1s comprised of rrepeated sections of 2‘rows, each of which can be written as:

02s-2x21-2

JEJ Aywf—2

Oos-2x07-2

Ogs-2ypr-2

U?f Tyf-2

Jor-2,0r-2
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representing the treatments that appear in each of the four kinds of blocks. Within each submatrix M, ; 7
=1,2,3.4, each column contains entries that sum to zero except forthe three columns associated with the
confounded effects. If we associate these three effects with the last three columns of X,, this leads to:

H]xg I (Dﬂ'l]' ... 0 Xal g Xasr_9 x-‘!,r_]:l

and

(1 = H[_}Xz = {X_; X3 X3 +.0 Xalf_g 00 ﬂ)
indicating that the factorial effects associated with the last three columns of X, are not estimable.

Letting m index blocks, for fixed block effects, an analysis of variance decomposition can be constructed
as shown in Table 12_6. For random block effects, a split-plot ANOVA can be constructed as
demonstrated in Table 12.7.

Partial confounding can also be used in this case. For example, suppose we need a 242 blocking scheme,
but can perform two complete replicates of four blocks each. We might choose to confound different sets ..
of factorial effects in each of the two replicates, e.g.: -

TABLE 12.6 ANOVA Decomposition for 27in Regular Blocks of Size
272 Blocked by Confounding AB, AC, and BC

Source Degrees of Freedom Sum of Squares

blocks dr — 1 Y2 B — 0 |

treatments 2/ — 4 N 2 (T}z excluding {.;*‘1_,.-'}}3. E}l
and I:;:'y_}z

residual (2 =4)(r=1) difference

corrected total r2/ — 1 Zm;;(h‘mur - §....)° 24
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sr = —2 —2
treatments 2f — 4 N E (=) excluding (ajd) ,(avy) ,
— 2
and (37)
residual (27 = 4)(r-1) difference
corrected total r2/ — 1 Emr_ﬁ{”!rn_;f ~g..) W
< >
TABLE 12.7 ANOVA Decomposition for 27in Regular Blocks of Size
272 AB, AC, and BC Confounded with Random Blocks
Degrees of
Stratum Source Freedom Sum of Squares
whole-plot AB,AC,BC 3 ;"f{:t__."}f - ;\'{I:;;]d + N {_Ef
blocks | AB,AC,BC 4r—4 b IR I
N(afB) —:-
corrected total 4r — 1 “blocks” in Table 12.6
split-plot  other factorial effects 27 — 4 “treatments” in Table 12.6
residual (27 — 4)(r - 1) “residual” in Table 12.6
corrected total r2f —1 “corrected total” in
Table 12.6 W
< >

Replicate 1: 1 =+ ABC = + BCD(= + AD)
Replicate 2: [ =+ ABCD = £+ BC(= £+ AD).

In this situation, (afy) and (Byd) estimates and sums of squares are computed using the data from
replicate 2 only, and (afy6) and (By) estimates and sums of squares are computed using the data from
replicate 1 only. AD is confounded with blocks in both replicates, and so (ad) cannot be estimated. An
ANOVA decomposition in this case could be constructed as shown in Table 12_8.

12.6 Regular blocks: general case

The ideas already introduced for blocks of size 27! and 27? can be generalized to construct designs with
smaller blocks by sequentially re-splitting treatments into groups stimes, to obtain 2+ blocks of 275 units



12.0 Regular DLOCKS: general case

The ideas already introduced for blocks of size 27! and 22 can be generalized to construct designs with
smaller blocks by sequentially re-splitting treatments into groups stimes, to obtain 2< blocks of 27 units
each per replicate. For example, suppose we need to construct a 254 blocking system:

»  25=64 treatments
» 2%=16 blocks
« 25* =4 units per block

5 s . ; A
TABLE 12.8 ANOVA Decomposition for 2% in Regular Blocks of Size
22, Demonstrating Partial Confounding
Source Degrees of Freedom Sum of Squares
blocks 7 > A Gm.... — j..)°
unconfounded 10 32 (—ﬁ—]2 excluding confounded
effects effects and («ad)

— 2 —_ 2 — 2 — 2
confounded effects 4 16[(aBy) + (Byd) + (aBvyd) + (Bv) |
residual 10 difference
corrected total 31 err.ijﬁ'.i(y”!ijkt = :':? ..... )2 v

< > 210
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We can think in terms of the four factorial effects “independently” selected to confound with blocks, one

corresponding to each of the sequence of “splits” of the 64 treatments, with the understanding that new
generalized interactions are also confounded with blocks at each split after the first. For our example, we
might consider the following confounding scheme:

“Split”  Selected Effect (Generalized Interactions A

1 ABF
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“Split”  Selected Effect (Generalized Interactions A

1 ABF

2 ACF BC

3 BDF AD ABCD CDF

4 DEF ABDE ACDE BCDEF BE AEF ABCEF CEwv
< >

With each split of the treatments except for the first, generalized interactions are added between the new
“independent” effect and each of the previously implicated effects (wWhether labeled as independent
effects or generalized interactions). In all, 2°-1 effects or “words” are confounded with blocks (all
possible combinations of the symbolic products of sindependent effects). Again, any four of these 24-1 =
15 “words” can be treated as “independent” when generating the sequence of treatment “splits” and the
resulting pattern of blocks will be the same. In this example, we have constructed a blocking scheme for
28 treatments in 24 blocks of size 22 that allows fully efficient inference about all main effects and all but
four 2-factor interactions and several effects of higher order. Effects lost to (or confounded with) blocks
include six 3-factor interactions, three 4-factor interactions, and two 5-factor interactions.

In order to avoid confounding more and more factorial effects with blocks, it might be tempting to pick a
previously identified generalized interaction as a new “independent” effect for identifying a new split.
For example, we might have considered selecting CDF (a generalized interaction identified after the third
split) as the “independent” effect for the fourth split, instead of DEF. But this does not work because CDF
is already constant within blocks, and so cannot be used for further “splitting.”

As blocking schemes become more complicated, it becomes less obvious which treatments are applied to
units in each block, but the general principles introduced for s=1 and 2 still apply. One block in our 25
example consists of the set of treatments that simultaneously satisfy the four constraints represented by I
= +ABF = +ACF = +BDF = +DEF. The four treatments to be applied in this block can be identified by
constructing a small table of the elements of M, that satisfy these requirements. Hence the A, B, and F
columns can be filled in first to assure ABF = +1, then C can be added to assure ACF = +1, et cetera:




=+Abk = +ALL = +bDF = +DLEE. 10NE I0OUT treatments 1o De applued 1In tnls DIOCK Can be 1aentiea by
constructing a small table of the elements of M, that satisfy these requirements. Hence the A, B,and F

columns can be filled in first to assure ABF = +1, then C can be added to assure ACF = +1, et cetera:

A

B

F

C

D

E

-

+

-

+

.|.
_|_

+

+

—

+

_|.

_+_

We can similarly determine the treatments for any of the other 15 blocks by sequentially selecting factor
levels so as to satisfy all constraints, e.g., I = +ABC = —-ACF = -BDE = +DEF:

A B F|[C|D|E
- — 4|+ |+ ]|+
+ + + |- -]~
+ — — |+ |-+

or

or

abedef
f

bce

ad
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cdef
abf
ace

bd

Note that we only need to deal with the constraints associated with four “independent” effects; the
constraints associated with the generalized interactions are automatically satisfied. The single block that

includes the treatment defined by the low level for each factor is sometimes called the principal block

A B F

C

D

E

ar

(1)
abcde



=
ve
]
Q
O
=

(1)
abede
adf

bcef

+ + — |+ + | or
+

+ +

— 4+ + |+ |+

identified in this case by
I = —ABF = —ACF = —BDF = —DEF.
In general, the generating relation for the principal block assigns —/+ to words of odd/even length.

Once the treatments in one block have been identified, another approach to constructing the remaining
blocks is by reversing the signs for one or more factors. For example, given the principal block above, we
might reverse the signs for factors A and B to obtain:

A B F|C|D|E
5 o ab
flafa] or |
bdf
- + 4+ |-+ -
acef
+ — +|+|-|+
a block denoted by
| = —ABF = +ACF = +BDF = —DEF.

The signs attached to ACF and BDF are reversed relative to the principal block because they each contain
only one of A or B. The sign attached to ABF is not reversed because it contains both A and B, and that for
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|l = —Abr = +AUY = 1+DUF = —DLb,

The signs attached to ACF and BDF are reversed relative to the principal block because they each contain
only one of A or B. The sign attached to ABF is not reversed because it contains both A and B, and that for
DEF is not reversed because it contains neither A nor B. Signs are also determined in this way for all 11
generalized interactions, depending on the involvement of an odd or even number of the symbols “A”
and “B” in each.
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TABLE 12.9 General form of ANOVA Decomposition for 27in Regular
Fixed Blocks of Size 275

Source Degrees of Freedom Sums of Squares
blocks r2® — 1 327 *(Gbtoer — §)*
—2
treatments i Z N(—=) omitting confounded effects
residual difference difference
corrected total r2f — 1 Yy —-9)* s
< >

Following the more detailed patterns discussed for s= 1 and 2, a fixed-block ANOVA decomposition for r
complete replicates of 2 treatments, each split into 2+ blocks of size 275 using the same confounding
scheme in each replicate, can be constructed as shown in Table 12.9, and a random-block (split-plot)
ANOVA can be written as given in Table 12.10.

As with 5= 1 and 2, partial confounding can also be used when blocks should be regarded as having fixed
effects. For example, in a design comprised of 5 replicates, if ABC is an element of the confounding
pattern in replicates 1 and 2, (afy) is estimated from the data from replicates 3-5 only and the

e a s ol (o
corresponding single-degree-of-freedom component of S571s 3 x 27(afp) . Some effects may be
confounded in more replicates than others, but no formal inferences can be made for any effect

confounded with blocks in all replicates.

12.7 Conclusion



confounded with blocks in all replicates.

12.7 Conclusion

When 2ffactorial treatments are compared in a complete block design, each factorial effect is orthogonal
to blocks, and the usual additive-treatments-and-blocks analysis is possible. When smaller blocks are
needed, BIBDs may be used, or the experiment can be performed in regular blocks of size 275, s< £ BIBDs

&

are not orthogonally blocked, but analysis described in Chapter 7 leads to equal information for each
factorial effect. In designs based on regular blocks, blocks are orthogonal to some factorial effects, but
are intentionally confounded with others. When multiple complete replicates are included in the
experiment, inferences can be made about confounded effects via a split-plot analysis when block effects
are regarded as random, or by using partial confounding when they are regarded as fixed.

TABLE 12.10 General form of Split-Plot ANOVA Decomposition for 27"
in Regular Random Blocks of Size 27

Stratum Source Degrees of Freedom Sum of Squares
whole-plot confounded effects 2° -1 Nx (sum of 2° — 1
squared effect
estimates)
blocks | confounded 2°(r—1) difference
effects
corrected total r2° —1 “blocks” in Table 12.9
split-plot  other factorial effects af o “treatments”
in Table 12.9
residual difference “residual” in Table 12.9
corrected total r2f —1 “corrected total”
in Table 12.9 v
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corrected total r2f —1 “corrected total”
in Table 12.9 Vv

< >

12.8 Exercises

1. Construct a BIBD for a 23 factorial experiment using as few blocks of size 6 as you can. What is the
variance of & (or for that matter, any factorial effect) for your design?
The following table lists data for a 2* experiment, including three complete replicates. Use these data

to work exercises 2—6.
Data for 27 Factorial Exercises 2-6

™
Replicate
Treatment 1 -] 3
(1) 48.87 53.78 54.37
d 31.52 35.04 34.88
C 68.32 66.95 7T2.80
ed 49.84 47.19 51.28
b 24.67 40.99 43.08
bd 37.28 46.81 44.87
be 51.16 49.53 52.26
bed 39.62 37.83 35.55
a 56.30 65.11 56.41
ad 50.14 44.70 53.37
ac 63.10 5H8.01 66.53
acd 46.01 49.11 5H7.13
ab 45.56 50.02 52.21
abd 48.90 50.08 47.64
abc 57.06 50.53 51.43
abed 50.67 45.38 56.48 v

2. Assume the experiment was executed as a completely randomized design (i.e., no blocks, and a
model with only an overall mean, treatment-related effects, and homogeneous, independent noise
for each measurement). Compute the least-squares estimates for each of the 15 factorial effects and
their standard errors, and sums of squares and degrees of freedom for an ANOVA partitioned with
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model with only an overall mean, treatment-related effects, and homogeneous, independent noise
for each measurement). Compute the least-squares estimates for each of the 15 factorial effects and
their standard errors, and sums of squares and degrees of freedom for an ANOVA partitioned with
lines for treatments, residual, and corrected total.

. Assume the experiment was executed as a randomized complete block design, with each replicate
constituting one block. How will the effect estimates differ from those in exercise 2? Compute sums
of squares and degrees of freedom for an ANOVA partitioned with lines for blocks, treatments, 23
residual, and corrected total. =
. Assume that blocks of size 4 must be used. Select a generating relation to use (i.e., two factorial
effects and their generalized interaction). Use the same generating relation in each replicate (i.e.,
don't use partial confounding), do not confound any main effects with blocks, and confound as few
two-factor interactions as possible. Assuming blocks are fixed, how will the effect estimates differ
from those in exercises 2 and 3? Compute sums of squares and degrees of freedom for an ANOVA
partitioned with lines for blocks, treatments, residual, and corrected total.

Repeat exercise 4, but now under the assumption that the block effects can be regarded as random.
With this form of analysis, all factorial effects can be represented as “treatments” in the ANOVA, but
not all will be compared to the same denominator mean square. How will the effect estimates differ
from those in previous parts? Compute sums of squares and degrees of freedom for an ANOVA
partitioned with lines for confounded effects, unconfounded effects, and residual terms appropriate
for each of them.

Continuing to use blocks of size 4, assume that block effects are to be regarded as fixed, and select a
different generating relation for each replicate (i.e., use partial confounding) in such a way that no
main effect is confounded in any replicate, and at least 2/3 information is available for each
interaction (i.e., no interaction is confounded in more than one of the three replicates). Compute the
least-squares estimates for each of the 15 factorial effects and their standard errors, and sums of
squares and degrees of freedom for blocks, partially confounded effects, unconfounded effects,
residual, and corrected total.

. The following are the treatment combinations from one block of a (complete) blocked 2° experiment:

A B C D E ~
+ + + + +




interaction (i.e., no interaction is confounded in more than one of the three replicates). Compute the

least-squares estimates for each of the 15 factorial effects and their standard errors, and sums of
squares and degrees of freedom for blocks, partially confounded effects, unconfounded effects,

residual, and corrected total.

7. The following are the treatment combinations from one block of a (complete) blocked 2° experiment:

B

C

D

E

_.|_

+ + + +|»>

+

_l_
_|_

+
+

+
+

_I_

(a) Determine the generating relation for this blocking system.

(b) Find the treatments to be included in each of the other blocks in this system.

)

8. Construct a row-column blocking system for an unreplicated 24 experiment as follows. First, write a

generating relation for defining four blocks of size 4 by selecting two factorial effects and their
generalized interaction to define row-blocks. Next, write a second generating relation to define
column-blocks; do not include any factorial effects in both generating relations. Assume that both
row- and column-blocks have additive, fixed effects.

(a) Make a 4 x 4 table showing how the 16 treatments are assigned in your design.
(b) What individual factorial effects would be estimable from an experiment run using your

design?

224
225



227

CHAPTER 13 Two-Level Factorial Experiments

13.1 Introduction

Because of the exponential relationship between the number of factors and number of treatments they
define, even a moderate number of factors can generate more treatments than can practically be
included in many experiments. Blocking can help reduce the number of trials than must be executed on
any one day, or with any one batch of experimental material, but the total experiment size (M) of the two-
level design comprised of complete replicates, whether blocked or not, must be a multiple of 27 In this
chapter, we discuss fractional factorial designs that can be much smaller because they do not include all
possible treatments. At first glance, this may seem quite strange; if an experiment is undertaken to
compare a collection of treatments, how can a design that intentionally omits some of these treatments
supply the desired information?

The honest answer to this question is that it cannot, unless additional assumptions are made about the
relationships between the treatments of interest. Those assumptions, while sometimes not stated
explicitly, are based on the idea that mosft of the differences between factorial treatments can ofien be
described in terms of main effects and interactions of relatively low order, i.e., that interactions of higher
order may be relatively negligible. On the other hand, since we usually do not Anowthis to be true of any
given experimental situation in advance, we must not depend too heavily on assumptions of this kind in
analysis of the data. A pragmatic approach is to realize that fractional factorials provide partial but
valuable information about treatment comparisons if further assumptions cannot be made, and that this
information is more definitive if they can.

13.2 Regular fractional factorial designs

A two-level regular fractional factorial design consists of the treatments in one block of a regular blocked
full 27 experiment, as discussed in Chapter 12. For example, a “one quarter fraction of a complete 23
factorial experiment” can be formed by constructing a 2°-2 blocked design of the 32 treatments in four
blocks of size 8, and then using only one of those blocks as the entire (unblocked) experimental design.



A two-level regular fractional factorial design consists of the treatments in one block of a regular blocked
full 2fexperiment, as discussed in Chapter 12. For example, a “one quarter fraction of a complete 23
factorial experiment” can be formed by constructing a 2°-% blocked design of the 32 treatments in four
blocks of size 8, and then using only one of those blocks as the entire (unblocked) experimental design.
We might specify such a design symbolically by writing:

1= +ABC = -ADE(= -BCDE),

227
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a generating relation similar to the general form used in Chapter 12, specifying two independently
selected “splitting” effects and noting their generalized interaction. But here, “+” and “-” are assigned to
each “word,” not “+” as in the expression of a blocking scheme for a complete factorial experiment, since
we are identifying only one of the blocks:

o
=

A B C abed
o A o o abce
IR cde
- -+ + + 4
= = F = =1 % | bde
-+ - + + 3
— + - — —

E e B & ad
+ - - - + -

These are the eight treatments to be included in the unreplicated fractional factorial experiment we have
selected. More generally, we might choose to replicate each treatment by applying it to runits to allow
estimation of o° and increase precision of estimates, leading to N = r25-%. For any amount of replication
(value of n), the fractional factorial requires 1/4 of the experimental units needed with a blocked or
unblocked complete, or “full,” factorial experiment.

We know that even with a full factorial design organized in regular blocks, we “lose” experimental
information about the factorial effects involved in the confounding scheme (ABC, ADE, BCDE in this
case). It should be intuitively clear that this information is also unavailable with the fractional factorial
experiment — one of the blocks in the full replicate — since we can't hope to increase information by
eliminating 3/4 of the experiment. In fact. even more information is lost because fewer treatments are



information about the factorial effects involved in the confounding scheme (ABC, ADE, BCDE in this
case). It should be intuitively clear that this information is also unavailable with the fractional factorial
experiment — one of the blocks in the full replicate — since we can't hope to increase information by
eliminating 3/4 of the experiment. In fact, even more information is lost because fewer treatments are
evaluated. Specifically, the 2° treatment structure implies that there are 2°-1 factorial effects of interest,
or 2°-4 = 28 factorial effects after “sacrificing” ABC, ADE, and BCDE. But because the fractional factorial
plan contains only eight treatments, we cannot separately estimate all 28 of these factorial effects;
additional information has clearly been lost.

As an example of the additional information loss, look at the signs associated with the BC interaction in
our unreplicated fraction:

A B C D E|BC
= . S I O [
+ F F = %P
- = 4+ + +| -
e e 5B e owe | =
W e i e | =
_— + — — s -
T == % =1
A s e wn oo | o
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It is clear from this table that the BC interaction is completely aliasedwith the A main effect in this
design; that is, the contrast in cell means associated with a is exactly the same as that associated with (
y). Neither A nor BC would be confounded with blocks in the full replicate design (as ABC, ADE, and BCDE
are), and neither is aliased with I in this fraction since each 1s “+” in four runs and “-” in four runs. But A
and BC agre aliased with each other in this fraction; that is, we would not be able to separate the influence
of these two effects using data from the fractional factorial experiment. Information about these two
effects zs available in the blocked full-replicate design because:

I=+4+ABC — +A = +BC in two blocks
I=-ABC — +A = —BC in two blocks



I=+ABC — +A = +BC in two blocks
I=-ABC — +A = —BC in two blocks

so that the aliasing between A and BC is “broken” because the relationship between the two effects, while
constant within any one block, is different from block to block.

In fact, in a regular fractional factorial plan a// factorial effects are aliased in groups. The most obvious
group of aliased effects is ABC, ADE, BCDE, and I, since each is represented by a column of “+”s or “-"s
throughout the design. But the remainder of the factorial effects are also aliased in groups of size 4. In
comparison, a full 2ffactorial experiment executed in regular blocks sacrifices information about just
those factorial effects confounded with blocks; the remainder are orthogonal to blocks and to each other,
s0 they can be estimated or tested.

Again, the generating relation (or “defining relation”, or “identifying relation”) for this fractional
factorial design is:

I1=+4+ABC = -ADE = -BCDE

i.e., the relationship between the effects intentionally aliased with the intercept. Recall that I, ABC, ADE,
and BCDE are “words” or “generators” that stand for columns in the model matrix. We can use element-
wise multiplication of these columns to identify the groups of aliased effects. Continuing our example, we
have identified BC as an effect aliased with A. But more completely, we find all aliases of A by
symbolically “multiplying” all words in the generating relation by “A”:

[=+ABC = —ADE = —BCDE (2*words)
A =4+AABC = —AADE = -ABCDE
A =+4BC = -DE = -ABCDE

because “AA” = x; x x; = 1, et cetera. Hence the A main effect is confounded with 3 = 2°-1 factorial effects:
positively with BC, and negatively with each of DE and ABCDE:
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|A B C D E|BC DE ABCDE




because “AA” = x; x x; = 1, et cetera. Hence the A main effect is confounded with 3 = 2°-1 factorial effects:
positively with BC, and negatively with each of DE and ABCDE:

A B C D E|BC DE ABCDE
= = 4 =] = =
+ + 4+ - +| 4+ - -
i = o e ] = o +
— W= =] == o +
- 4+ = + +| - + +
= R Nl - - o
- N O B = =
e M N R | I -

In the same way, the aliases of the other four main effects can be determined:

B=+AC = -ABDE = -CDE
C=+AB = —ACDE = —-BDE
D =+ABCD = —AE = —BCE
E=+ABCE = -AD = -BCD.

There are two additional alias groups that do not contain main effects. Noting that neither BD nor BE is
an element of any alias group identified to this point, these effects can be used to determine the
remaining two groups:

BD =+ACD = -ABE = -CE
BE =+4+ACE = -ABD = -CD.

These alias groups form a partition of all the factorial effects; each effect is a member of exactly one
group. The seven degrees of freedom available for among-treatment analysis represent the information
that can be gained concerning the seven alias groups after removing the group containing the
experimentally uninteresting “I”. For the general 27 factorial structure, where a single subset of 2+
treatments is used (one block from a 2+ blocking scheme), all 2ffactorial effects (including p) are
partitioned into 27+ groups of size 24, and the effects within each group are completely aliased.

et



experimentally uninteresting “I”. For the general 27 factorial structure, where a single subset of 27
treatments is used (one block from a 2+ blocking scheme), all 27factorial effects (including p) are
partitioned into 2+ groups of size 2+, and the effects within each group are completely aliased.

13.3 Analysis

The result of the 23-2 fractional factorial experiment is eight estimable sfrings of effects, 1.e., the linear
combination of each group of aliased effects in which the coefficients are +1 and -1 to represent positive
and negative aliasing, seven of which don't include I (or p). For example, we noted above that one alias

group is
A = +BC = —DE = —ABCDE.

As a result, the data contrast that is the usual estimate of a is really an estimate of a “string” of effects:

Ela] = a + (87) — (6¢) — (afyde).

TABLE 13.1 Data from Bacteriocin Experiment of Leal-Sanchez et al.g
(2002)

Coded Factors Responses (logig AU/ml)
Glucose Inoculum Size Aeration Temperature Sodium Strain A Strain B
- - - - - 0.00 2.44
+ = - — + 2.90 5.005
- 4 - + = 2.44 1.10
+ + - - - 3.35 7.03
4 L 4 o 5 3.35 5.28
+ — + + - 2.14 3.95
— 1 + - + 2.60 4.82
+ + - + + 1.30 2.74 2.2
< >

Similar expressions can be written for the expected value of the other main effects; for each of them
except &, their alias strings each include only 1 two-factor interaction for the fractional factorial design



< >

Similar expressions can be written for the expected value of the other main effects; for each of them
except «, their alias strings each include only 1 two-factor interaction for the fractional factorial design
we have selected. Given significance of some collection of these strings in a replicated experiment, or
apparent significance via a normal plot in an unreplicated study, the individual effects that are most
likely “real” must be identified by other information — expert knowledge, hierarchy or heredity rules,
and/or further experiments.

13.4 Example: bacteria and bacteriocin

Leal-Sanchez, Jimenez-Diaz, Maldonado-Barragan, Garrido-Fernandez, and Ruiz-Barba (2002)
conducted experiments for the purpose of optimizing the production of bacteriocin from bacteria in
controlled laboratory cultures. Bacteriocin is a natural food preservative that can potentially be useful in
canned foods. The five factors studied in one experiment were the amount of of glucose (1% or 2%
wt/vol), initial inoculum size (5 or 7 log,, CEFU/ml), aeration (1 or 0 liter/min), temperature (25 or 35°C),
and sodium (3% or 5% wt/vol). For each of eight selected combinations of the factor levels, an
experimental trial was performed in which the bioreaction was allowed to take place under
standardized conditions. For each trial, the responses collected were the maximum (over time)
bacteriocin activity detected, expressed in units of log,; AU/ml, for each of two bacteria strains, Z.
plantarum 128/2 (response A) and L. fermentum ATCC 14933 (response B). The experimental design used
was a 2°? single-replicate, regular fractional factorial plan, listed in coded factors along with the
responses for each run in Table 13.1.

13.5 Comparison of fractions

13.5.1 Resolution

Just as some generating relations produce better (for most purposes) blocked, full-replicate designs than
others, some fractional factorial designs are also better than others. Reso/ution, introduced by Box and .,

Hunmter M1961) i< an index nged to comnare frartinnal fartorial de<iens for nverall rmalitv of the 232



Just as some generating relations produce better (for most purposes) blocked, full-replicate designs than
others, some fractional factorial designs are also better than others. Reso/ution, introduced by Box and
Hunter (1961), is an index used to compare fractional factorial designs for overall quality of the
inferences that can be drawn, and is defined as the length of the shortest word (or order of the lowest-
order effect) aliased with “I” in the generating relation. Generally, designs with greater resolution are
deemed better, and a design goal is often to find a fractional factorial design of greatest resolution for a
given number of runs and number of factors. The resolution of a design is sometimes denoted by a
subscripted roman numeral; for example, any fractional factorial formed as one block of the complete
six-factor design denoted by “I = +tABCD = +ABEF (= +CDEF)” would be denoted as a 25-2 fractional
factorial plan.

To see why fractions with large resolution are generally desirable, consider some general cases:

* Suppose a design is of resolution II, with a generating relation including +AB. Then A = +B = ..., that
18, at least some pairs of main effects are aliased.

+ Suppose a design is of resolution III, with a generating relation including +ABC. Then A = +BC = ...,
that is, main effects will not be aliased with each other, but at least some will be aliased with two-
factor interactions. So, resolution III plans support complete estimation of all main effects if all
interactions are absent.

* Suppose a design is of resolution IV, with a generating relation including +ABCD. Then A=+BCD = ...,
that 1s, main effects will not be aliased with each other or with two-factor interactions, but at least
some will be aliased with three-factor interactions. Also AB = +CD = ..., that is, at least some pairs of
two-factor interactions will be aliased. So, resolution IV plans support unbiased estimation of all
main effects even if two-factor interactions are present, but cannot be used to estimate all effects in a
second-order model.

+ Suppose a design is of resolution V, with a generating relation including +ABCDE. Then A = +BCDE =
..., and AB = +CDE = .., that is, all main effects can be estimated without bias if interactions of order
less than 5 are absent, and all two-factor interactions can be estimated if no effects of greater order
are present. So, resolution V plans support estimation of a complete second-order model, and supply

1mmhiaead astimatee whean that mndel 1e rorract
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..., and AB = +CDE = ..., that is, all main effects can be estimated without bias if interactions of order
less than 5 are absent, and all two-factor interactions can be estimated if no effects of greater order
are present. So, resolution V plans support estimation of a complete second-order model, and supply

unhiased estimates when that model is correct.

Generally, the worst cases of effect aliasing in a regular fractional factorial design — that is, the aliasing
relationships involving the effects of lowest order — are determined by the lowest-order effect aliased
with I. A general characterization is that in a design of resolution R no ¢-order effect is confounded with
any effect of order less than R-O. The fractional factorial designs most often used in practice are of
resolution IIL, IV, and V, since designs of resolution II cannot separate the influence of all main effects,

and designs of resolution VI and larger often require more than a practical number of units.
232

As a final example, consider the following three fractions of a 25 factorial structure: =

* Design 1, generated with I = +ABCDE, is a 25! fraction.
+ Design 2, generated with I = +ABCD, is a 2°~* - fraction, and so would usually be considered less

desirable than design 1.
* Design 3, generated with I = +ABC = -BDE (= —ACDE) is a 252, fraction of less resolution than either

design 1 or design 2, butis also a smaller design, and so comparison based on resolution is not

appropriate.

13.5.2 Comparing fractions of equal resolution: aberration

Resolution is a valuable index for grouping designs by overall practical value, but in most cases it
categorizes reasonable choices into only a few groups, and there may be many designs of maximum
resolution for a given problem. Fries and Hunter (1980) introduced design aberration as an additional
index that can be used to “break ties” among designs of equal resolution. The aberration of a design is
the number of words of shortest length (or effects of lowest order) that are aliased with “I” in its
generating relation. For example, consider two 27-%, - fractional factorial designs specified by:
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the number of words of shortest length (or effects of lowest order) that are aliased with “I” in its
generating relation. For example, consider two 27-% fractional factorial designs specified by:

e 1 = +ABCD = +DEFG (= +ABCEFG)
e I = +ABCD = +CDEFG (= +ABEFG)

The second has /ess aberration because it aliases a single four-factor interaction with “I” while the first
aliases two four-factor interactions. In general, the goal is to find a design of:

1. maximum resolution (maximum length of shortest word), and among these
2. minimum aberration (minimum number of shortest words)

or stated another way, a design of minimum aberration from among those that are of maximum
resolution. Designs of minimum aberration are generally desirable because they lead to the smallest
number of alias relationships between low-order effects. For example, the first plan denoted above leads
o six pairs of aliased two-factor interactions, namely:

(AB.CD), (AC.BD), and (AD,BC) because ABCD is in the generating

relation

(DE.FG). (DF.EG), and (DG.EF) because DEFG is in the generating
relation

But the second plan aliases only the first three pairs of interactions, and so would be considered
superior.

(e A
L)

These two criteria can be combined by looking at an ordered list of the number of words of each length
for each candidate design:

Length of Words A
Design 1 2 & 4 5 8 T Hesolution
I =+4+ABCD O 0 0 2 0 1 0) Y

— +DEFG = +ABCEFG



Length of Words A

Design 1 2 & 4 5§ & T Resolution

I = +ABCD (0 0 0 2 0 1 0) Y

= +DEFG = +ABCEFG

I = +ABCD (0O 0 0 1 2 0 0) IV, minimun aberration

= +CDEFG = +ABEFG

[ = +ABC 0 0 1 1 0 0 1) 11

= +DEFG = +ABCDEFG b

In such a list, the designs of maximum resolution are those for which the list contains the greatest
number of “leading zeros,” and among these, the designs of minimum aberration are those for which the
first nonzero entry is smallest. This representation suggests other auxiliary criteria that might be used
(for example, based on the size of the second nonzero entry in each list), and is often a convenient
representation for use in computer searches for good fractional factorial designs.

13.6 Blocking regular fractional factorial designs

The basic idea of regular blocking for fractional factorials takes the same form as in complete
experiments; that is, we select one or more factorial contrasts to be confounded with blocks, with the
understanding that we cannot make inferences about these contrasts (at least when blocks are modeled
as fixed effects). The primary difference here is that the contrasts selected are not individual factorial
effects, but the strings of effects aliased because the design is a fraction. Continuing our previous 23-2
example based on the generating relation I = +ABC = —ADE (= -BCDE), we had eight estimable strings:

“I" =1+ ABC-ADE-BCDE “D” =D+ ABCD - AE - BCE

“A” = A + BC - DE - ABCDE “E" =E+ ABCE — AD - BCD

“B"=B+AC—-ABDE -CDE “BD" =BD + ACD - ABE - CE
“C"=C+ AB- ACDE - BDE *“BE” = BE + ACE - ABD - CD.

Without blocking, the last seven of these are associated with the 7 degrees of freedom that would be
available for comparing treatiments. The fractional factorial design:

|atl ae b bde |



Without blocking, the last seven of these are associated with the 7 degrees of freedom that would be
available for comparing treatments. The fractional factorial design:

ad nae b bde

¢ ode abed abce

can be divided into two blocks of size 4 by confounding one of the effect strings with blocks. Suppose we
select “BD”, that is, we split the treatments included in the fraction using the BD column or any other 234
column associated with an effect in the “BD” alias group. The resulting blocked fractional factorial is =

then:

block 1 block 2
ac bde ad b
¢ abed cde abce

from which we could estimate the six effect strings “A” through “E” and “BE”. The contrast associated
with “BD” is now confounded with the block difference, and its associated single-degree-of-freedom sum
of squares would be separated as “block” variation in a fixed-block ANOVA. As is the case with full
replicates, we could split each of these blocks a second time by confounding a second effect string, say
“BE”. But, this would involve a generalized interaction also, BD = BE = DE, as well as its aliases, i.e., the
aliased group “A” = A + BC — DE - ABCDE. But since the main effect A is included in this group, its effect
cannot be assessed while simultaneously correcting for block differences, even if we are willing to
assume the other three factorial effects in the group are zero. Note, however, that this is the best we can
hope for in this case; with eight data values and four blocks there remain only four degrees of freedom
within blocks for assessing treatment differences, so the design:

block 1 block 2 block 3 block 4
bde ae b ad
C abed cde abece

will clearly not support simultaneous estimation of all five main effects.

13.7 Augmenting regular fractional factorial designs



will clearly not support simultaneous estimation of all five main effects.
13.7 Augmenting regular fractional factorial designs

13.7.1 Combining fractions

Because fractional factorials lead to more ambiguous analysis than full factorial experiments,
experimenters often use them in sequence so as to intelligently “build up” the information needed about
the joint effects of the factors. For example, a preliminary experiment based on a fractional factorial
design may be performed. If the results are uninteresting or do not show promise in the context of the
study, the experimental effort may be terminated. But if the results are interesting or surprising, the
natural reaction may be to perform a follow-up experiment to gain more information, by reducing the
length of the estimable strings of effects to provide a more complete picture of the factorial effects. This
can be easily accomplished in the framework of regular fractional factorial designs.

Suppose, for example, that the 2°-2 fractional factorial design discussed in Section 13.6, generated with:

235

has been completed. Recall that this design includes eight experimental treatments, and provides =
estimates of eight effect strings previously listed:

S, “A”, “B”, “C”, “D”, “E”, “BD", “BE”

each containing 4 factorial effects. Let's say the resulting data are interesting, but indicate that the
collection of factors have more (or more complex) effects on the response than was expected. A
reasonable reaction is to expand the study — that is, to gugmentthe design. The initial 1/4 fraction can be
converted to a regular 1/2 fraction by adding any one of the other 1/4 fractions based on the same
generating relation, that is, with different signs attached to ABC, ADE, and BCDE. For example:

first 1/4 fraction: I = +ABC = —ADE = (-BCDE)
+ second 1/4 fraction: I=-ABC = -ADE = (+BCDE) .
= combined 1/2 fraction: 1= ~ADE




generating relation, that is, with different signs attached to ABC, ADE, and BCDE. For example:

first 1/4 fraction: I =+ABC = -ADE = (-BCDE)
+ second 1/4 fraction: I=-ABC = -ADE = (+BCDE) .
= combined 1/2 fraction: 1= ~ADE

Note that with a fractional factorial of twice the original size, there are now twice as many estimable
strings (counting “I”, now 16 of them), and that each of them contains half as many effects (now two).
Selecting a different second 1/4 fraction results in a different augmented design. For example:

st 1/4 fraction: I = +ABC = —ADE = (-BCDE)
+ 2nd 1/4 fraction: I = —=ABC = +ADE = (-BCDE) .
= combined 1/2 fraction: 1= ~BCDE

This half-fraction is of greater resolution, and so would ordinarily be preferred if the purpose of the
follow-up runs is equally focused on the effects of all factors.

To state this in a more general form, we may start with a regular 2 fraction:

[=W, = Wh =...W,(= WW;...)

where each Wor symbolic product represents a signed factorial effect, including 2°-1 words (selected
effects and generalized interactions other than I). We then add a second 27+ fraction:

I=-W=Wy=...— W,(= -WWa...).

In doing this, we may select any fraction from the same family (other than the fraction used in the first
experimental stage) by reversing the signs on any combination of the independent generators. In all, 25
of all words (independent generators and generalized interactions) will have different signs in the two
fractions. The combined design is a regular 2+ fractional factorial for which the generating relation
contains all words for which the sign is the same in both 2#+ fractions.

238

For example, suppose we begin with a 2,/ fraction, with generating relation: =7

I=+ABC
= +CDE (= +ABDE)



For example, suppose we begin with a 2,7 fraction, with generating relation:

I= 4+ABC
— +CDE (= +ABDE)
— _ADF (= -BCDF = —ACEF = —BEF).

If we choose to continue the study after seeing the results of this experiment, it would often be good to
select a second-stage fraction from the same group so that the generating relation for the combined
experiment contains no words of length 3; this would increase the resolution of the combined
experiment to IV. Note that if the second set of runs is identified by reversing the signs of the first three
factors, this will accomplish our purpose. The second 25-2 fractional will then have generating relation:

1=—-ABC
— —CDE (= +ABDE)
= +ADF (= —BCDF = —ACEF = +BEF)

and the resulting combined design is a 2% regular fraction with generating relation:

I = +ABDE = —BCDF(= —ACEF).

We could subsequently expand this 1/4 fraction to a 1/2 fraction the same way, by adding (say) the 252
fraction defined by:

I = —~ABDE = —-BCDF(= +ACEF).
The combined result is a 25-! fractional factorial with generating relation:
I = -BCDF.

Note that if we had begun our investigation with a 25-! fractional factorial design, we would have had the
opportunity to use a half-fraction of greater resolution, e.g., the fraction generated by:

I = +ABCDEF.

Hence there can be an “information cost” associated with sequential experimentation; the half-fraction,
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I = +ABCDEF.

Hence there can be an “information cost” associated with sequential experimentation; the half-fraction,
here a 25-1 fraction developed by two “doublings” of a 25-3 fraction, is not a design of maximum
resolution. But if the experimental questions of interest can be adequately answered using only the data
collected in the first, or first and second stages of the experiment, the sequential approach will have
reduced the cost of the experimental program.

Finally, regardless of the regular 27! half-fraction we have, a full factorial plan can be achieved with a
final doubling — in our example, by adding I = +BCDF.

13.7.2 Fold-over designs

Recall from discussion of blocked complete factorial designs (Section 12.6) that, given one block of runs, .
other blocks can be constructed by reversing the signs of a selected set of factors. This leads to two =
practical techniques for augmenting a resolution III design, based on the analysis of the data. For

example, suppose we begin with a 2 -3 fraction:

1 = +ABC = +CDE (= +ABDE) = —ADF (= —BCDF = —ACEF
= —BEF).

Suppose analysis of the eight data values, or 8rvalues if each treatment is replicated, suggests that factor
A 1s potentially important, and we want more information about factorial effects that involve this factor.
In selecting a second 25-3 fraction, we can reverse the sign for only factor A in the augmenting fraction,
l.e., add a second stage defined by:

1 = —-ABC = +CDE (= —ABDE) = +ADF (= —BCDF = +ACEF
= —BEF).

Together, the two 25 fractions form a regular 25-2 fraction:

| = +CDE = -BCDF (= —-BEF ).
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Together, the two 25 fractions form a regular 252 fraction:

| = +CDE = -BCDF (= —BEF ).

Note that the generating relation for the combined fraction contains no effects involving factor A,
because each of these have opposite signs in the two one-eighth fractions. As a result, the aliases of the
main effect for A:

A = +ACDE = —ABCDF = —-ABEF

are each four-factor interactions. Further, aliases of two-factor interactions involving A, e.g., AB =
+ABCDE = —ACDF = -AEF, are each interactions involving at least three factors. Since the A main effect
and all two-factor interactions involving A are individually estimable if there are no interactions of order
3, this means that the resulting design is effectively of resolution V for factor A (although not for all
factors). Hence this combined design is especially effective for gaining additional information about the
nature of the effects related to factor A.

Alternatively, suppose analysis following the first stage of experimentation suggests that g//factors are
potentially interesting, and we want more information on the entire system. If we reverse the signs of all
factorsin the augmenting fraction, the generating relation for the second one-eighth fraction is:

I = —ABC = —CDE (= +ABDE) = +ADF (= —BCDF = —ACEF =
+BEF).

Again, the two 25-3 fractions form a regular 25-2 fraction, but with a different generating relation:

1 = +ABDE = —~BCDE ( = —ACEF ).

Here the shortest word is of length 4, implying that the design has been improved to resolution IV (for all
factors). Generally, it is easy to see that reversing the signs on all factors in a second-stage fraction results
in a combined experiment with a generating relation containing only words of even length. Hence if the
original fraction is of resolution III, the combined fraction constructed in this way will be of resolution at
least IV.
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in a combined experiment with a generating relation containing only words of even length. Hence if the
original fraction is of resolution III, the combined fraction constructed in this way will be of resolution at
least IV.

238

Other design augmentation strategies involving the addition of fold-over runs have been investigated. =
For example, John (1966) and Mee and Peralta (2000) have discussed approaches that involve adding
fewer fold-over runs than the experiment doubling techniques discussed here.

13.7.3 Blocking combined fractions

The discussion of subsections 13.7.1 and 13.7.2 assumes that experimentation is done in stages, i.e., that
related fractions are combined in sequence to result in a larger design with better properties. In many
applications, experimenting in stages raises the question of whether the result should be viewed as a
blocked design. If the operating conditions and/or the available experimental material are not the same
during each stage, these potential systematic differences may suggest that the analysis of the combined
data should account for possible block effects.

Again, consider the 2°-2 example in which two related fractions are used in sequence, but now
considered as blocks:

Block 1: I = +ABC = —ADE(= —BCDE)
Block 2: | = -ABC = +ADE(= —BCDE).

Each block individually provides estimates of the same eight effect strings, but with different signs
assigned to the effects within groups. For example, A + BC — DE — ABCDE is estimable in block 1, while A
— BC + DE - ABCDE is estimable in block 2. Taken together, the combined fractional factorial design is
defined by

I = -BCDE

which yields 16 estimable strings of two effects each; one of them, for example, is “ABC” = ABC — ADE.
Note that “ABC” is comprised of factorial effects that each have a constant sign within each block, i.e.,
that are elements of the original generating relation, but for which the signs are different in the two



which yields 16 estimable strings of two effects each; one of them, for example, is “ABC” = ABC — ADE.
Note that “ABC” is comprised of factorial effects that each have a constant sign within each block, i.e.,
that are elements of the original generating relation, but for which the signs are different in the two
blocks. Put another way, these two effects are not only aliased with each other, but they are also
confounded with (or “sacrificed to”) blocks if we regard the combined experiment as blocked. The
remaining alias groups of effects are orthogonal to blocks, and so the associated effect strings can be
estimated.

Consider another example: begin with a 25 fraction (block 1):

I=4ABC
+CDE (= +ABDE)
—~ADF (= -BCDF = —ACEF = —BEF).

Il

At this point, the seven estimable strings (excluding “I”) contain eight effects each. Now add the 253
fraction (block 2):

I=-ABC
—-CDE (= +ABDE)
= +ADF (= -BCDF = —-ACEF = +BEF).

The result i1s a 252 fraction: 240
I = +ABDE = —BCDF(= —ACEF)

in which the 15 estimable strings contain four effects each, and the specific string ABC + CDE — ADF -
BEF is confounded with blocks because it is positive throughout block 1 and negative throughout block 2.

Subsequently, we could add two additional 25-3 fractions (blocks 3 and 4):

I=+ABC
= +CDE (= +ABDE)
= +ADF (= +BCDF = +ACEF = +BEF)

and



& = TSN

= +CDE (= +ABDE)
= +ADF (= +BCDF = +ACEF = +BEF)

and
I=-ABC
= —-CDE (= +ABDE)
= —ADF (= +BCDF = +ACEF = —BEF)
which together form

I = +ABDE = +BCDF(= +ACEF).

When combined with blocks 1 and 2, the result is a 25! fraction:
1= +ABDE.

This blocked half-fraction yields 31 estimable strings containing two effects each, and three of them:

BCDF + ACEF, ABC + CDE, and ADF + BEF

are confounded with blocks. Finally, we might add the remaining four 253 fractions from this group
(blocks S through 8):

1 =-ABDE

to complete a full 2° experiment. Estimable strings are now reduced to individual effects, seven of which
(those included in the original generating relation) are confounded with blocks.

Finally, recall from subsection 12.4.1 that information about the factorial effects confounded with blocks
can be “recovered” through inter-block analysis when block effects can be assumed to be random. Such
split-plot analyses can be applied to blocked fractional factorial plans also, where effect strings
confounded with blocks are analyzed at the whole-plot stratum. Bingham and Sitter (2001) and Loeppky
and Sitter (2002) discuss in more depth the problem of designing fractional factorial split-plot
experiments.
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confounded with blocks are analyzed at the whole-plot stratum. Bingham and Sitter (2001) and Loeppky
and Sitter (2002) discuss in more depth the problem of designing fractional factorial split-plot
experiments.

13.8 Irregular fractional factorial designs

A major constraint attached to the use of regular fractional factorial designs is the requirement that the
number of treatments included be a power of 2. This can be a serious practical problem, especially when ..,
fis relatively large. For example, the smallest resolution III regular fraction for 10 two-level factors =
contains 16 runs. A larger regular fraction in 32 runs could be chosen instead, but there are no regular
alternatives available between these two sizes. In this section, we describe Placketi-Burman (1946)

designs, another class of resolution III, two-level fractional factorial designs for which first-order effects

are orthogonally estimable. (These are a particular collection of designs in a broader class called

orthogonal arrays, e.g., Hedayat, Stufken, and Sloane (1999).) The number of treatments included in the
smallest Plackett-Burman design that will accommodate ffactors is the smallest multiple of 4 that is at

least +1, and larger designs can be constructed for any larger value of Nthat is also a multiple of 4. So

for 10-factor experiments, designs without replication can be constructed in 12,16,20, ... runs, and designs
for which each treatment is equally replicated can be constructed in any multiple of these numbers.

Construction of the designs of Plackett and Burman is easy if one has access to their paper or the tables
first published there. The table rows are indexed by values of Nfor an unreplicated design (multiples of
4), and for a given value of Athe table entry is a sequence of A~1 “+” and “-” symbols, representing one
of the combinations of factor levels to be included in the design. For a given value of A the
corresponding design in = N-1 factors is generated by using:

+ the sequence of symbols to specify factor levels in the first run,
+ successive cyclical permutations of these symbols to specify runs 2 through N-1, and
* ———..-(ie,the treatment in which all factors are set to their respective low levels) in run M.

Plackett and Burman presented a table running through most values of Athat are multiples of 4, through

A A b 1 a | 1 a b 1 .7 . 1 £ 1 " -1 " a 11 [l b |
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* — ——..-(ie, the treatment in which all factors are set to their respective low levels) in run M.

Plackett and Burman presented a table running through most values of Athat are multiples of 4, through
100, and subsequent authors have extended their work. A small segment of this table follows:

N First Row

8|+ + + - 4+ = -

24+ + - 4+ 4+ 4+ - - - 4+ -

6(+ + + + - + - + + - - 4+ = = -

20+ + - - ++ 4+ 4+ -4+ -4+ - = - - 4+ + -

In fact, reference to the “first” run, et cetera, and to low and high levels of each factor can (and usually

should) be randomized in any application. This can be done by constructing an N x= (A-1) design matrix
via the rules above, randomly assigning physical factors to columns, within each column randomly

assigning the two factor levels to the “+” and “~” symbols, and performing the sequence of &
experimental runs in a randomized order.

Because Plackett-Burman designs are generally of greatest interest when the number of experimental
runs must be limited, they are often implemented in unreplicated studies. However, using r> 1 “copies” ..,
of the basic design, when acceptable, maintains the balance of the design and allows formal inference e

based on a pure error mean square.

For example, suppose we wish to construct a Plackett-Burman design in eight runs for seven factors.
Using the rules above, we determine that (ignoring run-order randomization) the model matrix for an
unreplicated eight-run design, assuming a main-effects model, is:

(+ + 4 f = o - —\
+ -t = -
+ — e oy A =
M = + + - = 4+ + 4+ -
+ - = = 4 $ +
-+ + - + - - + +
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For 4, 5, or 6 factors, any subset of these columns can be used. Further examination shows that in any of
these cases, the design just constructed is actually a regul/arfractional factorial design of resolution III; a
generating relation for the 7-factor design is I = +ACD = +BDE = +CEF = +DFG (plus generalized
interactions). This is true of all Plackett-Burman designs for which Nis a power of 2. Plackett-Burman
designs for which Nis not a power of 2 are called nongeometric designs, and while they also provide
orthogonal estimates of main effects, the alias structure between these estimates and interactions is
more complex than in the regular case. Hamada and Wu (1992) show that this relatively complex
aliasing structure can actually be an advantage when a primary goal of the experiment is to identify a
few factorial effects that adequately describe the behavior of the response variable.

13.9 Conclusion

Regular fractional factorial designs allow inferences concerning 27 treatments in experiments employing
only 27+ treatments, but useful analysis of the resulting data generally requires additional assumptions
about the nature of the factorial effects. These assumptions usually amount to at least a tentative
statement that some factorial effects are absent, e.g., higher-order interactions (following hierarchical
assumptions about the model) or all effects involving some or most factors (“factor sparsity”). Knowledge
of the system being studied and selection of an appropriate fraction in the presence of that knowledge
are important for successful use of fractional factorials.

Resolution and aberration are useful indices for selecting a good general-purpose fractional factorial

design for a given number of factors in a given number of runs. Sequential experimentation can be 242
organized around combining fractions, guided by interim analysis of data collected through each stage. **
Sequential experimental plans can be treated as blocked to account for unintended stage-to-stage
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design for a given number of factors in a given number of runs. Sequential experimentation can be 242
organized around combining fractions, guided by interim analysis of data collected through each stage.  **
Sequential experimental plans can be treated as blocked to account for unintended stage-to-stage

variability.

The simplicity of analysis of data collected from regular fractional factorial designs stems from the fact
that any two factorial effects are either orthogonal (when they are in different alias groups) or
completely confounded (when they are in the same alias group). This structure imposes substantial
constraints on the size of regular fractions; specifically, the number of treatments included must be a
power of 2. When this restriction is not practical, irregular fractions, which do not preserve all of the
structure of regular plans, may be used. One popular class of resolution III irregular fractions is the
Plackett-Burman series, for which the number of included treatments is a multiple of 4.

13.10 Exercises

1. Recall that in Section 13.7, we began with a 253 fractional factorial plan:
I=+4+ABC

= +CDE (= +ABDE)

= —ADF (= -BCDF = —-ACEF = -BEF)
and after doubling it twice, came to the half-fraction:

I = —BCDF.

Is it possible to double this plan differently, or begin with a different 253, fraction, so that a 25!
fraction of greater resolution results from two doublings?

2. In subsubsection 13.7.2, we discussed two forms of fold-over designs. In one, the initial runs are
augmented by a new set in which only the sign of one factor is reversed; the main effect associated
with the selected factor is then aliased with interactions of order at least 4. In the other, the signs of
all factors are reversed in the second set of runs; every main effect is then aliased with interactions
of order at least 3. If the signs of fwo (< f factors, say A and B, are reversed in the second set of runs,
what can be said about the resulting aliases of the two corresponding main effects? (Montgomery
and Runger (1996) address this and related experimental augmentation strategies.)
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of order at least 3. If the signs of fwo (< £ factors, say A and B, are reversed in the second set of runs,
what can be said about the resulting aliases of the two corresponding main effects? (Montgomery
and Runger (1996) address this and related experimental augmentation strategies.)

For the experiment of Leal-Sanchez et al. (2002) described in Section 13.4:

(a) Determine the generating relation for the design used.

(b) Determine the estimable strings (including all factorial effects) for the experiment. Tentatively
assuming that all interactions are absent, compute estimates of the five strings that include main
effects, for each of the two responses (strains). Which (if any) of these effect strings are
significant? (Use 2-degree-of-freedom #statistics to answer this.)

(c) Based on your analysis in part (b), what 25-2 fraction would you recommend to Leal-Sanchez et

al. for the next stage of their investigation?
243

244

Suppose you begin a study with an Arun Plackett-Burman design (not necessarily a regular
fractional factorial). You decide to augment this initial design with its complete fold-over, i.e., ;
more runs selected by reversing all factors in all the original runs. Prove that in the completed

2 N'run experiment, estimates of main effects are not aliased by any two-factor interactions. Assume
that the two Arun fractions do not need to be treated as blocks.

A fractional factorial design of resolution V allows estimation of all parameters in a model
containing an intercept, main effects, and two-factor interactions. Therefore the number of
treatments included in the design must be at least as large as the number of parameters in this
model. Using this information:

(a) Find a lower bound on the number of treatments in a regularfractional factorial of resolution V
for 8 factors.
(b) Find a generating relation that can be used to construct a resolution V fraction of this size.

For each of the following, write a generating relation for a fractional factorial design of resolution
IT1, for which the main effect for factor A is not confounded with 2- or 3-factor interactions.

(a) 241
(b) 252
(c) 283
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containing an intercept, main effects, and two-factor interactions. Therefore the number of
treatments included in the design must be at least as large as the number of parameters in this
model. Using this information:

(a) Find a lower bound on the number of treatments in a regularfractional factorial of resolution V
for 8 factors.
(b) Find a generating relation that can be used to construct a resolution V fraction of this size.

For each of the following, write a generating relation for a fractional factorial design of resolution
IT1, for which the main effect for factor A is not confounded with 2- or 3-factor interactions.

(a) 241

(b) 252
(c) 283

. Addelman (1961) introduced the idea of 3/8 fractions, combinations of three 1/8 fractions based on

generating relations containing the same “words” but with different signs. Note that these are nor
regular fractional factorial designs, but sometimes require fewer treatments than regular fractions

of the same resolution. For example, a 3/8 fraction of a 2° factorial experiment generated with:
I=+ABC = +CDE = -ADF

I=-ABC = —CDE = +ADF

I1=+ABC = +CDE = +ADF
contains 24 treatments and allows joint estimation of all main effects and 2-factor interactions if all
higher-order interactions are zero, while a regular resolution V fraction would require at least 32
runs. Using a computer, determine which pairs of factorial effect estimates are correlatedusing this
3/8 fraction, and the size of these correlations.
. Taguchi (as described by, e.g., Kackar, 1985) discussed the use of product arraysin industrial
experiments. An example of a product array in six factors can be constructed by generating the 244
3-factor fraction associated with I = +ABC and the 3-factor fraction associated with I = +DEF, and =4
constructing the 16-treatment design comprised of every combination of the four treatments in the
first design with the four treatments in the second. The result is a regular fractional factorial design
in all 6 factors. What is the generating relation of this product (array) design?



CHAPTER 14 Factorial group screening experiments

14.1 Introduction

The smallest regular two-level factorial designs we have studied for examining the main effects of 1
factors are the resolution III fractions, for which the number of included treatments must be at least the

smallest power of 2 greater than £ In many cases, somewhat smaller Plackett-Burman plans can be used.

However, there are occasionally situations in which preliminary factor screening experimentation must
be carried out for a large number of factors, with the expectation that most will have little or no
influence on the responses, and with the goal of identifying those few that do have nonnegligible effects
for subsequent follow-up experimentation. In some screening situations, even orthogonal resolution III
plans may require an unrealistically large number of experimental runs. Clearly, the use of smaller
experimental designs will require even more assumptions. But such assumptions may be justified when
effect sparsity is expected and follow-up experiments will be conducted to provide more precise
estimation of effects found to be “active” in the screening study.

Factorial group screening designs rely on the seemingly unusual strategy of completely aliasing subsets
of main effects, so that the overall size of the experiment will be small relative to the number of
individual factors. We will describe factorial group screening plans that are comprised of orthogonal
designs that are actually of resolution II — that is, with identifying relations including words such as AB
— in the individual factors.

For example, suppose a two-level factorial experiment is needed to discover which few of 25 factors
actually have some effect on the response. The first stage of a group screening study might be based on
an experiment in which the factors are divided into five groups of five factors each. Within each group,
the factors are intentionally aliased — that is, all five are applied either at their respective high levels or
low levels in each run. The first experiment can then be thought of as being executed to examine the
effects of five “group factors”; possible designs would then include the full 2° factorial design, or 2!, or
254 fractions, any of which might be replicated. Suppose that a main effects model (in the five group
factors) is used to analyze the data from the first stage experiment, and that only one of the groups

247
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effects of five “group factors”; possible designs would then include the full 2° factorial design, or 25!, or
254 fractions, any of which might be replicated. Suppose that a main effects model (in the five group
factors) is used to analyze the data from the first stage experiment, and that only one of the groups
fippears to be “active,” that is, has an effect judged to be nonzero. A tentative conclusion might then be
that the factors in the remaining groups do not affect the response, and that at least one factor from the
“active” group is important. A second stage experiment could then be constructed to obtain information
about the effects of the five individual factors in this group, the other 20 factors being held at constant
levels. Again, a full 2° factorial or fractional 25! -or 252y plans, possibly replicated, could serve this
purpose. If (say) resolution III fractions had been used in each stage, and each had been performed in
two replicates to allow for estimation of variance, the total experimental program would have required
32 experimental runs, whereas a replicated regular fractional factorial of resolution III in all 25
individual factors would have required 64 runs, and a replicated Plackett-Burman design would have
required 56 runs.

There are clearly risks involved in using such a strategy. Some apparently “inactive” groups removed in
the first stage might actually include important factors for which the effects “cancel” in the group. Also,
there is no guarantee that only one first-stage group is judged to be active; in the worst case, a// group
factors might appear “active” in the screening experiment, requiring a second-stage experiment large
enough to reconsider g//individual factors. We will cover these issues more carefully in Section 14.4, but
note here that when the majority of individual factors actually do have little or no effect on the response,
and appropriate care is taken in the factor grouping assignments, group screening can be a very effective
and efficient experimental strategy.

14.2 Example: semiconductors and simulation

Ivanova, Malone, and Mollaghasemi (1999) used a group screening experiment to determine which of
17 inputs were most influential on the output of a whole-line semiconductor manufacturing stochastic
simulation model. The inputs (or factors for our purposes) listed in Table 14.1 were each considered at
two different levels, and the output (response) examined was the number of wafers produced in a
certain period of time for one of the products. Because the semiconductor manufacturing process
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simulation model. The inputs (or factors for our purposes) listed in Table 14.1 were each considered at

two different levels, and the output (response) examined was the number of wafers produced in a

certain period of time for one of the products. Because the semiconductor manufacturing process

contains a large number of sequential steps (around 250 in this case), overall production characteristics

are heavily dependent on the “queueing” patterns that develop between steps. An initial “queue size
analysis” identified three general kinds of process steps as being most critical in plant throughput,
specifically stepper, implanter, and efchersteps. Further, it was expected that for any kind of process
machinery, mean time to failure, mean time before repair, lot dispatch rules, number of machines, and
operator ratio could have an important impact on process performance. Guided by this general

knowledge of the system, five group factors were defined associated with mean time before failure, et
cetera, each containing three individual factors associated with steppers, implanters, and etchers,
respectively. Within each group, “high” and “low” levels of each individual factor would be expected to

have the same qualitative effect on the output variable, e.g., an increase in mean time to failure would

likely increase throughput whether it is encountered in stepper, implanter, or etcher stages. Finally, two ..
additional model inputs were considered, /ot release rules and hot lots percentage, these inputs are not ~ **
50 clearly related to the first 15, and were isolated as individual factors (i.e., groups of only one

individual factor each) in the screening experiment.

TABLE 14.1 Factor Groups in Screening Study of lvanova et al.
(1999)

Group
Individual Factor Factor
1 Mean Time Before Failure/steppers A

2 Mean Time Before Failure/implanters A




10

11

12

Mean Time Before Failure/steppers

Mean Time Before Failure/implanters

Mean Time Before Failure/etchers

Mean Time To Repair/steppers

Mean Time To Repair/implanters

Mean Time To Repair/etchers

Lot Dispatch Rule/steppers

Lot Dispatch Rule/implanters

Lot Dispatch Rule/etchers

Number of Machines/steppers

Number of Machines/implanters

Number of Machines/etchers




12 Number of Machines/etchers D

13 Operator Ratio/steppers E

14 Operator Ratio/implanters E

15 Operator Ratio/etchers E

16 Lot Release Rules F

17 Hot Lots Percentage G “
< >

The initial screening experiment was designed as the regular 273, fractional factorial in the seven group
factors, associated with the generating relation:

1 = +ABCE = +BCDF = +ACDG

s0 that 7= 16 unique treatments (model input parameter vectors) were included in the study. For each
input vector, the model was run five times with a different random number seed each time, that is, r=35
replications were included for each treatment for a total of &//= 80 response values. When the seven
(group) main effects were tested at the a = 0.15 level, those for groups B, E, and F were significant. As a
result, a second stage of experimentation was carried out focusing on the seven individual factors in
these groups (4, 5, 6, 13, 14, 15, and 16). At this stage, an unreplicated regular 272, fraction in &= 32 runs
was used; subsequent testing of effects at the a = 0.05 level indicated that factors 14, 15, and 16, along
with three two-factor interactions each involving one of these factors, were significant. Note that the
entire experimental program required 112 runs; the smallest regular resolution IV fraction in the



these groups (4, o, b, 15, 14, 1o, and 1ob). AT NS stage, an unreplicated regular 4/~ Iraction 1n /vV= s runs
was used; subsequent testing of effects at the a = 0.05 level indicated that factors 14, 15, and 16, along
with three two-factor interactions each involving one of these factors, were significant. Note that the
entire experimental program required 112 runs; the smallest regular resolution IV fraction in the
original 17 inputs would have contained 64 factor combinations, so that two replicates of this plan would
have involved 128 simulation runs, and five complete replicates, as used by Ivanova et al. in their
screening experiment, would have required 320 runs.

240
250

14.3 Factorial structure of group screening designs

The earliest forms of group screening designs were not developed for factorial experiments, but for
situations in which multiple samples of material were intentionally combined and evaluated with one
physical test to determine whether any of the samples in the pool contained a substance of interest. An
application that received substantial attention was the testing of pooled blood specimens for a relatively
rare antigen; if analysis of the pooled sample was negative, all individuals represented in the pool were
classified as antigen-free, but if analysis of the pooled sample was positive, each individual had to be
retested individually. Dorfman (1943) provided a statistical framework for such studies. Watson (1961)
described how these ideas can be extended to factorial experiments. Watson's work and subsequent
developments are reviewed by Morris (2006).

As noted in Section 14.1, factorial group screening may be a reasonable approach to experimentation
when (1) it is reasonable to assume that most factors have no or negligible influence on the response, a
situation often called effect sparsity, and (2) the immediate experimental goal is to determine which few
of the factors actually do have nonnegligible effects. Suppose the findividual factors of interest are
divided into gnumbered groups containing £, £, ..., £ individual factors, respectively. For convenience,
label the first group factor A, and the individual factors in this group A, through A,, and use similar
notation for the remaining individual factors and groups. In terms of the individual factors, a group
screening design is a resolution II plan for which the identifying relation contains:

I'=A A =AA3=...=A; 1Ay
B1B2 = BzB:; = saa = B_fz_1B‘f2
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I=AA;=AA3=...=A_ 1Ay
B[Bg = BgB:; =...= B_fE_IB_fz
G1Gy =G2G3=...=Gy, Gy, ...

plus generalized interactions implied by these words. There are >t (fi=1) =f = 9words (not
counting generalized interactions) aliased with “I” in this expression, so if no additional words are
included, the associated fractional factorial design includes 254 = 2, treatments — a full factorial
arrangement in the ggroup factors. A little thought will show that the generalized interactions implied in
this identifying relation include all words of even length that can be formed from factor labels associated
with the same group; for example, A;A:A A5 is a generalized interaction because it can be formed as the
symbolic product:

A]."-"Lg b4 AQA;; b3 A.;Ag 4 A;-,Aﬁ.

Similarly, words that include an even number of factor levels from each of multiple groups, e.g.,
A;AB,B;B3B,, are also generalized interactions. But words that include an odd number of factor labels 260
from any group are not included. To see this, note that the product of any AA; and AA;results in a two- =
letter word if one index from the first word matches one from the second, or a four-letter word if there

are no common indices. By extension, further multiplication by words comprised of factor labels from

the first group cannot result in a word of odd length.

If a smaller design is desired, additional words can be added to the generating relation containing one
factor label (or equivalently, any odd number of factor labels) from each of several groups, for example
A,B;C;. At this point, we can simplify notation by realizing that since all factors in a group are
confounded — i.e., are indistinguishable within the design — we can ignore the subscripts identifying
particular individual factors and refer to this simply as ABC, associated with a group three-factor
interaction. Addition of this new “independent” word to the generating relation results in a design of half
the previous size, now 2#! treatments, and can be thought of as the half-fraction identified by I = ABC in
the group factors. Hence while the design is of resolution II in the individual factors (because, for



particular individual factors and refer to this simply as ABC, assoclated with a group three-factor
interaction. Addition of this new “independent” word to the generating relation results in a design of half
the previous size, now 2£! treatments, and can be thought of as the half-fraction identified by I = ABC in
the group factors. Hence while the design is of resolution II in the individual factors (because, for
example, A;A; 1s in the generating relation), the group factor design is of resolution III. Depending on the
number of group factors and the required resolution of the group factor design, further words comprised
of the unsubscripted group labels can be added to produce a smaller fraction; if ssuch independent
words are selected, the resulting design will include 24+ treatments. In the example of Section 14.2, the
investigators divided 17 factors into seven groups and used a resolution IV, one-eighth fraction, or 273
of 16 treatments in the first stage of screening.

Data analysis following a group screening design focuses on the groups, since no information is available
that allows separation of the influence of individual factors within a group. For example, if the main
effects associated with the individual factors in group 1 are denoted by ay, a,,...a, then the expectation of
each response from the screening experiment contains either

+ai oo +og4 - ap

for runs in which all factors in group 1 are set at their high levels, or

= =y O =y

for runs in which all factors in group 1 are set at their low levels. As a result, we may write a model for

the data in the screening experiment substituting a group main effect, ™ = Z{.il @i which appears
positively for runs in which the “group factor” is at the high level and negatively for runs in which it is at
the low level. Similarly, all £ £ two-factor interactions associated with one individual factor from group 1
and one individual factor from group 2 must take a commeon sign in each run, so their sum can bhe

A — i J2 b
replaced with a group two-factor interaction, (®7) = 2221 22521 (4iB5) Byt two-factor interactions for
which both factors are members of the same group are aliased with p, e.g., recall that A,A, is aliased with

I in the generating relation and so +(a,a,) appears in the expectation of each response.
251

More generally, the mean structure for a group effects factorial model may be written: =
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I in the generating relation and so +(a,a,) appears in the expectation of each response.
251

More generally, the mean structure for a group effects factorial model may be written: =

Ey)=pect+a+p+y+---+(af)+- -+ (afy) +---

with the understanding that each main effect or interaction term actually includes the sum of all main
effects or interactions from the indicated group or groups. Interactions involving an even number of
factors from each group are aliased with p. Interactions involving an even number of factors from some
groups, but an odd number of factors from one group, are aliased with the main effect for the last group.
For example, (0;04pP,) is included in p because A;A; is included in the generating relation, and so B, =
A;A;B,. Hence all 27individual effect factorial terms are included in one of the 25 group effect terms if a
full 2¢ factorial design is used. If a fractional factorial design in the group factors is used instead (i.e., a
2&= fraction), further aliasing exists based on the fraction selected.

For a small example, suppose six factors are combined in three groups of size 2. Factorial effects in an
individual effects model include ; the six main effects aj, a,, By, P2, y1, and y,, 15 two-factor interactions
such as (azy1), et cetera, through the single six-factor interaction (ayazp:zy1yz). The group effects model
contains pg the three main effects a, p, and y; three two-factor interactions including (aff); and the single
three-factor interaction (afy). Table 14.2 displays the relationship between group effects and individual
effects. In general, each pth order group interaction contains the sum of all pth order individual
interactions in which each factor is associated with a different group, and other individual interactions
of order p+2, p+4, et cetera, for which some groups contribute an even number of individual factors. If
the group screening design is one or more replicates of the complete 23 design in the group factors, all
parameters in the group effect model are estimable, implying that all equivalent sums of parameters in
the individual effects model are estimable.

TABLE 14.2 Relationship Between Group Model Parameters and
Individual Factor Parameters in the Example of Section 14.3




TABLE 14.2 Relationship Between Group Model Parameters and
Individual Factor Parameters in the Example of Section 14.3

Group Factor Model Terms

Individual Factor Model Terms

1G

i+ (raz) + (B152) + (v17y2) + (a1 a1 32)
+(araemy2) + (B1Bev172) + (e fB1B2v172)

@t Zil a; + (aif132) + (viv1y2) + (@i fB1527172)

p Soiy Bi+ (ara2Bi) + (Bimyz) + (er02Bimy2)

G Zil vi + (i) + (B1827i) + (@121 827:)
(aB) Y i1 21 (i) + (@iBime)

(ay) Zf:l ijl (@i75) + (i1 B27;)

(87) S S (Biw) + (ea0aBis)

(afy) e fo:l > i (B v

<
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If a fraction is used for the group screening design, group factorial effects are also confounded. For

example, using the 23! half-fraction associated with I = ABC means that a is confounded with (fy), and so

the sum of individual factorial effects associated with both of these group parameters is estimable, but

the two individual sums can no longer be separately estimated.

14.4 Group screening design considerations

14.4.1 Effect canceling

As discussed in Section 14.3, two-factor interactions involving factors in the same group are confounded

with p. Hence factor screening experiments usually focus on the identification of factors with

nonnegligible main effects, at least in the first experimental stage. (However, Lewis and Dean (2001)
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As discussed in Section 14.3, two-factor interactions involving factors in the same group are confounded
with p. Hence factor screening experiments usually focus on the identification of factors with
nonnegligible main effects, at least in the first experimental stage. (However, Lewis and Dean (2001)
have discussed the use of group screening experiments to identify nonzero two-factor interactions as
well.) Suppose for the moment that all interactions are actually zero, and recall that a resolution III or IV
design in the group factors allows estimation of

a=o+az+---+ay B=h+l+---+B8pn .. Yy=Em+r2t---+y,-

If & is judged to be sufficiently different from zero relative to apparent background noise (through
comparison to mean square error [MSE] or a normal or half-normal plot) group 1 will be judged to be
“active”; if not, the individual factors in group 1 will be assessed to be unimportant.

Note, however, that some or all of as, ,..., a5 canbe nonzero, but their sum must be zero. For example, if
a; = —a and a;=0, 7= 3, 4,..., £, then a = 0 even through the main effects associated with factors 1 and 2
may be very large. This possibility is sometimes called effect cancelling, and constitutes one of the biggest
risks in group screening.

If the porential direction of each main effect can be assumed, factor groups can be formed to minimize
the risk of effect cancelling. That is, if the experimenter is willing to make statements of the form “7F
factor A really Is active, I would expect response values to be generally larger when It is set to level I”
then factors can be grouped, and the levels designated “+” and “—” can be arranged so that the
anticipated signs of individual factor main effects in each group are the same. If the experimenter is
correct in all (or some) anticipated effect signs, this eliminates (or reduces) the risk of failing to identify
active factors due to effect cancelling.

14.4.2 Screening failure

The efficiency of group screening is directly related to the number of individual factors that can be
eliminated from consideration in the first (grouped) stage. As discussed in Section 14.1, if five groups of

five factors are screened, and only one group is passed on to the second stage of experimentation, then 283
20 individual factors have been eliminated from further studv. notentiallv resulting in substantial cost =



The efficiency of group screening is directly related to the number of individual factors that can be
eliminated from consideration in the first (grouped) stage. As discussed in Section 14.1, if five groups of

five factors are screened, and only one group is passed on to the second stage of experimentation, then 253
20 individual factors have been eliminated from further study, potentially resulting in substantial cost =
savings. But if all five groups appear to contain active factors, very little has been gained in the first stage

of experimenting. Here, the second-stage experiment might well be the same (25-factor) study that would
have been employed had the screening design not been executed. This phenomenon might be called
screening failure.

Again, prior knowledge about the likely influence of individual factors can be used to reduce the risk of
screening failure. Other things being equal, screening is relatively more efficient if the important
individual factors are all assigned to one group or a relatively few groups. Conversely, screening will be
ineffective (or relatively inefficient) if important individual factors are assigned to all (or relatively
many) groups. If the experimenter is willing to classify individual factors by categories such as “likely
important,” “perhaps important,” and “likely unimportant,” or even assign subjective probabilities for
the activity of each factor, this information can be used to isolate the factors thought to be most critical in
one or a few groups. If a large number of factors are confidently labeled “almost surely inactive,” one or
a few relatively active large groups may be formed for these factors to minimize the value of g and so
also the size of the screening experiment. Note, however, that if such a large group is unexpectedly
classified as “active” in the analysis of first-stage data, this will require a larger second-stage study.

14.4.3 Aliasing

Now suppose that the individual factor model actually includes some two-factor interactions. Recall
(Chapter 13) that even if a resolution III fraction is used as a design for all (individual) factors, there are
two-factor interactions aliased with at least some main effects. The extent of possible aliasing increases
when a resolution III design in the group factors is used. For example, for three factor groups, each of
size 3 factors, and the 231, fraction generated by I = ABC, the group 1 main effect, a = a; + a, + as, Is
aliased with the group 2-by-group 3 interaction (py) = ZLI Zj 1 (B ), that is, nine individual two-

factor interactions appear in the estimable function associated with the group 1 main effect. If some of
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size 3 factors, and the 231, fraction generated by I = ABC, the group 1 main effect, a = a; + a, + as, 1s
aliased with the group 2-by-group 3 interaction (py) = ZLI zj =1 (Biv; :', that is, nine individual two-
factor interactions appear in the estimable function associated with the group 1 main effect. If some of
these are actually nonzero and of opposite sign from a;+a,+as, this could result in effect cancelling, even
if the a;s are all of the same sign. Conversely, even if a,, a,, and as are all zero, nonzero elements of (py)
may lead to erroneous classification of group 1 as “active,” increasing the number of individual factors
that must be included in the second-stage experiment.

As with ordinary (individual factor) fractional factorial experiments, the best protection against aliasing
main effects with two-factor interactions in a group screening context is to increase the resolution of the
fraction to IV, thereby ensuring that group main effects (sums of individual main effects) are not aliased
by any two-factor interactions. This may be even more important in group screening because so many
(individual) two-factor interactions have the potential to alias group main effect estimates if a resolution
I1I plan is used.

14.4.4 Screening efficiency

The primary reason for using a group screening approach to factorial experimentation is the reduction

of experimental effort required to identify the active factors. However, the number of experimental runs

that will be needed to screen ffactors cannot be precisely known & priori because the procedure is
inherently sequential; the experimental design for the follow-up stage (and even the number of factors
that will be included in the experiment) cannot be determined until the data collected in the first stage
are analyzed. However, if an investigator is willing to supply a probability that each factor is active,
calculations of the expected number of experimental runs required can be made.

Watson (1961) presented an analysis of the expected number of runs required in both stages of a
screening study, in which the probability that each factor is active is deemed to be p, and the status of
each factor is regarded as being independent of that of all others. He showed that when the numbers of
runs in each of the first- and second-stage designs is minimal (i.e., one more than the number of group
factors in the first stage, and one more than the number of individual factors being tested in the second
stage), and no mistakes are made in screening (i.e., the nonzero factorial effects are large enough that
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each factor is regarded as being independent of that of all others. He showed that when the numbers of
runs in each of the first- and second-stage designs is minimal (i.e., one more than the number of group
factors in the first stage, and one more than the number of individual factors being tested in the second
stage), and no mistakes are made in screening (i.e., the nonzero factorial effects are large enough that
they can be easily differentiated from background noise), the number of group factors that minimizes
the expected number of total runs required is approximately

9= fvp

and that when each group is of equal size, the expected number of runs required for this value of gis
approximately

N =2g+2.

Hence the “optimal” number of groups is smaller, and the number of factors per group larger, as
individual factors are given a smaller probability of being active. The rule is a useful guideline; however,
experimenters are often unable or unwilling to offer a “firm” value of p. Further, in many experiments
there are groups of factors that are known to be at least qualitatively similar in their action (e.g., as
demonstrated in the example of Section 14.2), that are inconsistent with the idea of “independent
activity” for individual factors. Finally, the assumptions that minimal designs are used at each stage, and
that errors are not made in classifying factor groups at the first stage (each made to simplify the
mathematics of the argument) are generally unrealistic in practice. It should be remembered that even
factor groups of size 2 lead to initial screening designs in roughly half the number of runs that would
have been required for single-stage experimentation, and that relatively few experimental runs will be

required in the second stage if most factors actually are not active.
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14.5 Case study

Hendrix (1979) conducted an experiment to determine which of 15 controlled factors, each with two
levels, had substantial impact on the cold crack resistance of an industrial product. Experimental factors
were characteristics of the production process, e.g., so/venteither recycled or refined, and dry roll
temperature either 75° or 80°. The experiment was actually designed as an unreplicated 25!, fraction
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levels, had substantial impact on the cold crack resistance of an industrial product. Experimental factors
were characteristics of the production process, e.g., so/lventeither recycled or refined, and dry roll
temperature either 75° or 80°. The experiment was actually designed as an unreplicated 2>, fraction
in 16 runs; half-normal plots of the resulting main effects estimates suggest that two factors are active,
with main effects of approximately 3 and 1. The remaining estimates are all less than 0.30 in absolute
value; the average of their squared values is 0.035 (a “pseudo-MSE,”), suggesting that c may be about
0.187.

Suppose that the authors had decided to investigate these 15 factors via group screening instead, based
on an & priori assumption that the probability of any factor being independent is approximately 0.10.
This suggests a first-stage experiment of 15 x V0.1 = 4.7 = 5 groups, and without further a priori
information, the 15 factors might be randomly split into groups of size 3. If this group structure is
accepted, the next choice to be made is the particular 5-factor design to be used in the first-stage
experiment. If we are convinced (or are willing to assume) that interactions are negligible, an eight-run
252 rplan is an obvious choice. Without replication, and assuming a model containing only main effects,
this plan will provide a MSEwith only 2 degrees of freedom; still, if the active main effects are on the
order of 10 x ¢ (as they appear to be in the analysis of Hendrix) there is a good chance that the groups
containing the main effects would be detected.

Suppose now that the two active factors were actually randomly assigned to two different groups; the
probability that this will have happened under random group assembly is 0.80. If both of these groups,
and no others, are flagged as “active,” six individual factors will need to be tested in the second-stage
experiment. Here, an eight-run 25, seems reasonable. It will produce an MSEwith only 1 degree of
freedom, but assuming the nature of random variation is the same in both experiments, the two mean
squares might be pooled to yield a 3-degrees-of-freedom estimate of o°. Again, while this may not be an
especially precise estimate, the chance of correctly identifying the two active factors is substantial. If
both active factors had actually been assigned to the same initial group, and only that group had been
flagged as active, a four-run 23 ,; might have been adequate for a follow-up design, but note that the
number of runs in this design is the same as the number of parameters in the first-order model, and so
the MSE from the first-stage experiment would have also been used in the second stage.



flagged as active, a four-run 231 ; might have been adequate for a follow-up design, but note that the
number of runs in this design is the same as the number of parameters in the first-order model, and so
the MSE from the first-stage experiment would have also been used in the second stage.

If all had “gone well,” the two active main effects might have been identified using group screening with

a total of either 16 or 12 experimental runs (with probability 0.80 and 0.20, respectively). Recall that
Hendrix accomplished the actual study as a single-stage, 16-run resolution III fraction, so little would 255
have been gained in this case. Still, it should be noted that since their design provided no degrees of =
freedom for estimating o2, use of a half-normal plot was required. Group screening is most effective

when the number of factors is quite large, and the number of active factors is (relatively) quite small. For
example, continue to suppose that there actually are two active main effects with values of three and

one, and that o is about 0.187, but that the total number of factors being screened is £= 60 (four times as
many as before). A single orthogonal resolution IIT design that allows estimation of all main effects would
require at least 64 runs. If our g priori probability of any factor being independent is approximately

0.025 (1/4 as large as before), Watson's analysis suggests a first-stage experiment of

60 x v/0.025 = 9.5 = 10 groups. An initial resolution I1I group design from the Plackett-Burman series

could be executed in 12 runs, and a follow-up design to identify the active elements of two groups could

be carried out in 16 runs. Even if the first design is replicated to provide 12 degrees of freedom in pure
error, the total experimental effort of 40 runs would represent a substantial savings over single-stage
experimentation.

14.6 Conclusion

Group factor screening is a technique that is primarily useful when a small fraction of a large number of
factors are expected to be active. It is most effective when at least some prior information is available
concerning the potential influence of each factor on the response. Information that is especially helpful
is the probability that each factor is active, the likely direction of each factor's main effect if active, and
relationships between factors that are likely to have similar effects if active. When these conditions are
met, group factor screening can reduce the experimental effort required to identify the active factors in
an experimental system.



relationships between factors that are likely to have similar effects if active. When these conditions are
met, group factor screening can reduce the experimental effort required to identify the active factors in
an experimental system.

Watson's (1961) discussion of how group screening can be used in factorial experimentation includes a
more general analysis than is described here. He considers practical issues of how many active factors
(those with nonzero main effects) one can expect to discover, and how many inactive factors one should
expect to “falsely discover,” as functions of the design selected. His analysis 1s predicated on the
generally unrealistic assumption that all nonzero main effects have the same value, but more general
analytical expressions that are simple enough to be useful may not be achievable. Mauro and Smith
(1982) described a numerical study of the performance of group screening plans under the somewhat
more general assumption that all nonzero main effects have the same absolute value, but can have
different signs (allowing for effect cancelling). Patel (1962) discussed construction of group screening
strategies involving more than two sequentially constructed designs, where relatively large factor groups
that appear active in one stage are split into relatively smaller groups in the next, with the final
experiment designed in those individual factors that are elements of “active groups” in all previous
stages.
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14.7 Exercises

1. Consider a two-level factorial group experiment in which 12 individual factors are to be screened in
siX groups, each of size 2. The first-stage screening plan that will be used is the quarter fraction
associated with the identifying relation I = ABCD = CDEF = ABEF. In the following, assume that all
interactions of order 3 or more are zero, both in the group effects and individual effects models.

(a) Identify the 16 strings of estimable effects in the notation of the group factor model (counting
the string including “I,” or the model intercept).
(b) Rewrite these 16 strings in terms of the effects in the individual factor model.

2. Continuing with the group screening design described in exercise 1 (g= 6, /=12, N= 252 = 16),
suppose now that no interactions are present, and that there are three nonzero individual main
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(b) Rewrite these 16 strings in terms of the effects in the individual factor model.

2. Continuing with the group screening design described in exercise 1 (g= 6, =12, N=2%2=16),

suppose now that no interactions are present, and that there are three nonzero individual main
effects of value 10, 10, and -10. If factors are assigned to groups randomly, what is the probability
that “effect cancelling” will occur, 1.e., that two nonzero main effects in one group will have a zero
sum?

Suppose 40 factors are to be screened in 10 groups of size 4. The first-stage group screening design
will consist of two replicates of a 12-run Plackett-Burman design (i.e., N= 24). Suppose that in fact,
one main effect is nonzero and has a value of one, and also that o = 2. Suppose a two-tailed #test (or
equivalently, an Ftest with one numerator degree of freedom) with type I error probability of a =
0.10 is used to classify each group factor as active or nonactive.

(a) What is the probability that the truly active factor will be passed on to the second-stage
experiment (i.e., that its group will be identified as “active”)?

(b) What is the expected value of the number of factors that will need to be investigated
individually in the second stage?

. The success of group screening depends critically on effect sparsity, i.e., that most of the considered
factors have no (or very little) influence on the responses. But such prior information is generally
uncertain, and it should be understood what is likely to happen if the assumption turns out to be
false. Suppose group screening is used to investigate 44 factors in groups of size 4, and that an
unreplicated 12-run Plackett-Burman design is used to investigate the group effects in the first stage.

(a) What will be the likely conclusion if, in fact, @// main effects are nonzero and have values that
are normally distributed with mean zero and variance o?;? Assume that o?; > o2, where the -

latter is the variance of individual observations. =
(b) If two replicates of the Plackett-Burman design had been used as the initial design (i.e., N'= 24),

might the result be different? Why?

Suppose a group screening design is set up by grouping 21 factors into seven groups of size 3. A 2™,
fraction generated by I = ABC = CDE = EFG is used. Suppose that the only real factorial effects are the
three main effects, three two-factor interactions, and a single three-factor interaction associated with
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5. Suppose a group screening design is set up by grouping 21 factors into seven groups of size 3. A 2™,
fraction generated by I = ABC = CDE = EFG is used. Suppose that the only real factorial effects are the
three main effects, three two-factor interactions, and a single three-factor interaction associated with
factors 1, 2, and 3, and suppose that all seven of these parameters are positive and large relative to o.
Ignoring the possibility of effect cancelling, how many factors will likely need to be individually
investigated in the second stage if:

(a) factors 1, 2, and 3 are all assigned to group A
(b) factors 1 and 2 are assigned to group A, and factor 3 is assigned to group B
(c) factors 1, 2, and 3 are assigned to groups A, B, and C, respectively.

6. In many cases, it is reasonable to regard the first-stage (grouped factor) and second-stage (individual
factor) experiments of a screening study as two blocks of the same experiment. This view can yield
an improved estimate of ¢® for use in the final analysis. Suppose findividual factors are screened in
Zeroups of size £ each in the first stage of a screening study using rreplicates of a minimal
orthogonal resolution III design in gfactors (i.e., where the number of unique treatments f is the
smallest multiple of four that is larger than g). Suppose only group 1 appears to be active in the first
stage, and that an unreplicated minimal orthogonal resolution III design in £ factors is used as a
second-stage design, and that the remaining /- factors are each fixed at one of their two levels in the
second stage. Write degrees of freedom for an analysis of variance for the combined experiment,
with lines for block difference, main effects for both individual and group factors (remembering to
account for linear dependencies), and residual, with the latter divided into lack of fit and pure error
components. For simplicity, assume that both g+1 and £., are multiples of four.

7. The “ultimate” group screening plan consists of only g= 1 group containing all ffactors; it can be
replicated rtimes for a total of A= 2rruns. If the potential direction of each main effect is fairly
certain, and there are no interactions, such an experiment can determine quickly whether any of the

f . .
factors actually affect the response. Let a = 2orimi a; be the single group main effect parameter, the
sum of all individual main effects parameters, and o’ be the error variance.

(a) Write an expression for the probability that the group will be determined to be active ifa # (or .
equivalently, £) test is used with type I error probability of 0.10. -
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Ignoring the possibility of effect cancelling, how many factors will likely need to be individually
investigated in the second stage if:

(a) factors 1, 2, and 3 are all assigned to group A
(b) factors 1 and 2 are assigned to group A, and factor 3 is assigned to group B
(c) factors 1, 2, and 3 are assigned to groups A, B, and C, respectively.

. In many cases, it is reasonable to regard the first-stage (grouped factor) and second-stage (individual

factor) experiments of a screening study as two blocks of the same experiment. This view can yield
an improved estimate of ¢® for use in the final analysis. Suppose findividual factors are screened in
Zeroups of size £ each in the first stage of a screening study using rreplicates of a minimal
orthogonal resolution III design in gfactors (i.e., where the number of unique treatments f is the
smallest multiple of four that is larger than g). Suppose only group 1 appears to be active in the first
stage, and that an unreplicated minimal orthogonal resolution III design in £ factors is used as a
second-stage design, and that the remaining /- factors are each fixed at one of their two levels in the
second stage. Write degrees of freedom for an analysis of variance for the combined experiment,
with lines for block difference, main effects for both individual and group factors (remembering to
account for linear dependencies), and residual, with the latter divided into lack of fit and pure error
components. For simplicity, assume that both g+1 and £., are multiples of four.

. The “ultimate” group screening plan consists of only g= 1 group containing all ffactors; it can be

replicated rtimes for a total of A= 2rruns. If the potential direction of each main effect is fairly
certain, and there are no interactions, such an experiment can determine quickly whether any of the

f . .
factors actually affect the response. Let a = 2orimi a; be the single group main effect parameter, the
sum of all individual main effects parameters, and o’ be the error variance.

(a) Write an expression for the probability that the group will be determined to be active ifa # (or .
equivalently, £) test is used with type I error probability of 0.10. -
(b) Suppose that, in fact, a; = a, = a; = 1 and that all other individual main effects are zero.
However, suppose also that the single three-factor interaction involving these three factors is
also nonzero, specifically (oya,as) = —3. Write an expression for the probability that the group
will be determined to be active, again with a type I error probability of 0.10.



Ignoring the possibility of effect cancelling, how many factors will likely need to be individually
investigated in the second stage if:

(a) factors 1, 2, and 3 are all assigned to group A
(b) factors 1 and 2 are assigned to group A, and factor 3 is assigned to group B
(c) factors 1, 2, and 3 are assigned to groups A, B, and C, respectively.

. In many cases, it is reasonable to regard the first-stage (grouped factor) and second-stage (individual

factor) experiments of a screening study as two blocks of the same experiment. This view can yield
an improved estimate of ¢® for use in the final analysis. Suppose findividual factors are screened in
Zeroups of size A4 each in the first stage of a screening study using rreplicates of a minimal
orthogonal resolution III design in gfactors (i.e., where the number of unique treatments f is the
smallest multiple of four that is larger than g). Suppose only group 1 appears to be active in the first
stage, and that an unreplicated minimal orthogonal resolution III design in £ factors is used as a
second-stage design, and that the remaining 7~ factors are each fixed at one of their two levels in the
second stage. Write degrees of freedom for an analysis of variance for the combined experiment,
with lines for block difference, main effects for both individual and group factors (remembering to
account for linear dependencies), and residual, with the latter divided into lack of fit and pure error
components. For simplicity, assume that both g+1 and £., are multiples of four.

. The “ultimate” group screening plan consists of only g= 1 group containing all ffactors; it can be

replicated rtimes for a total of &NV =2rruns. If the potential direction of each main effect is fairly
certain, and there are no interactions, such an experiment can determine quickly whether any of the

f . .
factors actually affect the response. Let a = 2orimi a; be the single group main effect parameter, the
sum of all individual main effects parameters, and o? be the error variance.

(a) Write an expression for the probability that the group will be determined to be active ifa # (or .
equivalently, £) test is used with type I error probability of 0.10. -
(b) Suppose that, in fact, a; = a, = a; = 1 and that all other individual main effects are zero.
However, suppose also that the single three-factor interaction involving these three factors is
also nonzero, specifically (oya,as) = —3. Write an expression for the probability that the group
will be determined to be active, again with a type I error probability of 0.10.
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CHAPTER 15 Regression experiments: first-order polynomial models

15.1 Introduction

To this point, we have discussed experiments that are executed to understand differences among a finite
set of treatments. In some cases, all treatments in this set are included in the experiment; this is true of
all experiments for “unstructured” treatments (Chapters 3-8), and for full factorial experiments, either
blocked or unblocked (Chapters 9-12). In contrast, fractional factorial designs (Chapter 13) do not
include all treatments from the set. The consequence of incomplete experimentation is that treatment
effects cannot be uniquely estimated unless additional assumptions can be made that effectively
eliminate some model parameters. For example, regular fractional factorial experiments support
estimation of effect strings — linear combinations of aliased effects — under the complete factorial
model; they allow estimation of individual effects only under the assumption of a reduced model
including no more than one effect in each aliased group. For treatment sets of finite size, the choice
between an experiment that includes all treatments and an experiment that does not requires balancing
of experimental costs and prior knowledge about the system under study. Experiments that include all
treatments generally cost more than those that do not, but may be unnecessary if higher-order factorial
effects are reasonably assumed to be negligible.

We shift attention in this chapter to experiments with functional treatment structure for which the set of
possible treatments is not finite in size, and so experiments necessarily include only a subset of them. In
the simplest case, regression experiments are carried out to compare treatments that are “indexed” by
points in a continuous experimental region, denoted R. For example, a cellular biology experiment may
be set up to investigate the growth rate of a certain kind of cell culture as a function of the relative
proportion of two nutritional ingredients in the substrate on which it is grown. Even if all other aspects
of the scenario are held constant, one ingredient might make up anywhere from 20% to 50% (by weight,
say) of the two-ingredient blend, and the resulting (infinite) set of treatments correspond to an
experimental region expressed as &= [0.2, 0.5]. Some descriptions of regression design differentiate
between the experimental region indexing the treatments of interest, and the design region indexing the
treatments that may actually be included in the experimental design. While this is a useful distinction in



say) of the two-ingredient blend, and the resulting (infinite) set of treatments correspond to an
experimental region expressed as £=[0.2, 0.5]. Some descriptions of regression design differentiate
between the experimental region indexing the treatments of interest, and the design region indexing the
treatments that may actually be included in the experimental design. While this is a useful distinction in

nany contexts, we will not make it here.
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While the “mechanics” of experimental design (e.g., randomization and blocking) and analysis (e.g., e
inference based on linear models) we have studied in previous chapters are also relevant for regression
experiments, it is important to recognize that the balance between experimental cost and prior

knowledge is fundamentally different for these studies. Since an experiment including all treatments of
interest cannotbe conducted, there is of necessity more reliance on modeling assumptions. This leads to
increased interest in diagnostic procedures such as tests for lack of fit, that are not directly related to the
experimental questions of greatest interest, but are important steps in validating the model on which
interesting inferences can be made.

15.1.1 Example: bacteria and elastase

Chen, Ruan, Zhang, and He (2007) describe a series of laboratory experiments performed to study the
production of elastase (an enzyme used in a number of industrial food processing applications) using
cultures of Pacillus licheniformis ZJUEL31410, a mutant bacterial strain that produces relatively large
quantities of elastase. The first of the experiments reported was a “screening” exercise, to determine
which of six continuous, controllable variables representing process conditions were most influential on
yield. Table 15.1 lists data collected over 11 experimental runs, in which process temperature, time of
reaction, volume of the culture, proportional volume of the inoculum, seed age, and shake speed of the
flask were each varied over three evenly spaced values, and the resulting concentration of elastase

recorded.

Note that in principle, the number of unique values of each control variable was not necessarily limited
to three — the experimenters were interested in modeling responses across the indicated range of each

variable, and there was (apparently) no operational constraint on the number of unique values that
might have been used for each.
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to three — the experimenters were interested in modeling responses across the indicated range of each
variable, and there was (apparently) no operational constraint on the number of unique values that

might have been used for each.

TABLE 15.1 Data from Elastase Experiment of Chen et al. (2007)

Temperature Time Volume Inoculating Seed Shake Elastase

Run # (°C) (h) (ml)  volume(%) age(h) speed(r/min) (U/ml)

1 30 30 30 it 10 180 294

2 40 18 30 3 10 220 265

3 30 18 20 7 10 220 307

4 40 30 30 7 26 220 351

5 30 30 20 3 26 220 311

6 40 30 20 3 10 180 355

7 30 18 30 3 26 180 110

8 40 18 20 7 26 180 274

9 35 24 25 5 18 200 355

10 35 24 25 5 18 200 375

11 35 24 25 5 18 200 103 v
< > 262
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15.2 Polynomial models

While we shall continue to use linear statistical models as a basis for thinking about the structure of data,
it is helpful to change notation slightly to emphasize the continuous nature of the experimental region.
Let ddenote the number of controlled variables used to define a treatment, i.e., the dimension of the
experimental region, and let Xe Rbe a delement vector or point corresponding to any particular
treatment. For unblocked experiments, let y;; denote the jth observation taken at the ih treatment
included in the experiment, and say:

Yii =+ x;ﬂ + €ij,
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treatment. For unblocked experiments, let y; denote the jth observation taken at the sth treatment
included in the experiment, and say:

¥ii = a+x[8 + €,
t=1ody 3=l..omy
€i; iid with E(¢;;) = 0 and Var(e;;) = o (15.1)

where X;encodes the set of experimental conditions for the ith of 7distinct treatments appearing in the
design, and [ is a d-element set of parameters to be estimated. Note that in this first-order polynomial
model, the elements of the parameter vector [ represent slopes of the expected response corresponding
to each controlled variable. (Chapter 16 addresses second-order polynomial models.) Together with the
intercept a, these parameters specify a hyperplane in (&+1)-dimensional space that represents the
assumed structure of the expected response for all treatments corresponding to points in £ A matrix
model for the entire Afrun experiment, N=¥;-1° i1, can then be written as:

y=al + X208 + ¢,
E(e) =0, Var(e) = o°l. (15.2)

It is important to note that the elements of p actually represent treatment differences, corresponding to
the usual concept of experiments being comparative studies. For example, under the first-order model,
1s the difference in expected response between any two treatments for which x; varies by one unit of
value while the other independent variables are held constant. The intercept, a, is an experiment-wide
effect, and so is regarded as a nuisance parameter in true experimental studies. Another very important
practical aspect of regression models is the effect of the physical units of measurement associated with
each variable. (Note that “units of measurement” are completely unrelated to “experimental units.”) As
an example, consider the experiment of Chen et al. (2007) described in subsection 15.1.1. The specified
first-order polynomial model for these data, along with units of measurement, is:

y =a+r1bh+xeBo+x3fa+ x4+ 2505 + x6 6 +e.
U/ml 2 - h ml Y h  r/min

Because the left and right sides of the model equation must agree in their units as well as in their
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Yy =a+ 1 ,3| + Io .32 + I3 .83 -+ T4 _Iil -+ I's _.'35 + Tg .f?ﬁ +E€.
U/ml @ - h ml Y h  r/min

Because the left and right sides of the model equation must agree in their units as well as in their

numerical values, each term in the fitted model must be in units of U/ml, units of elastase produced per
milliliter of culture. (A measurement “unit” of elastase was defined by Chen et al. to be the amount 263
required to solubilize 20 mg of elastin-Congo red at standard conditions.) Hence p,, and its estimate and
the standard error of that estimate, must take units of U/(mlx°C) so that the term x; (; will agree in units
with the response variable. Note that because the six controlled variables in this model are expressed in
different physical units, their corresponding coefficients also have different units; p;, for example,

carries units of U/ml2. It is especially important to understand this when comparing the results of

different studies, where the same physical units may not have been used in recording experimental
conditions or data. For example, in comparable studies in which shake speed () is recorded in

revolutions per second and response data are recorded in U/ml, a comparable estimate of g, in
measurement units of (sec x U)/(mlxr), would need to be roughly 60 times the estimate found from a
regression performed using the data recorded in Table 15.1.

In analysis of data from regression experiments, controlled variables are often linearly rescaled so that
the highest and lowest values used for each (coded) controlled variable are +1 and -1. This would be
done for x; in the experiment of Chen et al. by defining:

x3(scaled) = 2 x (z2(h) — 24h)/(30h — 18h) (15.3)

where 30, 18, and 24 are the highest, lowest, and average physical values in time units (h). In fact, the
fraction on the right side of equation (15.3) is “unitless” since both numerator and denominator are in
the same physical units. Since controlled variables rescaled in this way are all (strictly speaking) unitless,
the physical units attached to the regression coefficients are reported on the scale of the response
variable (U/ml). However, this can be misleading if taken out of context. What is real/lyhappening here is
that x; has been coded to “units of half the range covered in the experiment,” a scale on which [-1,+1]
represents the range of time values selected by the experimenter. So, for example, if the smallest and
largest reaction times selected in a comparable experiment had been 12 h and 36 h, scaled values of x;
would still be “unitless” and take values ranging from -1 to +1, and resulting estimates of [, would still



that x; nas Deen codaed 10 "units oI nall the range covered 1n the experument,” a scale onwhicn |—1,+1]
represents the range of time values selected by the experimenter. So, for example, if the smallest and
largest reaction times selected in a comparable experiment had been 12 h and 36 h, scaled values of x;
would still be “unitless” and take values ranging from -1 to +1, and resulting estimates of , would still
be in units of U/ml, but direct comparison to the estimates from this experiment would require

30— 18
multiplication by a factor of 36=12, the ratio of ranges (of physical values) used in the two experiments.

Note finally that in models where x's are defined as (unitless) indicator variables — as with most of the
material in this book describing experiments in which experimental conditions are unstructured, or are

represented only by the points on a factorial lattice — all model coefficients are given in the same units
as the response variable.

15.3 Designs for first-order models

15.3.1 Two-level designs

Where first-order models are assumed to be adequate representations of £ as a function of X, designs

that employ two appropriately selected values for each controlled variable are often popular and 264
effective. In fact, the two-level factorial and fractional factorial designs discussed in Chapters 11-13, =
where the symbolic “+1” and “~1” values are used to represent relatively large and small values of each
controlled variable, are very efficient designs for regression experiments when analysis is based on a
first-order model. Where the controlled variables are scaled so that R = [-1,+1]4, all of these designs lead

to information matrices of form Z = Nlaixq for the parameter vector B, and are “optimal” designs in this
context in the sense that no design for this Kleads to unbiased estimates of linear functions of  that have
smaller variance.

15.3.2 Simplex designs

Recall that the smallest two-level orthogonal factorial designs we could construct for first-order factorial
models were the Plackett-Burman designs (Section 13.6), requiring Nbe at least the smallest multiple of
four greater than the number of factors included in the experiment. In the present context we are



Recall that the smallest two-level orthogonal factorial designs we could construct for first-order factorial
models were the Plackett-Burman designs (Section 13.6), requiring Nbe at least the smallest multiple of
four greater than the number of factors included in the experiment. In the present context we are
estimating dslopes (one associated with each element of x), and a Plackett-Burman design of 12 runs, for
example, could be used to orthogonally estimate a first-order regression model with one intercept (a) and
as many as 11 slope parameters (). Because regression experiments allow selection of design points
from a continuous experimental region, it is possible in some cases to construct orthogonal designs for
first-order models that require slightly fewer points than the Plackett-Burman designs by using more
than two values to represent at least some controlled variables.

The simplex design introduced by Box (1952) is one such design, which contains N= d+1 distinct design
points for any value of d(that is, the Plackett-Burman restriction that AZmust be a multiple of four is not
required). The name simplexis due to the fact that the &+1 treatments used in such a design are the
vertices of a simplex in R? — a geometric figure for which each pair of vertices is separated by the same
distance. For example, an equilateral triangle is a simplex in R?, and a tetrahedron is a simplex in R®.
Mathematically, a simplex design is described by any (@+1) x d model matrix X, for which (1 |X;)'(1|X;) is
a diagonal matrix with nonzero diagonal elements. Such a matrix can always be constructed when Ris,
for example, a cuboid or spheroid in ddimensional space. For example, the matrix:

(p L o1 1 1
P E R )
AR R VAR
B e sl N B
Xz = VN v 12 +~./d{:{+l} (15.4)
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TABLE 15.2 Simplex Experiment Factor Values for the Study of Chen”

et al. (2007)
Variable Values Physical Units
temperature (xy) physical 40 30 35 S i
scaled - v% - % 0 —
time (x2) physical 30 18 26 h
scaled + V%{—i — % 0 =
volume (z3) physical 30 20 27.5 ml
. 1 3
scaled +—mm =i 0 -
inoculating volume (z4) physical 7 3 6.2 %
1 1
Sﬂﬂ.lEd +m ﬁ 0
seed age (x35) physical 26 10 23.3 h
1 5
scaled +ﬁ — 0 ~
shake speed (z¢) physical 220 180 - r/min
. 1 6 -
scaled +s I = v

<

>

satisfies the requirements for any value of d Individual columns of X, can be scaled to allow them to fit
within the bounds for each controlled variable as set by the definition of R (The columns are already
“centered” since each must be orthogonal to 1.) Note that, for this selection of X,, the last controlled

variable appears at two values in the experiment, while all others appear at three. For any such X, the

Information matrix for ( is

- - by -

T =XHI- £1(1"1)7"1)X, = X,X, = NI

, again, because each column of



e Re_m_ e R A e R, E RS, s AR s = el A e R RS = == e e

“centered” since each must be orthogonal to 1.) Note that, for this selection of X,, the last controlled
variable appears at two values in the experiment, while all others appear at three. For any such X, the
information matrix for ( is I=X5I- %1(1’1}_1 1)X; = X5X, = NI, again, because each column of
X is orthogonal to 1.

Example

Suppose Chen et al. (2007) had chosen to use a simplex design in the elastase study described in
subsection 15.1.1. Using the model matrix “template” given in equation (15.4), and requiring the upper
and lower physical values of each independent variable to be as shown in Table 15.1, coded and physical
values for the six experimental factors would have been as displayed in Table 15.2. Note that, except in
the case of temperature(x;), coded “0” does not correspond to the center of the experimental range.

Simplex designs can sometimes be rotated in d-dimensional space to yield more evenly distributed
values.

15.4 Blocking experiments for first-order models

Full and regular fractional factorial designs can be blocked for regression experiments in essentially the
same way they are blocked when factors take only two levels. For example, Section 13.6 discusses -
blocking of a 25-2 fractional factorial with the defining relation I = +ABC = —ADE (= —-BCDE), into two =
blocks of size 4 by confounding BD = ACD = - ABE = — CE with the block difference. Likewise, we can

design a regression experiment to estimate the slopes associated with five continuous independent
variables for the model

5
y=a+ Zi‘sf»‘; + ¢
i=1

+1 -1 -1 -1 +lI
-1 +1 -1 +1 +1

ds.



ds.

-1 = %1 <1 <=§ | block 1

3 =8 3% FT =i |geoks

it A1 41 =1 34

In factorial notation, the six estimable effect strings (other than the two including I and BD) are

A + BC - DE - ABCDE
B + AC — ABDE - CDE
C+ AD - ACDE - BDE
D+ ABCD - AE - BCE"
E + ABCE — AD - BCD
BE + ACE — ABD - CD

The five slopes in an assumed first-order polynomial model correspond to the factorial main effects A, B,
C, D, and E. Because the design is an orthogonal resolution III fractional factorial:

» these are each aliased only with factorial terms of order greater than one,
+ they are orthogonal to each other, and
» they are orthogonal to the factorial string aliased with the block difference.

As a result, the eight-run regression experiment in two blocks of size 4 is fully efficient, with design
information matrix Z = 8Isxs for B, and provides one degree of freedom (that which would be
associated with the BE + ACE — ABD - CD string in a factorial model) for estimating o2.

More generally, a common aim in blocking an experiment is that blocks be arranged in a way that does

not reduce the treatment information — in the nresent case. the information reeardine the dslones
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associated with the BE + ACE — ABD - CD string in a factorial model) for estimating o?.

More generally, a common aim in blocking an experiment is that blocks be arranged in a way that does
not reduce the treatment information — in the present case, the information regarding the dslopes
associated with the independent variables. Orthogonally blocked experiments accomplish this by
yielding the same design information matrix I as their unblocked counterparts. For example, consider

the nine-run experiment in &= 2 independent variables corresponding to the coded model matrix: <5
[+1 +1)
0 +1
-1 +1
+1 0
Xy = 0o 0
-] 0
+1 =1
0 -1
\~} ~=1)

Under the model that also includes an intercept:
y=al+X:08+¢€

the design information matrix for [ is

I-X, (1 " %J) , T L T N

because 1’X; = 0. Now suppose the same nine treatments are to be included in an experiment that

requires grouping the nine units in three blocks of size 3. We can extend the model to accommodate this
as:

yleﬂ+x2ﬂ+ﬁ.

EE, B i, T o R e e LA VI e P g e S L L 1y T FE-SL AT, ERREY . & T iy e e I i M e ), L g e 1



ds:
y =X,0 + X283 +e.

where X, is a 9-by-3 matrix of indicator variables — a single “1” in each row — and 0 is a three-element
vector of block parameters. (Because the rows of X; sum to 1 we do not need to include the parameter a.)
In particular, suppose we assign treatments to blocks as follows:

(1 0 0)

010
00 1
0 0 1
X;=[10 0
010
010
0 0 1
\1 0 0)

A special feature of this arrangement is that within each block, the values of both x; and x, sum to zero,
that is X;'X; = 0. Letting H; = X,(X,'X,)X;, note that this implies H,X; = 0. But zAzsin turn implies that

T = X5(I - Hy) Xy = X5Xs = 6lax2
268

just as in the unblocked design. The orthogonal blocking structure associated with X, X, = 0 implies that **
there is no information reduction associated with blocks in the second design, just as the balanced

structure associated with 1'X; = 0 implies that there is no information reduction associated with the
intercept in the first design.

Of course, there is also a sense in which the blocked experiment deoes entail an “information loss,” in that
fewer degrees of freedom can be allocated to estimating o% mean square error (MSE) has six degrees of
freedom in the unblocked experiment, but only four in the blocked experiment. Still, as discussed in
earlier chapters, if blocking is being used effectively, the value of o2 should be smaller in the blocked
experiment, offsetting the loss of MSE degrees of freedom.



fewer degrees of freedom can be allocated to estimating o mean square error (MSE) has six degrees of
freedom in the unblocked experiment, but only four in the blocked experiment. Still, as discussed in
earlier chapters, if blocking is being used effectively, the value of o2 should be smaller in the blocked
experiment, offsetting the loss of MSE degrees of freedom.

15.5 Split-plot regression experiments

As with experiments in which factors have discrete levels, the operational restrictions of regression
experiments sometimes require that they be designed and analyzed as split-plot studies. This may bhe
related to:

« some controlled variables being more difficult (expensive or time-consuming) to change than others,
or

+ the practical need to apply some controlled variables to larger quantities of experimental material
(plots) and other controlled variables to smaller subquantities of material (split-plots).

Split-plot regression experiments can be organized in a manner similar to that described in Chapter 10
for factors with discrete levels.

15.5.1 Example: bacteria and elastase reprise

Consider again the experiment of Chen et al. (2007) described in subsection 15.1.1. In this study, an
experimental unit is referred to as a “flask” containing a bacterial culture prepared as required by the
selected levels of culture volume, inoculating volume, and seed age, and processed according to the
selected levels of temperature, time, and shake speed. Suppose, however, that this experiment was
performed in a laboratory in which three flasks are processed together as a “group,” and that due to
operational constraints, all flasks in a group must be processed at the same temperature and for the
same length of time. Table 15.3 contains a data set for this hypothetical experiment, in which some
values have been altered (as indicated) for purposes of demonstration. Included in the table are coded
values of each independent variable (-1, 0, and +1 for variables represented at three values, and -1 and

+1 foarwrariahlee renracanted at farn latrale) tn farilitate ralernilatinn nf ANAVA rommnnmante



same length of time. Table 15.3 contains a data set for this hypothetical experiment, in which some
values have been altered (as indicated) for purposes of demonstration. Included in the table are coded
values of each independent variable (-1, 0, and +1 for variables represented at three values, and -1 and
+1 for variables represented at two levels) to facilitate calculation of ANOVA components.

Because anything unique that occurs during the processing of a group of flasks has the potential to affect
all three experimental units in the same way, it is sensible to think of “group” as an experimental block
within which the levels of flask volume, inoculating volume, seed age, and shake speed are varied from
unit to unit. Because levels of temperature and time are actually assigned to groups of three flasks,
rather than independently for each, these groups of flasks are the experimental units for the purpose of
evaluating the effects of these two factors. Hence the experiment should be regarded as a split-plot
arrangement, with temperature and time applied to flask groups (the whole-plots) and the levels of the
remaining controlled variables applied to individual flasks (the split-plots).

TABLE 15.3 Altered Data from Chen et al. (2007). Entries Marked
with (*) are Altered from or Added to the Original Data Set. The
Last Run Listed Did Not Appear in the 11-Run Design of Chen et al.
The Second Value Listed for Each Controlled Variable is the Coded
(unitless) Value

Temp. Time Volume Inoc. Vol. Seed Age Shake

Elastase
“Group” (°C) (h) (ml) (%) (h) (r/min) (U/ml)
| 30 -1 30 41 30 <41 7 +1 10 —1 180 —1 344*
1 30 -1 30 41 20 -1 3 —1 26 +1 220 +1 361%*
1 30% -1 30* +1 25 i 0 18 0 200 0 325%*
2 40 +1 18 -1 30 +1 3 —1 10 —1 220 +1 265
2 40 +1 18 -1 20 -1 7 +1 26 +1 180 —1 274
2 40% +1 18* —1 25 0 5 0 18 0 200 0 275"
3 30 -1 18 -1 20 -1 7 +1 10 —1 220 +1 307



2 40 +1 18 -130 +1 3 -1 10 —1 220 +1 265

2 40 4118 -120 -17 +1 26 +1 180 -1 274

2 40* +1 18* —1 25 0 5 0 18 0 200 0 275*

3 30 -118 —-120 -—-17 +1 10 —1 220 +1 307

3 30 -118 -130 +1 3 -1 26 +1 180 —1 110

3 30% -1 18* -1 25 05 0 18 0 200 0 225*

] 40 +1 30 +1 30 +1 7 +1 26 +1 220 +1 351

4 40 +130 +1 20 -1 3 —1 10 —1 180 —1 355

4 40* +1 30* +1 25*% ) B5* 0 18* 0 200* 0 300%* v

< >

An ANOVA decomposition of these data is accomplished along the same lines as described in subsection
12.4.1 for two-level factorial experiments, where in this case the estimated slopes .J-l: are analogous to
main effects, and terms of higher order are excluded from the model. A result of the assumption of a
first-order model is that additional degrees of freedom are assigned to the residual lines; one extra
degree of freedom for whole-plot residuals corresponding to the AB interaction, and four degrees of
freedom for split-plot residuals (all of which would have been associated with terms in a higher-order
model). Table 15.4 demonstrates this for the data of Table 15.3; coefficient estimates are calculated for
the coded controlled variables as if the design were not blocked:

By =12.3333, (3, =48.3333, (3= —28.375, [(4= 23.125,
Bs = —21.875, [ = 25.125,

and ¥1:3, et cetera, refer to block average values. The design information matrices are Zinter = 12I2x2 for

B: and B, and Zintra = 8Lix4 for B; through Bs. Standard errors for 18 ; and )8 » are each based on the

whole-plot MSE:
2T 1z - 10,

TABLE 15.4 Split-Plot ANOVA Decomposition for the Data of Table




/ & == LWUl.aleledeldy

TABLE 15.4 Split-Plot ANOVA Decomposition for the Data of Table
15.3
Stratum  Source Degrees of Freedom Sum of Squares
whole-plot 8 and B2 2 12(6:" + o) = 29858.6270
residual 1 difference = 3201.3576
corrected total 3 3[(71:3 — 9)* + (Fas — )*
+(Fr:0 = 9)° + (Fronz — 9)°]
= 33059.9846
split-plot (33 through g 4 82?:3 ﬁf = 19597.5000
residual 4 difference = 2578.5154
corrected total 11 52 (i — 9)? = 55236.0000 v
L 4 >

y

while those for :‘6 ; through ;85 are each based on the split-plot MSE:

L] [ d B E
\/ —Z“?b'l”l"‘i / 8 = 8.9766.

15.6 Diagnostics

Many of the general diagnostic techniques described in Chapter 6 are useful in the context of regression
experiments. Residual plots and power transformation are especially useful in the formulation and
checking of polynomial models. In the case of regression experiments, the more specific question of
adequacy of fit or lack of fit of a selected model. relative to a polvnomial of higher order, is often of



Many of the general diagnostic techniques described in Chapter 6 are useful in the context of regression
experiments. Residual plots and power transformation are especially useful in the formulation and
checking of polynomial models. In the case of regression experiments, the more specific question of
adequacy of fitor lack of fit of a selected model, relative to a polynomial of higher order, is often of
central concern. (Both phrases are used in practice; “adequacy of fit” refers to the null hypothesis, while
“lack of fit” suggests the alternative. In the linear models literature, the latter may be more commonly
used.) In subsection 15.6.1, we describe a particular test for adequacy of the assumed first-order model
based on the addition of runs made at the center point of the experimental region. In subsection 15.6.2,
the more general Ftest for adequacy of fit described in subsection 2.7.1 is discussed in the context of the
first-order regression model.

15.6.1 Use of a center point

Suppose a two-level design has been selected, and for each factor half the runs are made at one level, and
half at the other. Two-level designs with this property are sometimes called balanced designs. Suppose
coding is such that each element of x is +1 for half the runs in the experiment and -1 for the other half.

Since x 1s a point from continuous &, we can also select points that are not at corners of the experimental
region, such as the cenrer pointx = 0. Let yfbe the average of all n-data values taken from the factorial .

portion of the design, and let y,_n be the average of all n.data values collected from the center point .

treatment. Under the assumed first-order linear model:

E(jy) = E(ge) =

and since yf and yc are independent, and each is independent of MSE,

E_f - i"{‘.
MSE(n;" +nZ")

f\.-![lv —d — 1).

On the other hand, if the model actually contains monomials of form x?f;; then

d
E(ys) =a+ Z Bii



On the other hand, if the model actually contains monomials of form x?p;; then

d
E(ys) =a+ Z Bii

i=1

because each (+1)? p; = p;is a component of the expected response at all factorial points, while E[yc] is
still a. Hence the #statistic shown above can be the basis for a test of the hypothesis:

d
Hyp, : Z Bii = 0.
i=1

Note that addition of the center point does not allow individual estimation of all “pure quadratic”
coefficients, s 7= 1,..., d (except when d= 1), but only their sum. It is certainly possible that individual ps
might be nonzero, but in such a way that their sum is zero. In such a case, the test described has power
equal to its selected level of the test; that is, the lack of fit due to the pure quadratic terms would be
undetectable (except by accident). However, if a preliminary assumption of the first-order model is
reasonable, the test does offer partial confirmation if the hypothesis is not rejected, or useful evidence to

the contrary if it is.

This ttest for lack of fit can also be performed using data from a blocked experiment, provided:

» each block contains the same number of factorial runs,

« the factorial points in each block are balanced for each factor, i.e., have the same number of coded
“+1” and “-1” values, and

» each block contains the same number of center point runs.

Under these conditions, E{y,J = E[yc) if the first-order model is correct, and E(yl; = E{yc)+2 Pz 1f pure
quadratic terms are present (because parameters representing additive block effects contribute the same
component to the expectation of each average). The only adjustment needed is a reduction of degrees of
freedom to N-d-b, where bis the number of blocks, to reflect the addition of the 5-1 degree-of-freedom
block component to the ANOVA decomposition.



quadratic terms are present (because parameters representing additive block effects contribute the same
component to the expectation of each average). The only adjustment needed is a reduction of degrees of
freedom to N-d-b, where bis the number of blocks, to reflect the addition of the &-1 degree-of-freedom
block component to the ANOVA decomposition.

15.6.2 General test for lack-of-fit

The test described in the subsection 15.6.1 is a popular “one degree of freedom” test for the adequacy of ..
a first-order model in a linear regression problem that is useful when the design satisfies the necessary  “°
balance properties. The test for lack of fit described in subsection 2.7.1 is more general, sometimes more
powerful, and can be applied to any design containing replicated points. Suppose we have data from a
design at 7Zdistinct experimental conditions, with 7> d+1, and with complete model matrix X = (1| X;) of

full column rank. Because 7> @+1, the experimental data contain more information than is minimally
necessary to estimate a first-order model. The specific polynomial forms of the models that canbe fit
depends upon the selection of the 7distinct points in the design. Further, if N> £, the design contains one

or more groups of replicate runs — those runs coded with identical rows in X. As in subsection 2.7.1,

define a more general model:

TABLE 15.5 ANOVA for First-Order Polynomial Model -
Source Degrees of Freedom Sum of Squares
Bla d SST=y'(H- $J)y
residual N-d-1 SSE=y'(I-H)y
lack of fit t—d—1 SSLOF =y'(Hz — H)y
pure error N -t SSPE =y'(I-Hz)y
corrected total N — 1 SSCT=y'(I-%xJ)y
< >

v = Zd + €. Ele)=0. Var(e)=o"1



corrected total N — 1 SSCT = ;'(I - —#3)} v

< b

y=Zp+e, FE(e)=0, Var(e) =0l
where the 7columns of Z contain indicator variables for each of the funique rows in X. Letting H = X(X'
X)X’ and Hz = Z(Z'Z)'Z’, an ANOVA decomposition of variability associated with the model and
residuals, with further decomposition of residual variation into lack of fit and pure error components, is
shown in Table 15.5.

In this notation, a test for Hyp,: Ey) = a1+X,p, or “adequacy” of the assumed model, can be based on an
Fstatistic comparing the second and last components of the ANOVA decomposition:

SSLOF/(t —d —1)
SSPEJ(N —1)

s Byalt =d=1N=1),

If Hypo: Ely) = al+X;[ is not rejected, a test for Hyp:: p = 0, or “effectiveness” of the assumed first-order
model, can be based on an Fstatistic comparing the first and last components of variation:

Slg?ffl‘f

SSPE}/[V = ” ! F] ...ﬂ(l.'i'. N - ”

again, using SSPE as a denominator sum of squares, or on an Fstatistic comparing the first component of
variation to the pooled lack of fit and pure error components — the usual “residual” sum of squares
based on the assumption of a first-order model:
SST /d
SSE/(N —d—1)

s Fi_ald, N —d - 1).
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TABLE 15.6 ANOVA for First-Order Polynomial Model with Blocking ~

Source Degrees of Freedom Sum of Squares




TABLE 15.6 ANOVA for First-Order Polynomial Model with Blocking

Source Degrees of Freedom Sum of Squares

Ble d y (H—H,)y
residual N—-b-d y'(I-H)y

lack of fit N*—b—d y'(Hz — H)y

pure error N-—-N~ y'(I-Hz)y

total corrected for blocks N-b vy (I-H,)y v
< >

The advantage of the first form is that the denominator mean square is a valid estimator of o® even if the
first-order model is incorrect. If the first-order model s correct, the denominator mean square of the
second test statistic is also valid, and is based on more degrees of freedom than the first, leading to a
more powerful test.

A similar analysis can be constructed if the experiment is blocked by augmenting the model to
incorporate the additional structure:

y=X;0+X;8+¢

where X; is a matrix of indicator variables containing one column per block, with a single 1 in each row,
and 0 = (84, 6., ..., 8;) 1s a set of nuisance parameters associated with the b blocks. Because the columns of
X, sum to 1, a is mathematically redundant and can be dropped from the model. Suppose there are N*
unique experimental conditions defermined by both treatment and block assignment, 1.e., unique rows
in X = (X, | X;), that Z is an alternative model matrix with one column corresponding to each of the A*
distinct experimental conditions, and that &> A& > rank(X). Then, an ANOVA decomposition of the
variability remaining after blocks are eliminated is shown in Table 15.6.

Example

Suppose a regression experiment in two controlled variables is constructed as indicated in the following



Example

Suppose a regression experiment in two controlled variables is constructed as indicated in the following
model matrix (in coded variables):

+1 +1
+1 —l\
-1 +1
-1 -1
0 -1
0 +l1
X; = _1 ol
+1 (0
0 ()
0 0
0 0

\ 0 {])

TABLE 15.7 Example ANOVA for First-order Polynomial Model
where X2 has Zero Column Sums

Source Degrees of Freedom Sum of Squares

Bl 2 SST = 6(32 + 2)

residual 9 SSE =S8SCT - S§ST

lack of fit 6 SSLOF = S§SCT — SST — SSPE
pure error 3 SSPh = 212 (y; — §9:12)2

corrected total 11 SH0CT = Zt Ay — 7)* v
< >

Due to the simple structure of this design, it is easily verified that:



corrected total 11 ST = Z:il(y-z —9)°

< >
Due to the simple structure of this design, it is easily verified that:

- [ %J =H; = Xp(X5X,) 7 'X), = %szé

because X; has zero column sums, i.e., 1'X, = 0, so
y'Hay = 637 + A2]

and

I 0
Z'Z = diag(1,1,1,1,1,1,1,1,4), Hz=( , )
0 1J

iy

S0 in this case, Table 15.6 can be evaluated as shown in Table 15.7, where )6 ; and ;82 are estimates

based on the assumed model, and ygﬂz is the average of response values at the replicated center point.

Now suppose the 12 runs are organized in two blocks as:

[+1 +1)
+1 -1
~1 41

—~1 =1 ] block 1
0 ]
0 0

0 -1
0 +1 | block 2
-1 0
+1 0

i ik




0 +1 | block 2
—1 1}

+1 0
0 0

\ 0 o)

Since this design is orthogonally blocked, the corrected treatment sum of squares is again G{B 2+ 8
based on estimates from the assumed model. This leads to the specific ANOVA decomposition shuwn m o
278

Table 15.8, where yI s yj - y? 12, and yn 12 each denote averages of the indicated collection of data
values.

TABLE 15.8 Example ANOVA for First-Order Polynomial Model,
Orthogonal Blocking

Source Degrees of Freedom Sum of Squares
3|6 2 SST = 6(/3% + 32)
residual 8 SSE = SSCT — SST
lack of fit 6 SSLOF = SSCT SST — SSPE
pure error 2 SSPE = 1 j(yT — s 5)
+ Z? 11 = i 12)
total, corrected for blocks 10 SECT = I(yz' — F1:6)*
+ Z __?(yz r12)”
L 4 2

15.7 Conclusion

When experimental treatments are defined by the selected values of one or more continuous, controlled
variables, statistical analysis based on a regression model is often appropriate. Unlike factorial



15.7 Conclusion

When experimental treatments are defined by the selected values of one or more continuous, controlled
variables, statistical analysis based on a regression model is often appropriate. Unlike factorial
experiments in which each factor is expressed through a finite set of levels, the number of possible
treatments in a regression experiment is infinite. But this means that any regression experiment must
include only an “infinitely small fraction” of the possible treatments, and so model selection is critical.
For many experimental settings, a first-order polynomial regression model adequately represents the
relationship between controlled variables and the expected response.

Two-level factorial and fractional factorial designs, with the design points located at or near the corners
of the experimental region, are effective plans for first-order polynomial regression experiments.
Simplex designs are alternatives of primary use when experimental runs are very expensive or time-

consuming. Both factorial and simplex designs can be augmented with center point runs to provide a test
for the adequacy of the first-order model.

15.8 Exercises

1. item Note that the experimental design used by Chen et al. (2007)(section 15.1.1) is a two-level
fractional factorial plan with n.= 3 added center point runs.

(a) Determine the defining relation and resolution of the eight-run fractional factorial portion of

this design.
(b) Compare the average of data taken at the center point to the average of the data collected over

the factorial portion of the design, using a #statistic as described in subsection 15.6.1. -
(c) Perform the Ftest for lack of fit as described in subsection 15.6.2. =

(d) Are these two tests equivalent in this case? If you think so, explain why. If you don't think so,
explain the difference in the hypotheses being tested by the two procedures.

2. In the experiment of Chen et al. (subsection 15.1.1), one data value (run #7, y= 101) is substantially
different from the others. Do you think it is plausible that this response is consistent with the rest of

the dara. or do vou think it is more likelv an erroneons value or the result of a faultv exnerimental



2.

explain the difference in the nypotheses being tested by the two procedures.

In the experiment of Chen et al. (subsection 15.1.1), one data value (run #7, y=101) is substantially
different from the others. Do you think it is plausible that this response is consistent with the rest of
the data, or do you think it is more likely an erroneous value or the result of a faulty experimental
run? Use diagnostic graphs or indices to support your argument.

Some investigators prefer “one factor at a time” (OFAT) experiments to standard factorial plans
when performing experiments to fit first-order regression models. One such design, that might be
called a “plus-and-minus” plan, results in a (2d*1) x d model matrix (in coded variables) of form:

(-1 0 0 ... 0)

+1 0 0 ... 0

0 -1 0 .. O

+1 0 ... O

. 0 —I

0 0 +1 ... 0

B sev www e ol

0 0 0 ... +1

\ 0 0 0 ... 0)

That is, for each controlled variable, the design contains a pair of runs carried out at a high level and
a low level, respectively, with all other controlled variables held at their nominal (center) values,
augmented by a center point at which all variables are set to their nominal values. Note that this
design, with &= 2d+1, requires approximately the same number of runs as the fold-over Plackett-
Burman plan (with ¥V= 24", where 4" is the smallest multiple of four larger than a).

(a) For general d compare the precision of the OFAT design given above to that of the comparable
fold-over Plackett-Burman design, by deriving formulae for the standard error of first-order
coefficients for each plan.

(b) Despite their poor estimation properties, some investigators like OFAT designs, especially under
conditions where they want to reserve the right to terminate the experiment early. Explain how
an OFAT design might have some advantage in circumstances where early termination might be



coelliclents Ior each plan.
(b) Despite their poor estimation properties, some investigators like OFAT designs, especially under
conditions where they want to reserve the right to terminate the experiment early. Explain how
an OFAT design might have some advantage in circumstances where early termination might be
necessary, and what restrictions on experimental randomization would be necessary in order to
use an OFAT design in this way.
277
4. Continuing the discussion of exercise 3, there are also experimenters who believe that the best e
experimental design that can be constructed for regression modeling in (say) R=[-1,+1]9is a set of &V
points selected randomly and uniformly from this space. Their intuitive argument is that this
procedure should uniformly “cover” the experimental space (at least on average), and so the
resulting design should be relatively effective regardless of the shape of the response surface.
Examine the efficiency of such designs for the case d= 3, N= 20 using a statistical program that

supports simulation:

* Construct 100 such random designs.

» For each design, compute the standard error (apart from the MSE multiplier) for each of ‘B " ‘B 2

and .‘83.

» For each of the three regression coefficients, construct a histogram of the 100 values computed.

Compare these computed values to the standard error (again, apart from ASE) that would result
from a 20-run design comprised of two replicates of a 23 factorial in the corners of & and four center
points.

5. One practical decision that must generally be made in planning a regression experiment is the range
of physical values to be used for each controllable variable. In many cases, ranges need to be limited
if the expected response is to be well approximated by a first-order polynomial; that is, the response
may be a more complex function if the range of experimental conditions is larger. However, the
precision of estimates and power of tests for the regression parameters of a first-order regression
model are improved as the width of the experimental region is increased.

Suppose an experiment in d controlled variables will be designed as a full unreplicated 27 factorial
plan plus n.center points. The design may be executed one of two ways; in design A the upper and
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model are improved as the width of the experimental region is increased.

Suppose an experiment in d controlled variables will be designed as a full unreplicated 27 factorial

plan plus n.center points. The design may be executed one of two ways; in design A the upper and
lower values of each controlled variable are set at specific values (coded as +1 and -1 in each case),

and in design B these are each made more extreme by 20% (so that, for comparison, the coded

factorial values are +1.2 and -1.2). How much reduction (proportionally) is realized in the standard
deviations of the coefficient estimates by using design B instead of design A?

In industrial applications, one major goal of regression experiments is to find conditions under

which a process can be expected to yield greater (or smaller) values of the expected response than

are realized under current or “nominal” conditions. Suppose that in an experiment involving d
controlled variables, we express these variables in scaled (-1,+1) form, with the center point (zero

for each variable) representing nominal conditions. Suppose we are willing to assume that a first-

order polynomial accurately expresses the expected response as a function of the controlled

variables, and even more, that we actually know the values of the coefficients in the model — By, B2, 2
Bs, ..., P& What point in the experimental space, at Euclidean distance of & from the center point (i.e.,

for which Ef—.l z§ = til_'f'!], yields the highest expected response? (You can use the Method of
Lagrangian Multipliers described in subsection 3.4.1 to solve this constrained optimization problem.
Note that in practice, we would have to use estimates of the model parameters instead, and would
perhaps also want to think about the resulting uncertainty in our result. This result is key to the
“path of steepest ascent,” first described by Box and Wilson (1951).)

Consider an experimental situation in which five controlled variables (in coded form) vary over R=
[-1,+1]°. Three possible experimental designs are heing considered:

» Design A: A complete, unreplicated 2° factorial plan with n.= 4 added center point runs.
» Design B: A 25-1 fractional factorial plan with n, = 4 added center point runs.
» Design C: A 25-2fractional factorial plan with n. = 4 added center point runs.

Suppose for planning purposes that the first-order model is correct, and that
ﬁl — ﬁz — .ﬂﬂ e I, fil - 1'135 — {], o=3

and consider the Ftest for the effectiveness of the regression model, i.e., the test of:
H:i'pu . J'3] = H’E = ,'3:5 — .'.34 — |‘I35 = (.
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“path of steepest ascent,” first described by Box and Wilson (1951).)
Consider an experimental situation in which five controlled variables (in coded form) vary over R =

[-1,+1]5. Three possible experimental designs are being considered:

* Design A: A complete, unreplicated 2° factorial plan with n.= 4 added center point runs.
» Design B: A 2°-1fractional factorial plan with n.= 4 added center point runs.
» Design C: A 2°-?fractional factorial plan with n. = 4 added center point runs.

Suppose for planning purposes that the first-order model is correct, and that
;’31 . II?_! — .33 - I, Hl = ;"35 — {].' ag=3
and consider the Ftest for the effectiveness of the regression model, i.e., the test of:
Hypy:Bi=Ba=P3=04=55=0.

For each of the three proposed designs, compute:

(a) the degrees of freedom for MSE, fitting the first-order model
(b) the noncentrality parameter (given the assumed parameter values) associated with the test
(b) the power of the test (given the assumed parameter values) for type I error probability 0.05.

Show that the regular fractional factorial in &= 3 dimensions based on the generating relation I =
ABC is also a simplex design.

Consider a more general form of the split-plot regression analysis described in Section 15.5. Suppose
a regression design in d controlled variables is planned as an Arun two-level factorial or regular
fractional factorial of resolution at least III, perhaps replicated. The experiment is to be executed in b
blocks, each of size n. The arrangement is made so that:

» d,variables are constant within each block (i.e., are controlled at the whole-plot stratum), and
the whole-plot design is a full or regular fractional factorial design in these d,, variables when -
blocks are regarded as units, and =
» the remaining d, variables, d= d,+d, each take their respective high and low values an ecual

number of times in each block.

Construct formulae for the degrees of freedom in a split-plot ANOVA decomposition for whole-plot
variables and residual sums of squares, and split-plot variables and residual sums of squares.
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CHAPTER 16 Regression experiments: second-order polynomial
models

16.1 Introduction

We continue the discussion of regression models from Chapter 15, but now consider designs for
experiments in which the anticipated model is quadratic in the controlled variables. Quadratic
regression models are often used in process engineering contexts, where controlled variables represent
process characteristics that can be adjusted (e.g., temperatures and processing rates), especially when
the response variable is some measure of quality or quantity of product for which the expectation may
be optimized within the experimental region. (Note that linear polynomials cannot mimic this behavior.)
Response surface optimization strategies (e.g., Myers and Montgomery, 2002) are often based on a series
of experiments, focusing on first-order regression in the early iterations to establish paths of “steepest
ascent” to new experimental regions, and second-order regression in the final step(s) when the
conditions that will optimize the process are within the region of the design.

Quadratic models are used in other contexts as well, even when optimization is not of primary interest,
simply because they can represent more complicated response-to-factor relationships than first-order
models. Of course, regression is possible with even higher-order polynomial models, but unless there are
very few factors, the number of parameters in polynomial models of order 3 or more is quite large,
requiring experiments that are often impractically large. Quadratic regression polynomials are often
used as a pragmatic compromise between the need to use a model that is flexible enough to adequately
express the physical phenomenon of interest, and the operational need to limit the size of the
experimental design.

16.1.1 Example: nasal sprays

Dayal, Pillay, Babu, and Singh (2005) described a regression experiment carried out to model
effectiveness characteristics of a nasal spray as functions of percentage levels of five ingredients.

Prenarations were made of hvdroxwvurea (HUI. the model drue under investigation). two surface-active



Dayal, Pillay, Babu, and Singh (2005) described a regression experiment carried out to model
effectiveness characteristics of a nasal spray as functions of percentage levels of five ingredients.
Preparations were made of hydroxyurea (HU, the model drug under investigation), two surface-active
polymers (labeled HEC and PEU), and two ionic excipients (CaCl, and NaCl), each at three different values
(% weight of the mixture) as summarized in Table 16.1. (Note that the five percentage values sum to less
than 100 in each case; the remaining material was the same for each mixture tested.) Aerosol spray was
generated in a controlled manner, and the viscosity, mean drug diffusion time (MDT), and droplet size
were determined for three different experimental runs for each of 44 preparations. Model reported for
expected MDT, recorded in 8h units, is:

TABLE 16.1 Three Values for Each of Five Controlled Variables Used .
in the Nasal Spray Study of Dayal et al. (2005)

Variable Levels

HEC 0% 2% 4%
PEO 0% 2% 4%
CacCl, 0% 15% 30%
NacCl 0% 15% 30%
HU 0% 2% 4% v




HU 0% 2% 4%

< >

E(y) = 20.1038
+ 35.3040 x, 4 65.3821 xo + 4.3340 3 + 1.8093 x4 — 9.1356 x5
~ 1.6799 7 — 7.3861 23 — 0.0483 23 + 0.0100 25 + 0.4909 27
— 4.7250 2122 — 0.8533 2,25 — 0.0200 2,24 — 0.6312 2,25
+ 0.2775 xoxg — 0.7267 xox4 + 3.0687 015
—0.0071 2374 + 0.0642 375
~0.0183 425

where x; through x: are the five controlled variables summarized in Table 16.1, each in units of %
weight of the mixture.

16.2 Quadratic polynomial models

Extending the form of the first-order polynomial models presented in Section 15.2, again define a
d-dimensional vector X = (x, X, X, ..., X5, a point in the ddimensional experimental region R specifying
a particular experimental treatment. In scalar notation, a second-order, or quadratic, polynomial model
for the expected response may be written as:

d d d-1 d
E(y) =a+ Z i3 + Z r?f’i,-,—, - Z Z 33 Psj .
i=1 i=1

i=1 j=i+l
An equivalent matrix notation that is sometimes more convenient is:

E(y) = a+x'B, + x'Byx
where {p.,},= p; and B, is a dx dmatrix with {B,}; = P, and {B.}; = {B.} s = B;/2, i< J

In many regression experiments, an important goal is to identify values of the independent variables

[o*)
U
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where {p.},= B; and B, is a dx dmatrix with {B,};= 5 and {B,}; = {B.} ;= p,/2, i< J
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In many regression experiments, an important goal is to identify values of the independent variables =
that result in extreme (large or small) expected response. If we actually knew the coefficients of the
quadratic model, the stationary point or points at which derivatives of £y with respect to each x; are
zero can be easily identified as the solution set to the matrix equation:

ad .
EE{Q] — lﬁl + 2B21u = U

When B; is not singular, the solution is unique and can be written in closed form as:

xo = —B3'B,/2.

In this case, X, maximizes £(}) if all eigenvalues of B; are negative, minimizes £ j) if all eigenvalues of B;
are positive, and does neither — i.e., is the location of a saddlepoint — if B, has both positive and
negative eigenvalues. If one or more eigenvalues of B, are zero, X, is not unique, but is a collection of
points along a line, plane, or hyperplane in R

While we regard the model coefficients as unknown quantities that can only be estimated with
uncertainty given data, the (estimated) coefficients from the fitted model can be substituted in the above
expressions to yield an estimated stationary point. For example, in the experiment of Dayal et al.

described in subsection 16.1.1, B\ and B2 can be constructed based on the first- and second-order
coefficients, respectively, of the fitted model for MDT:

[ 35.3040'\ (-1.6799 —2.3625 —0.4266 —0.0100 —0.3156
65.3821 ~2.3625 —7.3861 0.1388 —0.3634 1.5344
B,=| 4330 | B,=|-04266 0.13885 —0.0483 —0.0036 0.0321
1.8093 ~0.0100 —0.3634 —0.0036 0.0100 —0.0092

\ 9.1356 / \ 03156 1.5344 0.0321 ~0.0092 0.4904

Because Bz is of full rank, these yield a unique estimated stationary point:
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kg,lg,—;ﬁ ~0.3156  1.5344 0.0321 —0.0092 0.4904

Because Bz is of full rank, these yield a unique estimated stationary point:

[ —0.7899
2.5078
%o =-B;'8,/2=| 46.9822
~27.7185

\ —21.2646 )

Eigenvalues of B; are mixed in sign, with three positive and two negative, so the stationary point neither
maximizes nor minimizes the fitted response model. However, an even more important observation is

that Xo is not physically meaningful at all in the context of this problem, because the individual elements ...
represent percent components in a mixture, and three of the five estimates are negative! More generally,
estimated stationary points that lie outside the region in which an experiment is conducted should be
regarded with suspicion, even if they represent physically meaningful conditions, because extrapolations
based on polynomial models are often unreliable even when the model is an adequate approximation to

the truth in a limited region. Graphical representations of the fitted model, especially in and near the
experimental region, are often the most practical tools for understanding the general shape of the

function, and (when applicable) the most promising subregions or directions for process improvement.

For an Arun experiment, we can write a matrix model for the full experiment as:

y=al+XoB+e=al+X.8;, +XpeBpg + XmeBug + €

where each row of X, is the transpose of the vector x associated with the corresponding run, and ; is the
vector of “linear” polynomial coefficients. Xz, like X, is of dimension Aby-d, the (Z j) element of X, is
the square of the corresponding element of X;, and fz, is the set of “pure quadratic” coefficients — those
associated with squared controlled variables. The rows of X, each contain dd-1) elements, the pairwise
products of all distinct pairs of elements from the vector x, and [,,, contains the “mixed quadratic”
coefficients — those associated with products of two controlled variables.



associated with squared controlled variables. The rows of X, each contain d{d-1) elements, the pairwise
products of all distinct pairs of elements from the vector X, and [,,, contains the “mixed quadratic”
coefficients — those associated with products of two controlled variables.

16.3 Designs for second-order models

In order to support estimation of the coefficients in a quadratic polynomial model, an experimental
design must include at least three distinct values for each controlled variable. Thinking about the
simplest case of a single variable (d= 1) should make this clear; here the model contains three
parameters, and so a minimum of three distinct design points (values of x) are necessary to provide
unigue estimates.

A number of classes of designs have been developed for quadratic polynomial regression; we will briefly
describe four of them. In each case, we will assume that the controlled variables have been scaled so that

the experimental region Ris [-1,+1]<

16.3.1 Complete three-level factorial designs

Perhaps the most obvious class of experimental designs for quadratic polynomial regression is the

complete factorial design (CFD) where each controlled variable takes on three coded levels within &.
Denoting those levels as {-£ 0, ff for each variable, and adding n—1 additional runs at the center point of

R, x =0, to provide replicate information from which ¢? can be estimated, such a design contains a total

of N=3%n—1 runs. For example, the model matrices for a three-level factorial plan in d= 3 controlled 224

variables, with n.= 3 center points, can be written as: =5
o f\ el ( = 9=
F = e R L
Fi=f ¥ i il ol Lt o
e & s o o - =f2 2
-5 T 7 ) ol o =& - A
_f f _f fE fz fﬂ _f? fz _f?




I'=f =Ff 2rp - -
- F 7 Rk e = i Sl o
=¥ &=f ok =f% Pt
“=% 7 |t T S i
wf = =F b ¥ ol =

0 f f 0 f* f? 0 0 f?

0 f-~f L 0 0-f2

0-f f 0 f? f? 0 0 -f2

0-=f —f i o 0o 0 f2

f 0 f > 0.7 0 f* 0

I B~y = 0. D =f* 0

Xe=|=f 0 f| Xpg=|F* 0| Xug= 0-f2 0}
-f 0 “f f’.! 0 f:! () f2 0

f f 0 g 0 0

f—=f 0 £21ro ~f¢2 0 0
-f f 0 2 1% D -f2 0 0
~f'=f 0 i Sl 20 0

0 0 f 0 0 f? 0O 0 0

0 0-=f 0 0 f? 0 0 0

0 f 0 0f 0 0 0 0

0-f 0 0.f* 0 0 0 0

f 0 0 00 0 0 0
-f 0 0 7 8.0 0O 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 00 0 0 0

L 0 0 o) \ 0 0 0) \ 0 o0 0

Complete three-level factorial designs have a number of attractive statistical features, and are popular
plans when dis relatively small. However, for larger values of 4, the number of experimental runs
required is impractically large in many settings. The designs described in the next three subsections also



Complete three-level factorial designs have a number of attractive statistical features, and are popular
plans when dis relatively small. However, for larger values of d, the number of experimental runs
required is impractically large in many settings. The designs described in the next three subsections also
have relatively good statistical properties when quadratic polynomial models are used, and can be

constructed in substantially fewer runs for > 3.
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16.3.2 Central composite designs

Box and Wilson (1951) described a general-purpose design that is perhaps the most widely used
experimental plan in situations where a quadratic polynomial model is anticipated. The central
composite design (CCD) can be thought of as being comprised of three “subdesigns,” each located so that

its “center of gravity” corresponds to the center point of £ x = 0:

* an nsrun orthogonal two-level design; either a full factorial plan in the d controlled variables, or a
regular fractional factorial plan of resolution at least V,

« acollection of n.runs taken at the center point, and

« an “axial” subdesign of 2dtreatments, each of which is defined by setting one of the controlled
variables to a standard nonzero value, either positive or negative, and all other controlled variables

10 Zero.

The overall size of the design is then N= n;+ 2d + n. Where the controlled variables have been coded so
that the experimental range of each is the same, the absolute value of each variable in the factorial
portion of the design might be labeled fin all runs, while the absolute value of the nonzero controlled
variable in each axial run might be labeled 4. In this notation, model matrices for a central composite
design in d= 3 controlled variables with three center point runs can be written as:

& 3 B s D ¥ A fi\
F oy s o e
F=g o B o P o
S e | e e e il
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}{1_ = il 0 0 qu = f12 0 0 XMQ = 0 0 0
—a 0 0 a® 0 0 0 0 0
0 a 0 0 a® 0 0 0 0
0-a 0 0a* 0 0 0 0

0 0 a 0 0a? 0 0 0

0 0 —a 0 0 a? 0 0 0

0 0 0 000 0 0 0

0 0 0 00 0 0 0 0

\ 0 0 0) \ 0 0 0/ L\ 0 0o 0

16.3.3 Box-Behnken designs

Box and Behnken (1960) introduced a series of experimental designs for quadratic regression, with
structure based on patterns found in balanced incomplete block designs. Box-Behnken designs (BBD) are
symmetric three-level designs, consisting of a combination of two-level factorial plans, each constructed
using only a subset of the controlled variables. To design an experiment in d controlled variables, one
first selects a balanced incomplete block design (BIBD) for dtreatments in & blocks of size k< d. (This
BIBD is not the design to be implemented in the regression experiment, but is used in the construction
process.) Each treatment in the BIBD is associated with one of the regression variables. Then, for each
block in the BIBD, a two-level factorial design or regular fractional factorial design of resolution at least V
is selected for only those variables associated with BIBD treatments included in the block; all other
controlled variables take the value of zero in these runs. The resulting designs are then combined, along
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block in the BIBD, a two-level factorial design or regular fractional factorial design of resolution at least V
is selected for only those variables associated with BIBD treatments included in the block; all other
controlled variables take the value of zero in these runs. The resulting designs are then combined, along
with 5. center point runs, to form a Box-Behnken regression design of N= bns+ n.runs. For example, a
quadratic regression design for d= 3 controlled variables can be formed using the BIBD for three
treatments in three blocks of two units each:

e
]

b | e
e

Using a complete 22 factorial design in the pairs of factors associated with each block, a Box-Behnken
design with n.= 3 center point runs can then be constructed with model matrices:

([ [ 0) (12 f* 0 (2 0 0)
f-f 0 i Sl -2 0 0
-3 F 9 8 Sl -2 0 0
—f—=f 0 21 0 ™ @ 0
F e 7 7~ B 0 f 0
Y =y ~ 0. 0-f2 0
-~f 0 f T~ 0.1 0 -f2 0
Xe=|-f 0-f| Xpg=|f* 0| Xmo= 0 f 0
0 f f 1 ol o g 0

Y 0 f2 f2 0 0 —f2
0-f f S 0 0 -—jf2

0 - —f o.f* P 0 0 [f?

0 0 0 0 00 0 0 0
0 0 0 0 00 0 0 0
\ 0 0 0) \ 0 0 0/ \ 0 0 0

16.2.4 Alismented nairs decions



0 0 0 0 0 0
0 0 0 0o 0 0

16.3.4 Augmented pairs designs
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Like central composite designs and Box-Behnken designs, the augmented pairs designs (APD) introduced
by Morris (2000) are constructed by combining sets of design points. In this case, the first set of points is
a two-level fractional factorial plan of size n-and of resolution at least III (or a full two-level factorial
design for 4= 2); a Plackett-Burman design is generally recommended to minimize design size. For
notational convenience, say the n,points in this two-level design are specified by the vectors of coded
controlled variables X;,X5,Xs, ...,X,. The second set of points contains one experimental run determined by
each distinct pairof runs in the first set, specified as:

Xij = —(x,- +xj}f2, 1>

that is, each controlled variable in the new run takes a value that is the negative of the average value that
variable takes in the two runs from the first set. 1. replicated runs at the design region center point

7 ny
. . : : . N=ng+{ 5 |+ne
comprise the final point set. The augmented pairs design contains a total of = runs.
Hence for d= 3, the model matrices for an augmented pairs design containing 2. = 3 center point runs

dare:

{ & 7 ) (f“’ ¥ o' A A fﬂ\

i i’ £ i g Ll o -f* -2 J°
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~f 0 0 f2 00 0 0 0

0—f 0 0f% 0 0 0 0

Xp=] 0 0-f]| Xpg=| 0 02| Xyo= 0 0 0

0 0 f 0 0/ 0 0

0 f 0 0fF 0 0o 0 0
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0 0 f 0 0f° 0 0
0 f 0 0f 0 0 0 0
f 0 0 f2 00 0 0 0
0 0 0 00 0 0 0 0
0 0 0 00 0 0 0 0
\ 0 0 0 \ 0 0 0/ L 0 o0 o)

Note that in this case (d= 3), the augmented pairs design has structure very similar to that of the central
3-1
composite design with @= £ but is based on a 2711 fraction rather than a full 23 factorial plan. This

similarity does not exist for larger values of d where the second group of runs in the augmented pairs
plan do not resemble the axial runs in the central composite design.
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16.4 Design scaling and information

The information available through experiments arranged according to any of these designs, as reflected
in their respective information matrices, is directly dependent on the “corrected” model matrix, (I-H;)
(X; | Xpp| Xsr0), where H, is the hat matrix associated with the model containing only nuisance parameters.
All designs in each of the four classes described in Section 16.3 have two important “balance” properties:

* The elements in each column of X; have a zero sum (and average).
» The elements in each column of X,,, have a zero sum (and average).

These facts have immediate implications for the form of the information matrix. Specifically, the model
containing only the “nuisance parameter” q, leads to a hat matrix of form H, = '{TJ As a result, (I-H))X;
= X; and (I-Hy)X,; = X,y The zero-sum property cannot hold for the columns of X;, however, because all
nonzero elements of this matrix must be positive. However, due to the symmetry of each of these
designs,



= X; and (I-H) X5, = X;70. The zero-sum property cannot hold for the columns of X,, however, because all
nonzero elements of this matrix must be positive. However, due to the symmetry of each of these
designs,

* The elements in each column of Xz, have the same average, say dzp.
This means that (I-H;)X s, = Xz~ dpg] for each of these designs. Thinking about the form of each design

(and examining the model matrices given in Section 16.3 as examples) we can derive the form of a,, for
each design:

Design apQ

CFD (2 x 31 f*)/N
CCD (2%f* + 2a*)/N
BBD r2* f2 /N

ADP (ns+ =L(5L —1))f%/N

where ris the replication factor for the BIBD on which the BBD is based, i.e., the number of blocks in
which each BIBD treatment is applied. Also, because the columns of X; are orthogonal to each other in
these designs, X', X; = Naggl, and since the columns of X; are orthogonal to those in X, X’/ X;,=0. As a
result of this structure, the design information matrix for any of these designs may be written as:

T =X, - H;)X,

1XL ){},(X;JQ = i']p(‘).]} K}ijtfq
= (Xpg —apd) (Xpg —apgd) (Xpg —apqd)Xag
r
xarqx-‘-w
/1"\"‘&;!.:‘;] Kl}(pq ﬂ \
W - TV _ -~ T v/ W AV R



e Ak SALAPQ — APQY ) Ap AMQ
(Xpg —apd)(Xpq —apld)’ (Xpq — aprgd)'Xumq

x:‘-.qu~'er
N'tlpql xleQ 0
— (Xpg —apgd) (Xpg — aped) X'}:.QKMQ y (16.1)
XveXume
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Some additional simplifications of this form are also possible, but the details are not the same for each e

class of designs. For example, for any of the designs considered here,
» the elements of each column of X, have the same sum of squared values, s,

and for each design class, the values of s, are:

Design SMQ ~
CFD d %374

e 2l o

BBD A2k r4

ADP  ing(ns +4)f* v

where for the BBD, A is the number of blocks in the associated BIBD containing any pair of treatments
applied together (Chapter 7). Hence, $;, 1s the common diagonal elements of X' ,,X,,,. Further, X’;,,X ;0 =
Syl for the CFD, CCD, and BBD design classes, but not (in general) for ADP designs because not all
collections of four columns in the initial resolution III design segment have the same internal
relationship. Information matrices for the four example designs described in Section 16.3 are:

18/%1 0 0
I¢FR o 6/ 1+12fJ 0
1271
10£21 0 0
I€CP g = f) = 2f 1+ 1753 0O

R



\ 12]‘1/

(1021 0 0
TECD (g = f) = 2f 1+ 1753 0
\ 811
/8f*1 0 0
TBBD _ 4f' 1443 0
\ 4f41
61 0 0
y foiit 2T+ 443 0
41

Note that because designs in the CFD, BBD, and APD classes are three-level plans with coded controlled
variable values restricted to — £ 0, and £ the overall scale of 7for these designs is governed by the value of

£ In particular, consider two designs from any of these classes that are identical except that design 1 is 0
scaled by £ and design 2 is scaled by £. It should be clear that if the information matrix for design 1is #,
then the information matrix for design 2 is:

éld 0 éld 0
72 = h p 71 i ;
0 ZLyas1y/2 0 Zlyas1y/2
fi fi

Hence, all functions of the information matrix that reflect statistical performance (noncentrality and
estimation precision) are superior for the design that has larger “span” as measured by £ For these
designs, “£ is usually simply coded as “1,” since it is understood that “larger is better,” at least within the
experimental range in which the model is assumed to be accurate.

The scaling of designs in the CCD class is a bit more complicated since they are five-level designs.
Statistical indices of performance are generally improved (or at least, not made worse) by increasing
either for g, but their relative values are also important. Designs are often tabulated with “£ coded as
“1” so that & renresents the ratio of an axial deviation to a factorial deviation in the desien. Performance



The scaling of designs in the CCD class is a bit more complicated since they are five-level designs.
Statistical indices of performance are generally improved (or at least, not made worse) by increasing
either for g, but their relative values are also important. Designs are often tabulated with “f coded as
“1” so that & represents the ratio of an axial deviation to a factorial deviation in the design. Performance
measures can then be investigated with respect to this relative value of 4, with the understanding that
for a given ratio of &% “larger” is again “better” within the region of interest and model adequacy.

16.5 Orthogonal blocking

When an experiment is executed in blocks, an important question is whether this can be arranged so
that efficiency is not lost. Equivalently, we can ask whether /is the same when block parameters are
included in the model as when a is the only nuisance parameter, that is, whether the design is blocked
orthogonally.

As in earlier chapters, when each experimental unit is associated with exactly one of & blocks, the hat
matrix for the model containing only the block parameters (or the block parameters and intercept) is

= diag{-L ® i X
H, = diag( ny Jnixns ru']“”‘“? """ ng J"“‘"b], where rows are ordered by blocks, and n;is the number

of units/runs in block 7 Now, we can take the observations made about the structure of (I-H,)X, for the
unblocked case in Section 16.4, and ask what must be true of a blocking structure to yield the same
result. First, recall that for unblocked designs, the four design classes we have considered are each such
that:

* The elements of each column of X; have a zero sum (and average).
* The elements of each column of X, have a zero sum (and average).

» The elements of each column of X, have the same average, 4.
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Hence for the blocked case, (I-H,)X; and (I-H,)X,,, will be as they are in the unblocked case if the
elements of each column of X; and X, sum to zero within each block. Similarly, (I-H;)Xz, will be as it is

in the unblocked case if the elements of each column of Xz, fave an average value of app within each
block.
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elements of each column of X; and X, sum to zero within each block. Similarly, (I-H,)Xz, will be as it is
in the unblocked case if the elements of each column of Xz, have an average value of arp within each
block.

For example, consider the CFD in @ = 3 controlled variables described in subsection 16.3.1. There are
several ways the design can be divided into two blocks, each preserving zero sums within blocks for the
columns of X; and X,z within blocks. But constructing blocks in such a way that the within-block
averages of elements within columns of X, are the same is less obvious. One way to modify the design to
meet this requirement is to add additional center points. If the first eight runs (as tabulated in the display
in subsection 16.3.1) are grouped with eight center point replicates, while runs 9-26 are grouped with
two center point replicates, the within-block average of elements from any column of X, will be #/2, and
the restrictions concerning the columns of X; and X, are also met. Note that the block sizes are not
equal in this case (16 and 20), but the difference is small enough that this would not present problems in
many applications.

CCDs are often blocked by grouping factorial points into one or more blocks, and axial points in another.
As with CFDs, the number of center points in each block can be adjusted to meet the conditions for
orthogonal blocking, but for these designs, the value of & (relative to £ can also be adjusted to help meet
the condition related to the columns of X.

16.6 Split-plot designs

The general structure for split-plot regression experiments is essentially the same regardless of the order
of model used in analysis: the values of some controlled variables remain constant within blocks/plots,
while the values of other controlled variables differ across units/split-plots within a block/plot. Model
monomials (x; X7, and x; x) that have constant values within each block are assessed in the whole-plot
section of the ANOVA decomposition, relative to a MSEreflecting block-to-block variation. Other model
terms for which values change from unit to unit within blocks are assessed in the split-plot section of the
ANOVA decomposition, relative to a MSE reflecting unit-to-unit (within-block) variation.

16.6.1 Example



terms for which values change from unit to unit within blocks are assessed in the split-plot section of the
ANOVA decomposition, relative to a MSE reflecting unit-to-unit (within-block) variation.

16.6.1 Example

Consider an experiment in @ = 2 controlled variables designed as two complete replicates of a full 32
factorial. Suppose the experimental material can be supplied in batches sufficient to prepare three
experimental runs, and that the three runs associated with one batch can be most easily made ifonly 2 .
is varied among runs and x; remains fixed. So the envisioned experimental layout, with each (x,x) e
denoting the variable setting for a single unit, is:

block 1 | (-1,—1) (—=1,0) (—1,+1) A
block 2 | (-1,—-1) (-1,0) (—-1,+1)
block 3 | (0,-1)  (0,0)  (0,+1)
block 4 | (0,—1) (0,0) (0,+1)
block 5 | (+1,-1) (+1,0) (4+1,41)
block 6 | (+1,—1) (+1,0) (4+1,+1) v

If the differences among blocks (due, for instance, to variation between material batches) can be
regarded as random, a split-plot analysis can be carried out. Let X; be the 18-by-6 model matrix of
indicator variables representing blocks, X,,, be comprised of the x; column from X, and the x column
from X, and X,, be comprised of the x, column from X,, the x? column from X5 and the single column
from X, representing x; X,. The information matrices are then:

1., 1.\ o, 12 0
Iin-!rr — Exu'pxl (I - EJ) x‘lxwi'-' T ( 0 l)

(12 0 n\
T —_w! T IT W = in A in



- 1 , 12 U
Iil‘l.h'!‘ -— Ex"-PXl (I gy EJ) x’lx’"’P —. ( ﬂ 1)

12 0 0
Iiutru — K:P(l == Hljx,gp —_ ” "-1 '[}
0 0 8

Standard errors of 2, 322, and 12 are computed as the square root of MSE, divided by their respective

diagonal elements of Ji:re, While those for B, and A1 are based on MSE,p and the elements of iz

16.7 Bias due to omitted model terms

In most applications, quadratic regression models do not exactly represent the underlying relationship
between A()) and x. They are useful and popular because they can approximate many (but not all)
“curved” functions reasonably well over a limited domain. And in truth, regression experiments are
often performed in contexts where there is insufficient information to stipulate a more appropriate
model form. But where there is some possibility that higher-order (i.e., greater than two) monomial
terms would be needed to accurately reflect the underlying function, it is important to understand how
much estimation bias might result from their omission from the quadratic model.

Recall our discussion of effect aliasingin Chapter 13, in which a relatively modest linear model (e.g., one
containing only an intercept and main effects) is fit in conjunction with a relatively small fractional 203
factorial design (e.g., of resolution III), and is subject to estimation bias if terms of higher order (e.g., =
interactions) are present but are not included in the model. Chapter 13 describes how “alias groups” of
effects can be easily identified for regular fractional factorial experiments based on inspection of the
identifying relation. The phenomenon of coefficient estimate bias is really much more general, and can
occur with any linear model when some important terms are omitted (or cannot be estimated based on

the selected design).

Generally, suppose we fit a model of matrix form y = X 0 + £ to data acquired in an experiment, but that
the data were actually generated by a model of form y=X 0 + W ¢ + £. In the present case, X would
include the collection of columns from 1, X;, Xz, and X, while W might contain columns associated



Generally, suppose we fit a model of matrix form y= X 0 + £ to data acquired in an experiment, but that
the data were actually generated by a model of form y=X0 + W ¢ + £. In the present case, X would
include the collection of columns from 1, X;, Xz, and X, while W might contain columns associated
with third-order monomials (e.g., X7 x). Assuming X is of full column rank, the unique least-squares
estimate of 0 is O = (X'X)-1X"y. But, substitution of the “true” expectation of y into this linear form results
in:

E(8) =6+ (X'X) 'X'W¢.

That is, the bias of each estimated coefficient is determined by the value of the omitted coefficients ¢,
andthe form of (X"X)-1X'W, often called the glias matrix, which in turn is determined by the model (both
the fitted model and the potentially omitted terms) and the experimental design. In practice, we don't
know the value of ¢; in fact, we are effectively assumingit is zero by our choice of model. However,
other things being equal, an experimental design for which the alias matrix contains elements of
relatively small absolute value is often preferred to one containing larger elements, because this offers
relatively more protection against coefficient bias ifit turns out that ¢ is nonzero.

For example, consider once again the central composite design for d= 3 independent variables described
in subsection 16.3.2, scaled so that /=1 and # = 2. For this design:

( 17 0 0 0 16 16 16 0 0 0\
016 0 0 0 0 0000
0 016 0 0 0 0000
0 0 016 0 0 0000
6 0 0 0 40 8 8 0 0 0
6 0 0 0 8 40 8 0 0 0
6 0 0 0 0 0 0
0O 0 0 0 0 0
0O 0 0 0 0 0 0080

\ 0 0 0 0 0 0

X'X =

oo
oo
N
=




0O 0 O 0 0 0 8 00
0o o0 0 0 0 0 0 8 0
o o0 o0 0 0 0 000 8
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( 0:3043 0.0000 0.0000 0.0000 —0.0870 —0.0870 —0.0870 0.000 0.000 0.000)
0.0000 0.0625 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.000
0.0000 0.0000 0.0625 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.000
0.0000 0.0000 0.0000 0.0625 0.0000 0.0000 0.0000 0.000 0.000 0.000

—0.0870 0.0000 0.0000 0.0000 0.0516 0.0204 0.0204 0.000 0.000 0.000

~0.0870 0.0000 00000 0.0000 00204 0.0516 00204 0.000 0.000 0.000

~0.0870 0.0000 0.0000 0.0000 0.0204 0.0204 0.0516 0.000 0.000 0.000
0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 0.0000 0.125 0.000 0.000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.125 0.000

\ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.125

But now suppose that the data-generation process actually involved three additional model terms
beyond those in the quadratic polynomial, namely 23 Bi11, 1226112, and 72361122 In this case:

( 11 1\
1 11
I =11
i<4 1
-1 11 (0 0.8} (00 0.0 03478
ol A4 40 0 0 2.5 0.0 0.0000
=1 =3 080 0.0 0.5 0.0000
| @09 0.0 0.0 0.0000
W=| 8 00|, X'W= $0.9 L (X'X) I XIW = 0.0 0.0 0.0435
-8 00 008 0.0 0.0 0.0435
5 oD 008 0.0 0.0 0.0435
5 % 000 0.0 0.0 0.0000
000 0.0 0.0 0.0000
0 00 | & ) 00 0.0 0.0000




-8 00| < = | = '
008 0.0 0.0 0.0435
0 00
& 50 000 0.0 0.0 0.0000
6 B 000 0.0 0.0 0.{}[}00)
000 0.0 0.0 0.0000
. \ ), \

0 00
0 00

\ 0 00)

HEHCE, E(Inj[:l = 31 + 2,551“, E{.}g) - Ajz + [].53112, and E(IL_:I”} — .131';5 1 U‘-U-‘i-‘jﬁ-i?“gz, { = 1.23 The

estimated intercept is also biased by p,,2,, but this is not of concern in a comparative experiment; the
remaining coefficients in the estimated quadratic model remain unbiased.

Finally, it should be noted that in most real physical processes, E{J) is not exactly related to X througha ..
fourth-order polynomial either. The idea is that, when the addition of higher-order polynomial terms =
would make a much better approximation to the truth, but are omitted from the fitted model, this

analysis provides a good approximation to the estimation bias that can be expected.

16.8 Conclusion

Regression experiments designed for quadratic polynomials provide more information about the nature
of the expected response-versus-controlled variable relationship than those designed for first-order
polynomial models, at the cost of a larger number of required experimental runs. Complete three-level
factorial designs, central composite designs, Box-Behnken designs, and augmented pairs designs are four
classes of experimental plans that are used for such experiments, each of which has specific strengths,
but all of which have good overall properties. The conditions for orthogonal blocking are somewhat
more extensive for quadratic models than for first-order models, but can often be achieved by selecting
an appropriate number of center point runs in each block, and for CCDs, by adjusting the the value of a
relative to £ Because quadratic polynomial models are often only approximate representations of real
systems, designs should be considered both for their precision of estimation, and for the potential bias
they imply for coefficient estimates in case higher-order monomials should also be present in the “true



an appropriate number ol center point runs in each block, and ror CLLS, by adjusting the the value oI &
relative to £ Because quadratic polynomial models are often only approximate representations of real
systems, designs should be considered both for their precision of estimation, and for the potential bias
they imply for coefficient estimates in case higher-order monomials should also be present in the “true

model.”

16.9 Exercises

1. Construct orthogonal blocking schemes for each of the following designs in = 4 factors, that will
allow them to be executed in the indicated number of blocks of equal size:

(a) A BBD based on the BIBD with six blocks of size 2 with n.= 6
(b) A CCD with n, = 8 center points in two blocks; for this, also determine the required value of a
(relative to A.

2. Designs in the BBD class require n. > 0 center points in order to provide unique least-squares
estimates of all model parameters; if n.= 0, the model matrix is singular. Explain the nature of the
singularity when n, = 0, i.e., show what group of columns is linearly dependent.

3. Suppose an unblocked CCD in two variables with three center points is planned for a situation in
which o is expected to be three. The design is scaled to values /=1 and a=1.5.

(a) If By = P2=2, P11 = P2z = -1, and B,z = 0, what is the power of the test for model effectiveness?
(b) What are the degrees of freedom for the test for lack of fit?
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4. An experiment is planned to model the effect of three controlled variables on responses using three
replicates of a full three-level factorial experiment with coded values (-1, 0, +1) for each variable.
The experiment must be run as a split-plot study, with variables 1 and 2 varying between plots (of
size 3), and variable 3 (only) changing within plots. Assuming that a full quadratic polynomial model

will be used for analysis, determine:

» degrees of freedom for each line of a split-plot ANOVA,
» standard errors for each coefficient estimate.

5. Rechtschafiner (1967) described a class of three-level designs that are saturated for full quadratic



* degrees of freedom for each line of a split-plot ANOVA,
» standard errors for each coefficient estimate.

5. Rechtschafiner (1967) described a class of three-level designs that are saturated for full quadratic
models, i.e., for which Nis the number of model coefficients. For any value of d> 3, the design
contains four groups of runs:

» asingle run in which all x;= -1,

» drunsinwhich x;=-1,and all x;=+1for j# ,71=1,23,.., 4

* druns inwhich x;=+1, and all x;=0for j# 7 7=1,2,3,....d and

» dd-1)/2runs inwhich x;=x,=+1,and all x;=-1forj+Jjand j+ 7,47 =1,2,3,...,dand i+ I.

Using a computer, calculate the information matrix /for Rechtschafiner designs, for d= 3, 4, and 5.

6. Suppose a regression experiment in &= 3 controlled variables is carried out with the anticipation
that a second-order quadratic polynomial model will be adequate. However, suppose that the “true”
functional relationship also includes three cubic monomials:

- v )
fnzxs, Pnaxize, and Biazzizazs

and that these are not included in the fitted model. What is the resulting bias in the estimates of the
quadratic polynomial model coefficients, if the design used is:

» the complete three-level factorial design described in subsection 16.3.1 with /=17
» the central composite design described in subsection 16.3.2 with /=1 and a=1.5?
» the Box-Behnken design described in subsection 16.3.3 with = 1?

» the augmented pairs design described in subsection 16.3.4 with = 1?

7. In some cases, information about a physical system being studied can be used in suggesting
appropriate modifications to a regression model, and the experimental design used to fit it. Suppose,
for example, that for a d= 1 problem, we know (or firmly assume) that Z{){x)) is an even function of
xin the experimental region R= [-1,+1], that is, that {{x) = }{—x) for any x € R. Under this -
assumption, a polynomial model should contain no terms of odd order; suppose that we select a =
model of form:
Y=a+ ."J’“;rf + fi””:r:? + €.

Sugegest an experimental design in &= 10 observations. containing enough replicate points to



assumption, a polynomial model should contain no terms of odd order; suppose that we select a

model of form:

y=a+ B!IIT " H””IT + €.

Suggest an experimental design in V=10 observations, containing enough replicate points to

provide at least four degrees of freedom for “pure error.” Defend your suggested design based on
calculated standard errors, the noncentrality of tests, or other relevant statistical indices.

A complete three-level factorial experiment is planned to provide data to fit a quadratic model with
d= 2 controllable variables. The experimental budget allows for a total of A= 18 runs to be included,
and blocking will not be needed. The investigator is considering four different experimental designs:

Design 1: two complete replicates of the 32 factorial plan.

Design 2: one complete replicate of the 32 factorial plan, plus two additional runs at each corner
point (i.e., where each | x;|= 1) and one additional run at the center point.

Design 3: one complete replicate of the 3% factorial plan, plus two additional runs at each side
point (i.e., where exactly one x;= 0) and one additional run at the center point.

Design 4: one complete replicate of the 32 factorial plan, plus nine additional runs at the center
point.

Compare these designs relative to the sampling variance for each of:

b
z{?ll
P12

9. Continuing exercise 8:

(a) Ifit turns out that B, = 1, By, = -1, p; = 1, p1> = 1/2, and [;; = 0, which design offers the best power

(b) Which design results in the least bias to the estimate of f; (under the assumed quadratic model)

for testing
Hypy: 51 =082=0n =00 =02=07

if the “true model” also includes the monomial py;, % x2?
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dssumption, a polynomilal model snowda contaln no terms oI oad order, suppose that we select a
model of form:
Y=o+ I:f”;rf + H””;r‘l1 + €.

Suggest an experimental design in &= 10 observations, containing enough replicate points to
provide at least four degrees of freedom for “pure error.” Defend your suggested design based on
calculated standard errors, the noncentrality of tests, or other relevant statistical indices.

8. A complete three-level factorial experiment is planned to provide data to fit a quadratic model with
d= 2 controllable variables. The experimental budget allows for a total of A= 18 runs to be included,
and blocking will not be needed. The investigator is considering four different experimental designs:

» Design 1: two complete replicates of the 32 factorial plan.

» Design 2: one complete replicate of the 3? factorial plan, plus two additional runs at each corner
point (i.e., where each | x;| = 1) and one additional run at the center point.

» Design 3: one complete replicate of the 32 factorial plan, plus two additional runs at each side
point (i.e., where exactly one x;= 0) and one additional run at the center point.

» Design 4: one complete replicate of the 3? factorial plan, plus nine additional runs at the center

point.
Compare these designs relative to the sampling variance for each of:
. P
. Bn
. B2
9. Continuing exercise 8:

(a) Ifit turns outthat p, =1, Py = -1, 2 =1, P12 = 1/2, and pz; = 0, which design offers the best power
for testing
Hypg: 81 =B2=P1n =082 =2 =0?
(b) Which design results in the least bias to the estimate of B, (under the assumed quadratic model)
if the “true model” also includes the monomial py;, % X2?



200

CHAPTER 17 Introduction to optimal design

17.1 Introduction

The experimental designs described to this point have been presented as “templates” that, under general
sets of conditions, lead to statistical analyses with good general properties. For example, the complete
block designs discussed in Chapter 4 account for additive block differences without sacrificing precision
in estimates of treatment contrasts, and the factorial and fractional factorial designs of Chapters 11-13
yield estimates of each main effect that are as efficient as those provided by one-factor designs of the
same size, each of which supports estimation of en/ythat main effect. In many cases, the designs
presented are opiimal, in the sense that no other experimental plan in the same number of runs can
provide more precise estimates or powerful tests against broad collections of alternative hypotheses for
the parameters of interest, given the assumed model.

Optimal design provides a more direct connection between experimental design and statistical
performance by framing design selection as an optimization problem, in which standard errors are
minimized or noncentrality parameters are maximized. An example is the allocation problem discussed
in Chapter 3, where sample sizes were directly determined for a completely randomized design (CRD)
using constrained optimization so as to obtain the best estimation precision possible given the available
resources. In this chapter, we further develop the concept of design optimality.

17.2 Optimal design fundamentals

In order to intelligently discuss a formulation of optimal design, at least three questions must be
answered. First, what experimental treatments are available for use? Second, what parametric
assumptions are we willing to make about how treatments affect responses? Finally, what questions are
we trying to answer by performing the experiment, i.e., what sort of information are we trying to
“optimize”? Corresponding to these questions, our framework for optimal design construction requires
specification of three entities:



we trying to answer by performing the experiment, i.e., what sort of information are we trying to
“optimize”? Corresponding to these questions, our framework for optimal design construction requires
specification of three entities:

1. The experimental region.In this book, the experimental region is denoted by R It is the finite or
infinite set of values for x, the scalar or vector of independent variables that defines a treatment. For
example, R=1{1, 2, 3, ..., fy is appropriate for an experiment in funstructured treatments, £= {0, 1}* 200
can be used in two-level factorial experiments, and £=[-1, 1]¢ may be appropriate for regression -
problems when the dindependent variables have each been scaled to [-1, 1].

2. The linear model:

M:y=t_0+e¢
where each element of t, is a function of the elements of x. For example, a main effects model for an
experiment in ftwo-level factors yields t'x = (1, X’) of /#1 elements, while a qquadratic regression
model in dindependent variables leads to a vector t, 0of 1 + 2d* dd-1)/2 elements.

3. The criterion function. For any specified design, D= {X,, X;, ..., X4, the concept of optimal design
requires a function, ¢,{ ), that can be used as a measure of quality of the inference that can be
expected from the resulting data. Examples include the power of a test (in which case we hope to
maximize the criterion) or the standard deviation of an estimate (to be minimized). Note that we
subscript ¢ with A because the form of the model is generally a necessary component in formulating
a specific criterion function; designs that are very good for factorial models containing only main

effects can be very poor when interactions of higher order are included.

Within this context, the general idea is to identify the design or designs, comprised of runs from the
experimental region, that maximize or minimize (whichever is appropriate) the criterion function, e.g.:

Dy = argmaxp @ (D) such that D = {x;,x2,...,xn5} and x; € R.

This formalism relies on the assumption that the overall statistical quality of a proposed experiment, in
the context of the questions being asked, can be expressed as a single scalar-valued function, @, This
assumption may not be entirely accurate, especially in more complex settings, but it does serve to make
more specific the question of how “good” an experiment can be relative to its competitors.
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the context of the questions being asked, can be expressed as a single scalar-valued function, @, This
assumption may not be entirely accurate, especially in more complex settings, but it does serve to make
more specific the question of how “good” an experiment can be relative to its competitors.

While optimal designs can be useful in many contexts, there are settings in which they may be especially
valuable:

1. Nonstandard experimental regions. “Standard designs” are usually constructed for relatively simple,
or “generic” experimental regions, e.g., fractional factorial designs for {0,1}%, and central composite
designs (CCDs) for regression experiments in [-1,1]4 But practical settings often involve restrictions
on the experimental region. For example, if X; and X represent temperature and pressure,
respectively, in a regression experiment involving a chemical reactor, operating constraints may
require x;+2x < 2, say; thatis, R={x: -1 < x; < +1, x;+2x, < 2}. This would make application of a CCD
difficult. Because optimal designs are region-specific, they can be constructed for any proposed
experimental region.

2. Nonstandard models. Standard designs such as balanced incomplete block designs (BIBDs), regular
fractional factorials, and CCDs are widely used because they perform well in the wide variety of 200
circumstances where “standard models” are appropriate. However, there are also situations in =
which theory or previous experimentation suggests a different model form. For example, in a
factorial setting, certain low-order interactions may be known or assumed to be absent, while other
higher-order interactions are known or assumed to be present. Because optimal designs are model-
specific, they can be constructed for any proposed linear model, not just the “standard” forms.

3. Nonstandard experiment size. For many of the classes of designs we have examined, there are
restrictions on the value of A, the total number of experimental runs. For example, regular fractional
factorial designs with two-level factors require the number of unique treatments to be a power of 2.
Central composite designs for regression include a two-level factorial or fractional factorial
component, plus 2d axial runs, plus center points. Because optimal designs are the solution to
optimization problems for which N can be specified to be any desired integer value, attention need
not be limited to the values that are required or convenient for any particular class of designs.
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optimization problems for which N can be specified to be any desired integer value, attention need
not be limited to the values that are required or convenient for any particular class of designs.

In addition, investigators sometimes use optimal designs as “benchmarks” against which to compare
their standard designs. For example, if a certain CCD can be shown to be almost as good, with respect to
an appropriate criterion ¢,; as the optimal design of the same size constructed for the same
experimental region, this is a useful argument for justifying the (usually simpler and sometimes better-
accepted) CCD. A major disadvantage of optimal design is that construction of a design requires solution
of a mathematical optimization problem that is usually of high dimension, can often be approached only
numerically, and for which “true” optimal solutions sometimes cannot be practically verified. Still, for
many important applications, optimal design construction is an important and useful alternative to the

use of standard experimental plans.

17.3 Optimality criteria

Much of the development of optimal design has been set in the context of unpartitioned models for
which the model matrix is of full rank. Accommodation can usually be made for partitioned models, e.g.,
those containing nuisance parameters, but less-than-full rank extensions generally require more care.
Our presentation will be given first for unpartitioned full-rank models (the simplest case), followed by
the partitioned form (often applicable in regression design problems), and finally less-than-full rank
forms (more relevant to experiments with unstructured treatments).

17.3.1 A-optimality

“A” optimality refers to designs for which the avergage variance of estimates of interest is minimized. 301

With this in mind, suppose we consider the basic linear model: e

y=X0+¢

with full rank X and 7= X’X. If the estimates of interest are the (entire) set of elements of 6 we note that
their individual variances can be written as:



y = X0 +¢€

with full rank X and 7= X'X. If the estimates of interest are the (entire) set of elements of 6 we note that
their individual variances can be written as:

Var({8}) = o*{ZT ' }...

So an A-optimal design minimizes

dar(D) = trace(Z 1)
over possible designs.

Now consider the partitioned linear model:

y=X,0, +X.:0; +e€

In which X5 ; = (I-Hy)X; is of full rank. This is often true, for example, for regression experiments where
0, contains parameters of no experimental interest, and 0, contains first- and/or higher-order
polynomial coefficients. In this case /is of full rank, a unique inverse of /exists,

lf'm'[{ﬂ-z},} =o*{T "}«

and an A-optimal design minimizes

dar(D) = trace(T ).

Finally, if (I-H,)X; cannot be of full rank for the model and design under consideration, /cannot be of
full rank, and an alternative formulation is required. For example, individual treatment parameters are
not estimable in an “effects” model, regardless of the design used. Let the rows of C be weights of
estimable linear combinations of the elements of 0;. Then these functions can be A-optimally estimated
by a design for which the average variance of the elements of Cois minimized, so a criterion function
for A-optimality is:

o (D) = trace(CT~C’) = trace(C'CI ™).
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by a design for which the average variance of the elements of Co s minimized, so a criterion function
for A-optimality is:

¢dar (D) = trace(CZ~C') = trace(C'CI ™).

It is important to note that in this case, the optimal design is completely dependent on the selection of the
mairix C. For example, in a problem involving four unstructured treatiments, A-optimal designs for

-1 1 0 0 -1 1 0 0
C=]-1 01 0] and C = 0 -1 1 0
-1 0 0 1 (0 0 -1 1

are generally not the same. So useful formulation of an A-optimal design problem requires that C

actually reflect the (estimable) treatment comparisons of primary interest.
302

303

17.3.2 D-optimality

“D”-optimality refers to designs for which the determinant of the covariance matrix of estimates of
interest, sometimes called the generalized variance, is minimized. Statistical motivation comes from the
fact that this determinant is monotonically related to the volume of the normal-theory simultaneous
confidence ellipsoid for the parameters. For the standard linear model:

y=X0+e€

with full rank X and 7= XX, such designs minimize
dm(D) =T
or equivalently, maximize

¢m(D) = |T|

over possible designs. The latter form is often preferred in practice since it avoids the unnecessary
numerical step of inverting L



dom(D) = |T|

over possible designs. The latter form is often preferred in practice since it avoids the unnecessary
numerical step of inverting £

For the partitioned linear model

y= X0, + X205 + €

for which X, is of full rank and the elements of 0, are the parameters of interest, the D-optimal designs
are those that maximize

om (D) = |Z).

If X; ; cannot be of full rank for the model and design, the criterion must be modified as with
A-optimality. Again, let C be a matrix for which the rows are linearly independent estimable
combinations of the elements of 8,. CFC’ is then unique and of full rank, and

om(D) = |CI-C|

R

can be minimized over choice of design to minimize the generalized variance of Cé2,

In contrast to A-optimality, designs that are D-optimal for estimating CO, and B0, are the sameif

» Cand B contain the same number of rows, and

* there exists a square matrix T of full rank for which
C=TB, andso B=T"!C.

This is true because the criterion we would adopt for Cis:

om(D)=|CI7'C|
= |TBI BT
=|T|*|BI~'B|
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OMmU) =l U
= |TBZ'B"T|
=|T}*IBZ~'B/|
o3

But since | T|is a constant, designs that minimize | CF*C’| are also those which minimize |BF'B’|. For the **

example given at the end of subsection 17.3.1,

-1 1 0 0 I 0 0 —1 1 0 0
-1 01 0]=1]11 0 0 -1 1 0
-1 0 0 1 1 1 3 0 0 -1 1

So either 3 x 4 matrix of parameter contrasts leads to the same D-optimal designs. Hence D-optimality,
unlike A-optimality, is invariant to nonsingular linear reparameterization.

17.3.3 Other criteria

D- and A-optimality are highlighted in this chapter, but there are a number of other popular criteria in
use. Two additional criteria that have particular appeal when model predictions, rather than
parameters, are of primary interest are G-optimality (for “global”) and I-optimality (for “integrated”).
G-optimal designs are those for which the largest (with respect to x € A) value of Var(ii(x)) is minimized,
and so can be implemented by minimizing

drm (D) = maxeepty 't

Rather than minimizing the largest predictive variance, I-optimality is defined so as to minimize the
average (over R) response variance, and so can be implemented by minimizing

om (D) = /t;I "tew(x)dx
x

for an appropriate weight function w(which may be omitted if all regions of equal volume in #should
recelve the same weilght). Note that as defined here. neither G- nor I-optimalitv is narticularlv well



$u(D) = | G, I txw(x)dx

for an appropriate weight function w(which may be omitted if all regions of equal volume in £ should
receive the same weight). Note that as defined here, neither G- nor I-optimality is particularly well

motivated for comparative experiments, but alterations to these criteria can be made to focus on, say, the
variances of differences between predictions of the response at X € Rand at a specified reference point,

say in the center of R. Although the connection is beyond the scope of this book, there is an interesting
relationship between D- and G-optimality following from the Equivalence Theorem of Kiefer and
Wolfowitz (1960).

17.3.4 Examples

A factorial example

Suppose a two-level factorial design is required for fitting the model:

Y= p+ax) + fxrs + vz + (af)r 122 + €

where the three independent variables have been coded so that R={-1, +1}°. Note that the model is
asymmetric in the factors, including only one two-factor interaction (perhaps due to previous w0
experimental experience, or relevant theory about the system under investigation). Further, suppose e
that each experimental run is relatively expensive or time-consuming, and it has been determined that

an experimental budget of ¥ = 6 unblocked units will be required. So in this case, while Ris “standard”

for two-level factorial studies, the form of the model and the required number of experimental runs

make it difficult to apply the designs we've discussed in earlier chapters.
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Figure 17.1 A-optimal ((1.) and (2.)) and D-optimal (all) designs for the factorial example.

Because this is a relatively small problem (in terms of fand M), complete enumeration and evaluation of
all possible designs is not especially difficult (R17.1). The number of distinct experimental designs that
can be constructed containing a single replicate assigned to each of six (out of eight) treatments is 8!/(6!
21) = 28, and the number of designs that contain five distinct treatments, with one of them applied to two
units, is 5 x 81/(513!) = 280. These 308 designs are all that need be investigated, because others contain
fewer than five distinct treatments, and so cannot support estimation of all five model parameters.

In fact, there are substantial groups of designs (as counted above) that are equivalent from the
standpoint of most optimality criteria. For example, most criteria evaluate two two-level factorial designs

as equivalent if one is constructed by reversing the application of “high” and “low” levels (coded + and -)
for some or all factors in each run of the other. Also, for this example, x; and X play symmetric roles in
the proposed model; for any design, a second design generated by exchanging corresponding values of x;

and ¥ in aarh min wnnld he erralnated ae armiivalent har mnet reaenmahle erifaria



as equivalent if one is constructed by reversing the application of “high” and “low” levels (coded + and -)
for some or all factors in each run of the other. Also, for this example, x; and %, play symmetric roles in
the proposed model; for any design, a second design generated by exchanging corresponding values of x;
and x in each run would be evaluated as equivalent by most reasonable criteria.

Figure 17.1 displays the results of a complete search for the A- and D-optimal designs (for estimating a, p, s
y, and (ap), given the nuisance parameter p) for this problem. The two designs in the left half of the -
figure (labeled (1.) and (2.)) are the A-optimal arrangements, while all four designs shown are D-optimal.
Note that each panel actually represents more than one distinct design, since any axis can be

“reversed” (+1 and -1 exchanged), and x; and x: can be exchanged, as discussed above. The single

remaining group of designs containing six out of eight of the factorial treatments omits the two

treatments for any value of (x,x); these designs are singular for the model we are considering, and so

are clearly not optimal. In contrast, the four parameters of interest arejointly estimable under many of

the designs containing five of the eight treatments (with one treatment replicated), but none of these are

A- or D-optimal for this setting.

A blocked example

Consider an “experiment augmentation” situation in which a complete block design (CBD) has been
completed (or is underway) using three blocks, each containing four units, one assigned to each of four
treatments. Suppose primary interest involves estimation of .-y, -1, and 1,74, or in matrix form:

T1
-1 +1 0 0
T2
Cr=|] -1 0 +1 0
T3
—1 0 0 +1
T4

Now, suppose that unforeseen but fortunate circumstances make three additional blocks available, but
that each of these blocks contains only ziree units, so that the CBD pattern cannot be continued. The
question is, what treatments should be applied to the units in these extra blocks so that the complete six-
block design is optimal for estimating the treatment contrasts of interest? Units to be allocated are shown

oranhicallyr in Timawea 17 7



that each of these blocks contains only ziree units, so that the CBD pattern cannot be continued. The
question is, what treatments should be applied to the units in these extra blocks so that the complete six-
block design is optimal for estimating the treatment contrasts of interest? Units to be allocated are shown
graphically in Figure 17.2.

Thinking of each block individually, there are:

« four ways of applying three treatments to the (unordered) units

« 12 ways of applying two treatments to the units, applying one of these to two units and the other to
one unit

« four ways of applying one treatment to all three units

or 20 different treatment assignment patterns in all. Hence there are 20° = 8000 ways of assigning
treatments to the identifiable blocks, and fewer if blocks are not viewed as identifiable. While this
number is somewhat larger than the number of candidate designs in our factorial example, it is still
small enough to make complete enumeration feasible.

Evaluation of designs requires:

3 1 1 | 1 1 1
H, = diag (33414- _-llncah 1-14;«.-.1. E‘]ﬁtﬂ: §J3x3~ 5-]3:-::1)

1 2 3 4

1 2 % 4
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307
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Figure 17.2 Choices in the augmented irregular block design example.



Figure 17.2 Choices in the augmented irregular block design example.

and

I4x4

Lixq

X2 = | Iixa

O rows

where the last nine rows of X, are used to code the treatment assignments in the last three blocks, as
described above, leading to 7= X’,(I-H,)X, for the overall design. For the contrasts of interest, A- and
D-optimal designs are those that minimize

trace(CZ~C’) and |CI~C/|,

respectively. (These forms are invariant to the selection of 7 since each row of C represents an estimable

combination of the model coefficients.)

As in the factorial example, A-optimal designs are a subset of D-optimal designs for this problem.

A-optimal designs are those that omit treatments 2, 3, and 4 each in one of the three added blocks, i.e., 307
that add blocks in which treatments (1,2,3), (1,2,4), and (1,3,4) are applied. D-optimal designs are those e
that omit gny three of treatments 1, 2, 3, and 4 each in one of the three additional blocks. For example,

the design in which treatment groups (1,2,3), (1,3,4), and (2,3,4) are applied in the added blocks is also
D-optimal. Designs in which any two blocks receive the same set of treatments, or in which any block
contains more than one unit assigned to any treatment, are not optimal with respect to either criterion.

A regression examble



D-optimal. Designs in which any two blocks receive the same set of treatments, or in which any block
contains more than one unit assigned to any treatment, are not optimal with respect to either criterion.

A regression example

Finally, consider the design of a small regression experiment in which a quadratic polynomial model in d
=1 independent variable is to be fit based on a design of only &N = 3 experimental runs, and that interest
1s primarily in estimating the first- and second-order coefficients, p, and py;. If £=[-1,+1] is the set of
allowable values for the independent variable, the number of possible designs is infinite and complete
enumeration is not possible. In some cases, it might be acceptable to reduce Rto a finite grid, say {-1.00,
-0.95, -0.90, ..., 1.00}, since any design comprised of points in the continuous design region is at least
“close” to one that can be assembled from points on the grid. However, here we shall consider how the
question of optimal design can sometimes be addressed analytically.

For our purpose, it is convenient to think of the three values of xto be used as c(for centervalue), and
c—rA and ¢+(1-0A, where A is the difference between the largest (third) x and smallest (first) x. In this
reexpression, rdetermines how asymmetric the design is: a value of r= % corresponds to the largest and

. 1, .
smallest values of xbeing equally spaced from ¢, while ™ = />3 implies that the smallest/largest value
of xis closer to ¢. The full model matrix is then expressed as:

1 c—ri (e — rA)?
x = 1 c f.'2
1 e+(1=r)A (c+(1-r)A)?

Partitioning this into one- and two-column submatrices leads to:

] —r—1 A +2r—1)—2¢c(r+1)
Xz = '_l& 2r—1 —=A(2r2-2r+1)+2¢(2r-1)
' 2—r  A(r?—4r+2)—2¢(r-2)

Detailed but simple algebra can be used to show that the determinant of the 2 x 2 design information
matrix is:



\ 2y A(r® —4r +2) = 2¢(r - 2) /

Detailed but simple algebra can be used to show that the determinant of the 2 x 2 design information
matrix is:

1.« ?
|X§E[1X3 1| — ﬁﬁzl?‘(l — l'}Iz.

The first thing to be observed of this expression is that it is not a function of ¢, i.e., that the determinant,

and therefore D-optimality, is “location invariant” along the real line. Next, note that| X', 1 X;, |18 strictly =
increasing in the “spread” of the design, A, i.e., for any value of r; the design is made “best” with respect  **
to the D-optimality criterion by making the range of xvalues as large as possible. Finally, for any value of

A, the determinant is maximized when” = %, i.e., when the design is symmetric. Hence, given £=[-1,+1],

1
the design specified by c=0,A=2,and” = 2, or x={-1, 0, 1}, is D-optimal.

17.4 Algorithms

While it is possible to mathematically derive or verify optimal experimental designs in some cases, they
are most often constructed numerically. Numerical design optimization problems are generally difficult
because:

1. The optimization is over many variables — often all of the elements of each xin D.

2. The objective function is often optimized for several designs, that is, there are often many optimal
designs of a given size for a given experimental region, model, and criterion.

3. Many near-optimal designs that are dissimilar to optimal plans may also exist.

Further, since there are a very large number (sometimes infinite) of designs that can be constructed for a
given situation, complete enumeration and evaluation is not a practical option except for very small or
highly restricted experiments. As a result, designs are often constructed using algorithms that begin with
an arbitrary or random starting design, and make a series of iterative changes with the purpose of
improving the quality of the design at each step. When no further iterative improvements can be made,
the search ends and the resulting design is reported. In most cases. this “converged” product of the



highly restricted experiments. As a result, designs are often constructed using algorithms that begin with
an arbitrary or random starting design, and make a series of iterative changes with the purpose of
improving the quality of the design at each step. When no further iterative improvements can be made,
the search ends and the resulting design is reported. In most cases, this “converged” product of the
search cannot be guaranteed to actually be optimal, so the calculation is often repeated with different
starting designs. If the designs found via repeated executions of the algorithm are not equivalent, the
best is reported with the understanding that it may very well be “good” with respect to ¢,, but
“suboptimal.”

The most widely used approach to the numerical construction of optimum experimental designs is
undoubtedly through the use of various point-exchange algorithms. For simplicity, we shall describe this
family of algorithms for problems in which Ris finite. For this case, a simple point-exchange algorithm,
described for a criterion function we wish to maximize, is:

1. Specify the N-point experimental region R, the model A the experiment size N, and the criterion
function ¢,,to be used.

2. Specify a “starting design” ), by randomly selecting N points from & and evaluate it by computing
@ Dh).

3. Construct the & designs, each of A+1 points, that consist of the points of I, and one additional point
from R Evaluate each of these by computing ¢,; identify the best (the design that yields the highest ..
value of the criterion function), and denote this design J,*. If more than one A+1 point design is best, ="
select one of these randomly.

4. Construct the A+1 designs, each of Apoints, that consist of all but one of the points in Z*. Evaluate
each of these by computing ¢,; identify the best, and denote this design 2,. If more than one A-point
design is best, select one of these randomly.

5. If @, 1) < @, 1), that is, if the add-and-delete process has improved the initial design, repeat steps
(3) and (4), substituting 7 for I} and 2 for Ik, to generate .. Continue iterations, generating D,
from D, 1=234,....

6. If @dD) = @A Dsq), stop the search, reporting D; as the optimal design.

For rriterinn fiinections that shonld he minimized “hichest” can he renlared hv “lawest” in sten 3 and the



from D, 1=2,34,....
6. If @,{D) = ©;{D.,), stop the search, reporting D;as the optimal design.

For criterion functions that should be minimized, “highest” can be replaced by “lowest” in step 3, and the
direction of the inequalities reversed in steps 5 and 6.

More elaborate point-exchange algorithms have also been developed. Mitchell's DETMAX (1972) extends
the basic point-exchange algorithm for D-optimality by allowing iterative addition and deletion of more
than one design point.

17.5 Conclusion

Many of the experimental designs used in scientific and other inquiries are selected from design classes
that are appropriate for the specific circumstances at hand; examples include BIBDs and CRDs. A
particular design is then picked from the identified class so as to meet the specific demands of the
experimental conditions. In contrast, optimal designs are generated as the solution to a mathematical
optimization problem defined by the experimental region, the form of the model, and an appropriate
criterion function. In this chapter, we've focused on D- and A-optimal designs for experiments performed
to compare treatments.

It should be immediately added that many of the “standard” experimental designs discussed in the first
part of this book are optimal with respect to standard design regions and models, and popular optimality
criteria. However, thinking about the experimental design process from the optimality perspective
eliminates “structural” restrictions imposed by the standard patterns, for example, on allowable values
of Nin regular fractional factorials, or restrictions on the number of blocks and units per block for
BIBDs. Treating design construction as an optimization problem allows more freedom in specifying the
design region, model, and measure of goodness to actually reflect the “reality” of the circumstances in
which the experiment is to be performed, but sometimes at the cost of nontrivial computational effort.

The theory of optimal design is a fascinating topic with substantial contributions by many researchers.
This chapter is at best a very brief introduction to these ideas; the interested reader might be directed to .,
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The theory of optimal design is a fascinating topic with substantial contributions by many researchers.

This chapter is at best a very brief introduction to these ideas; the interested reader might be directedto .,
the book of Atkinson and Donev (1992) for a more thorough treatment of this topic, to that of Silvey =
(1980) for a concise mathematical treatment of some of the central theory, or to Fedorov (1972) for an

early, but still authoritative and widely referenced, text on optimal design theory.

17.6 Exercises

1. Asnoted in Section 17.1, “standard” designs are often optimal with respect to common criteria when
appropriate experimental regions, values of A, and models are employed. In particular, regular two-
level factorial and fractional factorial designs are D- and A-optimal for £={-1,+1} for any model for
which they support estimation of all coefficients (main effects and interactions). Prove that a 22
factorial design (V=4 runs) is D-optimal for estimating the two coefficients of a main effects model,
given that the intercept must be included as a nuisance parameter. (Hint: Note that the elements of /
are proportional to “sample variances” and “sample covariances” of the values of x; and x; used in
the design.)

2. Continuing exercise 1, what if NVhad been six, rather than four? Write a short computer program to
construct and evaluate all designs composed of six runs taken from the four possible unique
treatments. Which of these are D-optimal for estimating the two main effects given that the intercept
must be included as a nuisance parameter? Which are A-optimal?

3. For designs that enable estimation of all possible contrasts of unstructured treatment parameters but
not the parameters individually, E-optimal designs are those that maximize the next-to-smallest

eigenvalue of Z (For all such designs, the smallesteigenvalue of /is zero.) Write a statistical

motivation for this criterion. (Hint: Note that one generalized inverse for /in this case is 2i=2 e ViV

where e, 1= 2, 3,4, ..., rare the nonzero eigenvalues of fand v, 1= 2, 3, 4, ..., fare their corresponding
eigenvectors.)
4. Some critics of the use of optimal design note (correctly) that optimal designs can only be “optimal”

with respect to one measure of statistical quality, while real experiments often serve to answer many
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motivation for this criterion. (Hint: Note that one generalized inverse for /in this case is 2i=2 e Vivi

where e, 1= 2, 3,4, ..., rare the nonzero eigenvalues of fand v, 1= 2, 3, 4, ..., fare their corresponding
eigenvectors.)
Some critics of the use of optimal design note (correctly) that optimal designs can only be “optimal”
with respect to one measure of statistical quality, while real experiments often serve to answer many
questions. Consider a first-order linear regression experiment in one controlled variable performed
within = [-1, +1] using an even number of units. The single design that is A- and D-optimal for
estimating the slope parameter is the one that places half of the runs as x= -1 and the other half at x
= +1. Comment on at least one aspect of this design that would be very unappealingin most realistic
situations. How could the design be modified to overcome this weakness?
Sometimes the search for an optimal design is limited to a certain class or subclass of designs.
Consider the design of a two-level factorial experiment, = {-1, +1}£ where a main effects model will
be used for inference. Suppose the search is to be limited to orthogonal designs that are balanced — -,
those for which each factor appears at level -1 for half the runs, and at level +1 for the other half — **
but that it will not necessarily be restricted to regular fractional factorial designs. Direct results are
that

X1 =X; and X5X,; = NI
where X; is of dimension ADby-£ Now suppose that while a main effects (and intercept) model is to be
fitted:

y=1p+ X320, + ¢,

the data are actually generated by a model containing two-factor interactions:
y = 1p+ X20,,. + x.”lﬂ?_fl + €.

In this case, the least-squares estimate of 0. is biased:
H{Bmﬂ} — Blm' i r Ag'.!fi

(a) Define, in terms of model matrices, a criterion for which the optimal design minimizes the sum
of squared alias coefficients, the elements of A.
(b) If attention is further limited to regular fractional factorial designs, what designs are optimal

with respect to your criterion?
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Appendix A: Calculations using R

The calculations presented as examples in this book were performed using the statistical software
package R; the software and documentation can be downloaded at the Web site www_r-project.org. This
appendix should not be viewed as an introduction to R, and the package supports a much wider variety
of calculations than those demonstrated here. However, the linear algebra capability and statistical
modules available in R (and in some other software packages) provide a relatively easy way to produce
numerical results needed to apply the ideas and methods discussed in this book.

The first section of this appendix provides a very brief description of some of the commands used in the
examples. More extensive documentation can be easily found on the Web and in a number of books. The
second section contains the R scripts used to generate the examples in the book, labeled here and in the
text with the notation “(R#.#.).”

Some R Commands

« matrix: Construct a matrix with elements supplied in a list or from a file, e.g.,
A <-matrix(c(-1,2,3,1,-8,5), nrow = 2, ncol = 3)
produces a matrix of form

while
A <-matrix(c(-1,2,3,1,-8,5), nrow = 2, ncol = 3, byrow =T)
produces a matrix of form

»  %%*%: Compute a matrix multiplication; A %*% B will producd the matrix product of matrices A and
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-1 2 3
A=( 1 -8 5)'

%*%: Compute a matrix multiplication; A %*% B will producd the matrix product of matrices A and
B, provided they have been defined appropriately.

t: Transpose its matrix argument.

solve: Solve linear systems. Here we use this command to invert full-rank matrices, i.e., T <-solve(t i
(X)%*%X) produces (X'X)1. e
boxplot: Construct parallel boxplots. For example, if y and x are two vectors of the same length, and
X has relatively few distinct values, boxplot (split(y,x)) sorts the elements of y into groups by the
corresponding values found in X and produces a boxplot of the data in each group.

sum: Compute the sum of elements in a matrix or list, e.g., for the matrix defined above, sum(A) has
the value 2.

length: Count the number of elements in a matrix or list, e.g., length(A) has the value 6.

factor: Reduce a column of data to distinct values that are regarded as ordinal “levels” of a factor;
useful in converting real-valued data to categories for ANOVA.

aov: Compute an analysis of variance and related quantities, primarily for balanced data sets. For
example, aov(y ~ A) computes a one-way ANOVA for a response named yrelative to a factor named
A, while aov(y ~ A+B) computes a main-effects (no interaction) two-way ANOVA relative to factors 4
and 7, and aov(y ~ A*B) also includes the interaction in the two-way ANOVA. The result is an
“object” containing elements such as estimated coefficients (coef) and residuals (resid).

glht: Can be used to perform some multiple comparisons procedures, including Tukey and Dunnett
simultaneous confidence intervals. The package multicomp must be loaded before this command
can be used. Simultaneous intervals can be displayed by applying the command confint to the
resulting object.

Isfit: Fit a linear model to the indicated data; for example 1sfit(X,y) fits a linear model defined by the
Nrow model matrix X to the Melement column vector y. A summary of the fit, including fitted
coefficients and the residual sum of squares, can be displayed by applying the command ls.print to
the resulting object.

sort: Sort the elements in a list or matrix, e.g., for the matrix defined above, sort(A) produces the
ordered list -8, -1, 1, 2, 3, 5.



coefficients and the residual sum of squares, can be displayed by applying the command ls.print to

the resulting object.

» sort: Sort the elements in a list or matrix, e.g., for the matrix defined above, sort(A) produces the
ordered list -8, -1, 1, 2, 3, 5.

« abs: Compute absolute value of a scalar, or of the individual elements of a matrix, e.g., with the

second version of A defined above, abs(A) produces

1 2 3
A= L
1 8 5

« plot: Construct a two-dimensional scatterplot. For example, if X and y are veciors of the same length,
plot(x,y) produces a plot of the corresponding (x,}) pairs.
» gnorm: Calculate the indicated quantile of a standard normal distribution, e.g., gnorm(0.95) has the

value 1.644854.

Example Calculations

(R2.1): Hat matriz when X is not of full column rank.

X<-matrix(nrow=9,byrow=T,
C(Iroplloros

o O O O = = e

XpX <= t(X)%*4X

XpXstar <- XpX[2:5,2:5]

XpXginv <- matrix(0,nrow=5,ncol=5)
XpXginv([2:5,2:8] <- solve(XpXstar)
H <= X/*%iXpXginvi*/t(X)

Alternatively, a generalized inverse can be computed numerically using the “ginv()” command after
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XpXginv([2:5,2:5] <- solve(XpXstar)
H <= X/x%XpXginvi*/t (X)

Alternatively, a generalized inverse can be computed numerically using the “ginv()” command after
loading the MASS package:

XpX <= t(X)h*%X
XpXginv <- ginv(XpX)
H <- X/*%XpXginvi*jt(X)

avoiding the need to identify a maximal set of linearly independent columns in X.

(R2.2): Design information matriz for a partitioned model.
Partitioning the above X matrix into two sets of columns:

X1 <- X[,1:2]

X2 <- X[,3:5]

H1 <= X1%*¥%solve(t (X1)%*%X1)%*%t(X1)
X2barl <- X2 - H1J/*%X2

Info <- t(X2barl)¥*%X2barl

As in (R2.1), “ginv()” can be used to compute a generalized matrix when X, is not of full column rank.

(R2.3): Central F-quantile and noncentral F' probability.

theta<-matrix(c(-2,1,1) ,nrow=3,ncol=1)
sigma<-1.25

lambda<-t (theta)%*%Info%*%theta/sigma~2
qf (.95,2,5)

1-pf(5.786,2,5,1ambda)

or in compound form,

1-pf(qf(.95,2,5),2,5,t(theta)¥*/InfoY*)theta/sigma~2)
3t5

(R3.1): Boxplots of the data of Matsuu et al., Figure 3.1. e

# Input of data from local directory
datamatrix <- matrix(scan("matsuu.data"),byrow=T,ncol=2)



(R3.1): Boxplots of the data of Matsuu et al., Figure 3.1.

# Input of data from local directory
datamatrix <- matrix(scan("matsuu.data"),byrow=T,ncol=2)
trt <- datamatrix[,1]
y <- datamatrix[,2]
# Boxplot of data from Table 3.1
boxplot(split(y,trt),
sub="Treatment Group Number",
ylab="Epinephrine Levels",
main="Boxplots of Data from Matsuu et al.")

(R3.2): Power calculation example.

n <- ¢(5,5,5,5)

tau <- ¢(0.,0.,-1.,-2.)

taubar <- sum(tau*n)/sum{n)

sig <- .75

lambda <- sum(n*(tau-taubar)~2 /sig~2)
df1 <- length(n)-1

df2 <- sum(n)-length(n)

critval <- qf(.99,df1,df2)

1-pf (critval,df1,df2,lambda)

(R4.1): Boxplots of the block-corrected data of Kocaoz et al., Figure 4. 1.

# Input of data from local directory
datamatrix <- matrix(scan("kocaoz.data") ,byrow=T,ncol=3)
blk <- datamatrix[,1]
trt <~ datamatrix[,2]
y <- datamatrix[,3]
# Boxplot of data from Table 4.1.
aovb.obj <- aov(y ~ blk)
boxplot(split(resid(aovb.obj),trt),
sub="Treatment Group Number",
ylab="Tensile Strength",
main="Block-Corrected Data from Kocaoz et al.")
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boxplot(split(resid(aovb.obj),trt),
sub="Treatment Group Number",
ylab="Tensile Strength",
main="Block-Corrected Data from Kocaoz et al.")

(R6.1): Analysis of variance in Table 6.3; data from Table 6.1.

# Input of data from local directory
datamatrix <- matrix(scan("example.data"),byrow=T,ncol=4)
TOW <- datamatrix([,1]

col <- datamatrix[,2]

trt <- datamatrix[,3]

y <~ datamatrix[,4]

# Analysis of variance Table 6.3
Rows <- factor(row)

Columns <= factor(col)

Treatments<- factor(trt)
aov.obj <- aov(y ~ Rows + Columns + Treatments)
summary (aov.obj)

(R6.2): Simultaneous confidence intervals, following R6.1.

# Tukey intervals for all pairs of treatments
fit<-glht (aov.obj,linfct=mcp(Treatments="Tukey"))
confint(fit)

(R7.1): Analysis of variance; data from Table 7.1.

Beginning with a file named “file” containing:

19 1 0 00 OO0 O O O0O0OO0CO0 1 0 0 0 00 0 O0O0
17 1 0 0 0 000 00 O0O0CTO 0 1 00 0 0 0 0O
11 1 0 00 0 00 00 O0O00O0 0 01 0 00 0 0O
14 O 0000 O O 0 O O O 1 ¢ 0 1 0 0O 0 0 O
24 O 0 00O OO 00 OO0 1 e 00 931 B8 4 0
21 0O 000 0O 0 O OCOOUO0O 1 0 00000 1 0 0
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o
=

14 0O 0 OO0 OO O O 0O 0 0 1 0 0 0 0 O
24 0 0 0 0 0 0 O 0 O O O 1 0O 00 01 0 0 O O
21 ¢ 000 0O O0COOCUOOUOUVO 1 ¢ 000 0 010 0

the BIBD ANOVA decomposition can be assembled from:

data <- matrix(scan("file"),byrow=T,ncol=22)
y<-datal,1]

X1<-datal[,2:13]

X2<-datal, 14:22]

one<-lsfit(X1,y)

ls.print(one)

onetwo<-1lsfit (cbind(X1,X2),y)
ls.print(onetwo)

(R9.1): Boxplots of Figure 9.1.

# Input of data from local directory
datamatrix <- matrix(scan("soudki.data"),byrow=T,ncol=4)

ratiol <- datamatrix[,1)]
ratio2 <- datamatrix([,2]
ratio3 <- datamatrix[,3]
y <- datamatrix[,4]
Treatment <- ratiol

r2 <- factor(ratio2)
r3 <- factor(ratio3)

aovb.obj <- aov(y = r2#r3)
boxplot(split(resid(aovb.obj),Treatment),
sub="TA/C",
ylab="Compressive Strength",
main="Main-Effect Boxplots for TA/C, Data from Soudki et al.")

(R11.1): Half-normal plot of Figure 11.4

thetahat<- t(X)%=Yy/16
absthetahat<-sort(abs(thetahat))

T
qvec<—qnorm(ppoints(2+«length(absthetahat))) 318
plot(gvec[qvec>0] ,absthetahat,xlab="nonnegative normal quantiles"”,

wvwilaka | asserimaras | 7Y



thetahat<- t(X)%*ly/16
absthetahat<-sort(abs(thetahat))
3T
qvec<-gnorm(ppoints(2+length(absthetahat))) 318
plut{q\mc [qvcc:-ﬂ] ,absthetahat ,xlab="nonnegative normal quantiles”,
ylab=" |estimates|")
pt lab ,<__ ': (H " ll I! LI A " " ll L] R L | : L] - L | lI LL] ll L] i LI H‘nBcu “-A.B* HB- Hl_ll}
text{q?EEIquc>ﬂ] absthetahut ,paste(” ", pt. lab uep-" *) ,adj=0)

(R17.1): Complete search for optimal irregular fractional factorials.

The following script performs a complete evaluation of all six-run fractions, containing at least five
distinct design points, of a 23 factorial, evaluating each by the D- and A-criteria as described in Section
17.3.4. Awarning: while this script is written to make the search technique clear, it is not a
computationally efficient way to perform this calculation because R is not especially well suited to
programs with nested loops. There are, however, more advanced R programming techniques that allow
this kind of calculation without resorting to explicit looping.

R = matrix(
c(+1,+1,+1,+1,-1,-1,-1,-1,
1,41 ;=1,~1 .41 ,¥1;~1,=1,
+1,-1,+1,-1,+1,-1,+1,-1),
ncol=3)
Rplus = cbind(R,R[,1]1*R[,2])
Answers = matrix(0,308,8)
P = diag(1,6)-matrix(c(1/6),6,6)
X = matrix(0,6,4)
=0

# Designs with 6 distinct points
for (i1 in ¢(1:7)) {

for (i2 in c((i1+1):8)) {
ilistl=c(1:8)
ilist2=ilist1[ilistl!=i1&ilist1!=12]
ic=0

for(i in ilist2){

ic=ic+l

X[ic.l=Rplus[i,]}



ilist2=ilist1[ilisti!=i1&ilist1!=12]
ic=0
for(i in ilist2){
ic=ic+l
X[ic,l=Rplus([i,]}
J=j+1
Info=t (X) h*/PL*%X
a=sum(diag(ginv(Info)))
d=det(Info)
Answers[j,1]=1list2[1]
Answers[j,2]=ilist2[2]
Answers([j,3]=1list2([3]
Answers([j,4)=ilist2[4]
Answers[j,5)=ilist2[5]
Answers[j,6]=ilist2[6]
Answers[j,7]=a
318
Answers[j,8]=d a1e
1}

# Designs with 5 distinct points, one rep
for (i1 in c(1:6)) {

for (i2 in c((i1+1):7)) {

for (i3 in c((i2+1):8)) {

ilist1=c(1:8)
ilist2=ilist1[ilist1!=i1&ilist1!=i2kilist1!=i3]
ic=0

for(i in ilist2){

ic=ic+l

X[ic,)=Rplus([i,]}

for (i4 in ilist2) {

X[6,]=Rplus(i4,]

j=j+1

Info=t (X) %*%P%*%X

a=sum(diag(ginv(Info)))

d=det (Info)

Answers[j,1]=ilist2[1]
Answers[j,2]=ilist2[2]
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a=sum(diag(ginv(Info)))
d=det (Info)
Answers[j,1]=ilist2[1]
Answers[j,2]=ilist2[2]
Answers[j,3]=11ist2[3]
Answers[j,4]=ilist2[4]
Answers[j,5]=1i1ist2[5]
Answers([j,6]=i4
Answers([j,7]=a
Answers([j,8]=d

}}}}

o = order(Answers([,7])
Answers([o,]

Appendix B: Solution notes for selected exercises

Chapter 1

(a) Experimental units include the quantities of milk and tea used to make each serving, possibly
also the cup itself (since making a cup of tea without a cup would be difficult), and any other
physical material that was used in any given serving. It can also be argued that the time interval
actually used to make the tea is “experimental material” as well; that's more critical in some
split-plot experiments.

(b) There are two treatments in this experiment — the two ways of making tea. Note that they
aren't really “things,” but recipes. One is the procedure used when milk is the first ingredient,
the other is the procedure used when tea is the first ingredient.

(c) One way to do this would be to select four red cards and four black cards from a standard deck
of playing cards, assign one of the treatments to each color, and shuffle them. Suppose the
necessary material is available; eight quantities of tea and milk, and eight cups are lined up in a

rotw Then eermentially erartine froaom nne and nf the “material row ? draw a card malke the fim



(c) One way to do this would be to select four red cards and four black cards from a standard deck
of playing cards, assign one of the treatments to each color, and shuffle them. Suppose the
necessary material is available; eight quantities of tea and milk, and eight cups are lined up in a
row. Then sequentially, starting from one end of the “material row,” draw a card, make the cup
of tea in the indicated way, and serve it to the lady. Proceed in this manner until all eight cups
have been served. Note that if this approach is used, you are guaranteed to make four cups
according to each recipe, and that each possible sequence has the same probability.
At first appearance, it might be tempting to randomize this experiment by starting at one end of
the row, and simply flip a fair coin at each cup; “heads” means one recipe, “tails” means the
other. But this means that you might finish up with one treatment early and have to use a
sequence of cups made with the other recipe at the end. An easier way to see this is to think
about what would happen if the (unfortunate) lady had to drink 20,000 cups, 10,000 of each type.
The probability that the first two cups are of different types is 1/2, but the probability that the
lasttwo cups are different is very close to zero (because the probably of getting 10,000 heads or
tails well before the end of the sequence is very close to one). So this technique wouldn't give 31
equal probability to all possible sequences, and so shouldn't be used for treatment =
randomization in this case.

(d) The experiment could be divided into two “subexperiments” of four cups each, two made each
way. One kind of cup would be used in subexperiment (or block) 1, and the other kind of cup
would be used in subexperiment 2. This is called an “extended randomized complete block

design,” to be described in Chapter 4.

4. This exercise is quite artificial, but shows that careful thought is sometimes needed to determine the
elements of an experiment. A freatmentin this case might be regarded as the meeting of a particular
pairof teams. The game is played under certain circumstances (e.g., in a ballpark, at a given time),
which could be regarded as the unit. If we adopt a statistical model that regards the result of a game
between a given pair of teams as a binomial event, with a probability specific to that pair of teams,
replication could be included by having each pair of teams compete more than once. If there are
concerns of possible extraneous effects that change from day to day, this might be addressed by
randomization of the order in which teams play, while control of potential effects associated with
longer veriods of time (e.2.. chaneging weather trends over the summer) might be exercised bv



replication could be included by having each pair of teams compete more than once. If there are

concerns of possible extraneous effects that change from day to day, this might be addressed by
randomization of the order in which teams play, while control of potential effects associated with

longer periods of time (e.g., changing weather trends over the summer) might be exercised by
blocking complete round-robin schedules to contiguous time intervals (e.g., months).

Chapter 2

- 3J3x3 O3x3
(a) 03x3 3J3x3

) Xz = Xz — §J6x3

(c) ¢’B,is estimable if ¢’ can be expressed as a linear combination of:

e L 1
¥ 3 3

12 1
(‘5*5*‘5)
AR
37 33
4.
(a) ©,=(1,0,0)
(b) ©’,=(0,0,1)
(c) o% rank(X), and ¥
Chapter 3

a2



Lildpiler 5

(a) Under this model, the unique rows of the model matrix and the parameter vector may be
written as:

, 0 =(a,m,72.73,T4,75)-

—
—

1 1

T; and 1:+T; are not estimable because neither (0, 0, 0, 1, 0) nor (0, 0, 1, 1, 0) can be expressed as a
linear combination of the rows of X. 13—1; is estimable because:
(0,0,~-1,+1,0) = (0, -1, +1,0)X.
(b) Under this model, the unique rows of the model matrix and the parameter vector may be
written as:

| . 0 = (py,0,,04,0,).

e S
[

B,, 8:—6,, and 65+6, are estimable because:
(0,0,1,0) =(-1,0,1,0)X

(0,-1,1,0)=(0,-1,1,0)X
(0,1,1,0) =(-2,1,1,0)X.
(c) T 1s the treatment-specific effect of treatment 2, beyond the experiment-specific effects common
to all units. 6, is the difference between treatment-specific effects for treatments 1 and 2:
h=(a+m)—(a+n)=7—7.
(d) No. Under the first model, the estimable functions ¢’ T are those for which ¢’1 = 0. Under the
second model, X is a 4-by-4 matrix of full rank, so anyfour-element vector can be represented as
a linear combination of its rows (and so, any linear combination of y,, 6., 85, and 6, is estimable).

9. In this case, xis part of the overall experimental effect summarized by a,; “units” can be thought of

a . ) a - ;| x 1 #ra a . an =1 a® T 3 1 a L T



second model, X is a 4-by-4 matrix of full rank, so anyfour-element vector can be represented as

a linear combination of its rows (and so, any linear combination of y,, 8., 65, and 8, is estimable).

9. In this case, xis part of the overall experimental effect summarized by a,; “units” can be thought of

abstractly as measurement periods or set-ups, and “treatments” are the methods used in each trial.

An effects model for the 50-run experiment can then be written in matrix form as:

1 1

0
y=11 0
1 0
1 0

0

== — R

0

0
1
0
0

=T = I — =

0

i = = ==

f0)
&5
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where each submatrix is a 10 x 1 vector of ones or zeros, as indicated.

(@) P;— p;are estimable because they are measurement method contrasts with coefficient vectors

that can be formed as linear combinations of the rows of the model matrix.

(b) Individual (;values are not estimable, nor are their absolute values.
(c) Given independent experimental trials, the sample variance of the ith treatment group is an

unbiased estimate of 02, and the variances of any pair of methods can be tested for equality

using an Ftest.

Chapter 4

(a) Aswith exercise 1,

1

If the data are grouped by block, and by treatment within block:

{1

)



1
If the data are grouped by block, and by treatment within block:

/1 —_

|
5 4
|

N

with each 1 and 0 containing relements, and each I of dimension 7x .

J
g J s \ . ; ;
Hi == , i.e., as with a CRD with block size of
J
t + r. Then
(r+1)1 1 |
___ 1 (r+1)1 ... 1
Hixﬂ_t+r
1 1 e (P10
. 1
A= e
(r+1)*+(b-1) 2r + b 2r+b
2r + b (r+1P2+(b-1) ... 2r + b
2r+b 2r + b vee (P12 4(0-1)

2T i . 0 YT
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2 +b (r+12+((b-1) ... 2 + b

2r+ b 2r+b cee (P12 4(b-1)
=11+ (2r+1t)J
since b=t. Also, X5X; = (r+t), so

2r + 1
®) T =X5X,-X5(I-H; )X, = (r+£)I——{r 214 (2r+1))) = = [tl J|
r4t 1

(c) One generalized inverse for 1= r+t TRt — J] is 1™ = E:r i1l (check this with ZF 7= J). So, for ¢'1

= {],

"'T‘" = T+ t l i 2
Var(c'T) = A Fcco
: , 2 o2,

or in this case, -!r+!
(d) For a CRD, with equal sample sizes for each treatment, X:H, = _'J not equivalent to the

corresponding matrix product for this design. So the designs are not Condition E equivalent.

8.
A=79r[o" = Zj b(m: — 7)%/0? = b(0.2% + 0.2% + 0.4%)/2.4 = b/10.
Minimum value of b for which:
P{W > Fy95(2,2(b—1))} > 0.8, where W ~ F(2,2(b-1),b/10)

is 98, as evaluated in R by:

critval <- qf(.95,2,2%(b-1))
(a) 1-pf(critval,2,2*(b-1),b/10)
®) EL? = 4t 971-(18)02“ <. where ¢’c = 1.5, is 6.356.

Chapter 5



(a)

(b)

(a)

source d.f.
replicates 1
automobiles 6 (different autos in each rep)
positions 3 (same positions in each rep)
tire type 3
residual 18
corrected total 31
<
A=r E'Il_lir, )¢ /o* =8 x 2/4 = 4.
source d.f.




(a)

A
source df
rows 2
columns 2
reatments 2
residual 2
corrected total 2
Vv
< >
(b) Asshown in Section 5, H,X; takes the same form for LSD, CBD, and CRD with r= . Hence for this
design

1
H; X3 = =Jgxa.
3
In addition, X; is the same matrix, within row rearrangements, for this design as for a CRD with

r= t= 3, hence the reduced normal equations are the same for the two designs:
3

a ] ; ;
T; '}'er_-_.-}”r .. =12

J=1

(©) For ¢'1 =0, Var(c’ 'T : ZI_] cta?; 1’hr‘{rl_h_r-_;} = j_i,r]r )

Chapter 6



Chapter 6

(a) Transforming the data as required for the Levene test, we have:

My
Treatment
1 2 3 4
0.000 1.365 1.482 0.000
0.115 0.680 0.960 1.655
0.759 0.000 0.000 0.197
0.172 0.146 0.653 0.477
0.795 1.872 0.060 0.494 ”
< >

Applying one-way ANOVA to these transformed data indicates a significant difference among
groups (F= 0.4251 with 3 and 16 degrees of freedom), suggesting no evidence that variance is not
consistent across treatments.

(b) Using the glht package in R,
y <- matrix( c(9.934,9.819,10.693,10.106,9.139,
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consistent across treatments.
(b) Using the glht package in R,

y <- matrix( c(9.934,9.819,10.693,10.106,9.139,
8.675,10.720,10.040,9.894,11.912,
10.509,8.067,9.027,9.680,8.967,
8.829,10.484,8.632,8.352,9.323),

ncol=1)
dose <= matrix{(e(1,1.,1.1.,1.,2,2.2.2.2,
3,3,3,3,3,4,4.4.,4.4) ,ncol=1)

Dose <- factor(dose)

amod <- aov(y~Treatment)

fit <- glht(amod,linfct=mcp(Dose="Dunnett"))
confint(fit,level=0.95)

leads to simultaneous intervals:
Estimate lwr upr

0 0.3100 -1.1682 1.7882
0 -0.6882 -2.1664 0.7900
0 -0.8142 -2.2924 0.6640

L.e., none of doses 2, 3, or 4 lead to responses with demonstrably different means than the

= W N
O
Il
Il

control dose.

8. For this balanced and orthogonal design, the diagonal elements of H are all the same (0.625), so
the studentized residuals each a (common) multiple of the respective ordinary residuals, ranging
from a minimum of —1.6212 to a maximum of 2.1098. The latter value corresponds to the
response value 24.1 (third row-block, first column-block, treatment 4), which might be rechecked ..,
for accuracy. However, given the fact that 16 residuals are computed, it would not be especially **
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from a minimum of -1.6212 to a maximum of 2.1098. The latter value corresponds to the
response value 24.1 (third row-block, first column-block, treatment 4), which might be rechecked

La ta
Ba (%]

for accuracy. However, given the fact that 16 residuals are computed, it would not be especially
unusual to see at least one of this size.

Chapter 7

(a) The study described isn't a “true” experiment, because the investigator cannot really apply a
treatment to a unit. The physical material used in the construction of any detector might be
regarded as the unit, while the arrangement of that material into a type of detector might be
regarded as the freatment.

(b) The residual sum of squares for a model containing only block effects is 0.5333, while that for a
model containing both blocks and treatments is 0.0684. So for these data, an ANOVA
decomposition is:

source d.f. sum of squares g
blocks (chamber sessions) 3 0.3475=0.8808 - 0.5333

treatments after blocks 3 0.4649 = 0.5333 - 0.0684

residuals 5 0.0684

corrected total 11 0.8809 v




corrected total 11 0.8809

<
(c) From the ANOVA decomposition in part (b),
F=10.4649/3]/[0.0684/5] = 11.33.
The critical value F,.-(3,5) = 5.41.
(d) From coefficient estimates of the full model:

e —__ e — .

TG — T2 Ty — T3 ¥1 — T4 T2 — T3 T2 — T4 Ty — T4

0.455 0.156 0.504 —0.299 0.049 0.348

Each has standard error \/(c’c x MSE x k)/(A x t) =
/(4 x 0.01368 x 3)/(2 x 4) = 0.1013.

(a) For the original BIBD, =40, k=2, t=5, r=16, and A = 4, so the design information matrix is:

At 1 4x5 1 |
I=—|I-=-J| = I-=-J|=10|I-=J|.
k[ f] 2 [ 5} [ 5}

For the extended complete block design, k=7, so:
I=bk(k—3}+2t I 13] — il Tx4+2x5H ’I_l,]]

k(t—1) | ¢ 7x4
T
=t

-

- 54286 [1 -

328

(b) For the original BIBD, the degrees of freedom associated with MSEis N-b-+1=80-40-5+1= **

36. Hence the critical value for the Ftest is F45(4,36) = 2.6335. For the hypothetical parameter
values, the noncentrality parameter is

T'IT/0* = 800/100 = 8,
The power is determined by the F(4,36,8) distribution, and is 0.5419. For the extended complete
block design, the degrees of freedom associated with MSEis N-b-r+1 =280 - 40 -5 +1 =236, the

critical value is F45(4,360) = 2.3967, the noncentrality parameter is 43.43, and the power, based
on the F(4,360,43.43) distribution, is nearly 1.



block design, the degrees of freedom associated with MSEis N~b-r+1 =280 - 40 - 5+ 1 = 236, the
critical value is F45(4,360) = 2.3967, the noncentrality parameter is 43.43, and the power, based
on the F(4,360,43.43) distribution, is nearly 1.

Chapter 8

(a)

If we focus on the specific plot of ground selected for each shelter as the most important
component of a unit, then it is reasonable to block units by selecting sets of neighboring or
spatially contiguous plots. However, this does not address how the “sets” were selected. If they
were chosen randomly from the area over which inferences are to be made (or more likely,
from an area deemed typical of those over which inferences are to be made), a random-blocks
assumption may be appropriate. However, if the block groups are located for convenience along,
say, different roadways, this suggests that there could possibly be systematic differences among
them.

(b) This Latin square experiment involves two “crossed” systems of blocks. One set of blocks is the

(c)

seven “visitor groups” into which the Web site visitors were randomly divided; this suggests that
this collection of blocks may be reasonably regarded as having a random effect on the data. The
other system of blocks was associated with the seven links appearing on each Web page. These
are clearly not random draws from any meaningful population, since the entire study is
predicated on the specific form of the Web site being investigated, and so these blocks should
likely not be regarded has having a random effect on the responses.

The 40 patients recruited into the study serve as blocks, and were randomly assigned to
treatment protocols once they were recruited. But information is not given on how these
individuals were recruited in the first place. Were they selected randomly from a larger group of
patients typical of those of interest to the investigators, or were they selected by a process (based
perhaps on convenience) that might have resulted in, say, the selection of two distinct groups of
patients that are systematically different in one or more characteristics that might affect the

resnonse? In the first case. an assumntion of random blocks might he annronriate. burt it likelwv



patients typical of those of interest to the investigators, or were they selected by a process (based
perhaps on convenience) that might have resulted in, say, the selection of two distinct groups of
patients that are systematically different in one or more characteristics that might affect the
response? In the first case, an assumption of random blocks might be appropriate, but it likely

would not be in the second.
3za
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(a) Fitting a full fixed effect model to rows, columns, and treatments yields least-squares estimates

of differences:
8 ng 1.1333

—

Ty, — T3 1.5666

———

Ty — T4 5.4333

—

TL—Ts - 2.4667

—

Ta— 73  0.4333

——

To — T4 4.3000

—

T — 75  —a.6000

——

Tg — T4 3.8067

e,

T3 — Ts -4.0333

—

Ta— 75 —1.9000
The estimated standard deviation of each difference based on MSE1s 0.78525; the 97.5 quantile
of 423) is 2.068658, yielding a margin of error of 1.6244.

(b) Note that the expectation of each block total contains the sum of parameters associated with
column blocks; since these are the same in each block, they are confounded with the ovarall
mean/intercept for the intra-block model, and can be ignored. Fitting the vector of 10 row-block
means to a model with
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leads to estimates:

The estimated standard deviation of each difference based on MSEis 14.6619; the 97.5 quantile
of #5) is 2.570582, yielding a margin of error of 37.69. In this case, even if a random block
assumption is reasonable, the intra-block analysis is of very little practical value.

Chapter 9

/1 1
1 0
11
1 1
i =l
11

1 1

\1 1
i,
Ty —To
T]_TT;';
"|I"1d‘:h_'.l".1l
T1_J.:LT5
'T'ETT::],
T-_};H:‘T.g
T2 — T
t%TH
T. 3?‘1‘ 5
—
Ta—Ts

0 1

—-5.00
32.50
28.50
15.00
37.50
33.50
20.00

=4.00

—17.50
—13.50
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Chapter 9

2.
(a)
™
rad 2
chem 3
rad=xchem 6
residual 24
v
< >
(b)
™
blocks 2
rad 2
chem 3

radxchem 6




radxchem 6

residual 22|,
< >
(c) No. The value of o° is also needed to calculate power.
(d) Yes. The expected squared length of confidence intervals based on the CRD is proportional to
t2 975(24) x 02 = 4.259702,
while that based on the CBD is proportional to
12 975(22) x 0.95 x 0% = 4.08590°.
So the CBD supports more precise estimation in this sense.
A3
ﬁ 332

(@) 238(Fi —9..)" =8x10=80.

(b) 2.

(c) Eu:(yiﬂ — ﬂ...]E - ZU 4(-5,-}, - gm]? = 360 — 4 x 60 = 120.
(d) 18.

Chapter 10

1. The remaining sums of squares can be calculated by performing an analysis of variance on the 24
treatment averages. Since each treatment is actually associated with three observations (since three
“batches” are produced for each temperature), these sums of squares must be multiplied by 3 to put
them on a “per observation” basis. For the described arrangement, batches (within temperatures) is
the correct denominator component for testing the temperature main effect; the remaining factorial
effects are compared to residual variation in the split-plot (within batch) portion of the analysis:

source d.t. SS SS MS F B
(trt means) (all data)




the correct denominator component for testing the temperature main effect; the remaining factorial

effects are compared to residual variation in the split-plot (within batch) portion of the analysis:

source d.f. SS SS MS F
(trt means) (all data)
i 3 0.19171  0.57513 0.19171 5.112
Batch 8 0.30000 0.03750
BCon 2 0.53972 1.61916 0.80958 10.794
BFib 1 0.92434  2.77302 2.77302 36.974
TempxBCon 6 0.08067 0.24201 0.04035  0.538
Tempx BFib 3 0.05958 0.17874 0.05958  0.794
BCon x BFib 2 0.31343  0.94029 0.47013  6.268
Temp x BConx BFib 6 0.05771 0.17313 0.02886  0.385
Residual 40 3.00000  0.07500
< >
(a)

source d.f.

-whole plots-

A [ —1

W.P. Residual r—1

C. Total (Latin square Rep’s) r—1

-split plots-

Blocks (Latin square Rep’s) r—1

B lo — 1

AxB (lh = 1)(l2 — 1)

S.P. Residual rl3 —li(lz—1)—7r

C. Total rl3 —1

™



S.P. Residual rls —li(la—1)—7r
C. Total rl3 —1 .

(b) Potential differences among the levels of factor A would be tested against the split-plot residual,
which reflects only variation within Latin square replicates rather than among them. As a result, *
the test for the factor A main effect would likely be anticonservative.

Chapter 11

(a) Using R, the factorial effect estimates and MSE can be computed as:
data<-matrix(c(
-1,-1,-1,-1,10.7,11.0,
-1i~1:=3, 15 8. T; B0

1, 3, 1,~1,31.2,11.4,
1 1; 15 1;11.8; 8:9);
nrow=16 ,ncol=6, byrow=T)

X16<-cbind(datal[,1] ,data[,2] ,data[,3] ,datal[,4],
datal[,1] «data[,2] ,data[,1]=datal[,3] ,data[,1]+data[,4],
data[,2] #datal[,3] ,data[,2] #data[,4] ,data[,3]*data[,4],
datal[,1] #data[,2] #+data[,3],
data[,1])sdata[,2] »datal[,4],
data[,1] «data[,3]=datal[,4],
data[,2] #data[,3) «datal[,4],
data[,1]#data[,2] #data[,3] #datal[,4])

X32<-rbind(X16,X16)
y32<-matrix(c(datal,5] ,data[,6]) ,nrow=32)

theta32<-t (X32)%*Yy32/32



y32<-matrix(c(datal,5] ,data[,6]) ,nrow=32)

theta32<-t (X32) %»%y32/32

[,1]
[1,] 5.187500e-01
[2,] 1.500000e-01
[3,] 2.125000e-01

[4,] -7.312500e-01

[5,] 7.500000e-02

[6,] =1.750000e-01

(7,1 1.187500e-01

[8,] 1.875000e-02

[9,] 2.750000e-01 BD

[10,] 2.220446e-16 CD

[11,] -2.687500e-01 ABC

[12,] -5.000000e-02 ABD

[13,] -1.250000e-02 ACD

[14,] -6.875000e-02 BCD

[15,] -6.250000e-03 ABCD
dif<-matrix((data[,5]-data[,6])/sqrt(2) ,nrow=16)
MSE<-t(dif)¥«ldif/16 ... 0.7000

(b) Continuing using the R from part (a), Fstatistics and critical values can be calculated as:
32+thetad2[15,] »=2/MSE
{1,] 0.001785714
qf(.95,1,16)
(1] 4.493998

mrr;unmr
2 O O

32+ (theta32[11,])*+2+theta32[12,] #++2+theta32[13,] **2+theta32[14,] *+2) /MSE
[1] 3.639286
qf (.95,4,186)
(1] 3.006917

32+(theta32[5,] #+2+theta32[6,] #+2+theta32([7,]#+2+
theta32[8,]#+2+theta32[9,] #*2+theta32[10,] #*»2) /MSE

[1,] 5.775

qf(.95,6,16)

[1] 2.741311

(c) The noncentrality parameter is A =32[(30)* + (30)%/0® = 7.111 1 the critical value of the test
1s Fo.5(4,16) = 3.0069, and the power is the probability that a random variable with distribution



qf(.95,6,16)
[1] 2.741311

— 29((1 42 AL T
(©) The noncentrality parameter is » = 32[(30)* + (30)°]/0* = 7.111 L the critical value of the test
is Fp.a5(4,16) = 3.0069, and the power is the probability that a random variable with distribution
F(4, 16, 7.1111) is larger than this value; that probability is 0.4228.

(a) yo? = 707
(b) E(yinizes) = fi—a—B—5+6+C+i+(aB)+(av) — (a8) - (ag) — (an).

Var(E(y1222)) = f;j%dz = (.10160°. The quantity being estimated is
not a contrast in treatment means.

(c) E{ymzzz—yj_l_lnﬂ = 2 — 28 - 2% + 2(aB) + 2(a).
4 Var(E(yi11222 — yuinn)) = pagde® = 0.156302.

Chapter 12

] t=8,k=6b=28r=2%% =21 A=rkl

t = 15 such a design can be constructed by applying

each of the 21 distinct combinations of six from the eight treatments to the units within one block:

(1,1,1) (1,1,2) (1,2,1) (1,2,2) (2,1,1) (2,1,2) .
(1,1,1) (1,1,2) (1,2,1) (1,2,2) (2,1,1) (2.2,1)
(1,1,1) (1,1,2) (1,2,1) (1,2,2) (2,1,1) (2,2,2)
(1,1,1) (1,1,2) (1,2,1) (1,2,2) (2,1,2) (2,2,1)
223) (23 (23 @23 @23 @23)] -

= é[E{y-g”] + E(y212) + E(y221) + E(y222) — E(y111) — E(y112)

—E(y121) — E(1122))
or in unstructured treatment notation, ¢t where:

334



a =5 [B(an) + E(yma) + Elyan) + E(yan) — Eyin) — E(yna)

—E(y121) — E(y122))
or in unstructured treatment notation, ¢t where:

o +1+1+1+1 1 1 1 1
N grigrigtte? 8 3¢ 8 ar

So Var(a) = fc'co? = 2z 10? = 0.0062502.
8
(a) I==:ACD = +BDE (= +ABCE).
A BCDE|[ABCDE|[ABTCTDE
+ + + + - + + + - - + + + - +
+ = 4+ + + = = & = + = + = =
+ + - - % + + - + + + + - + -
+ = = = = + - = 4+ - + - = + +
- + + - + - 4+ + + + - + + 4+ -
- = 4+ = = - - 4 4 - - = 4+ 4+ +
-+ -+ |-+ - = |-+ - -+
ﬂ:l} = = - + + = L o =t + = a5 = = =
Chapter 13

1. The highest-order effect used in this generating relation involves four factors, so the highest-

resolution half-fraction that can be obtained in two doublings is a 2??;'. The 2?1_ 2 specified bhy:
I =+AB

+CDE(= +ABCDE)

= —ADF(= —BDF = —ACEF = —BCEF)

I

can be doubled once to obtain the 22?;.[2
1= +ABCDE
= —ADF(= —BCEF)

and doubled a second time to obtain the 2?’_ l:
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I=+ABCDE
= —ADF(= —BCEF)
and doubled a second time to obtain the 2?’_ 1:
I = +ABCDE.
However, the main effects for the first two factors are not individually estimable until after the first
doubling. ass
. Denote the Nx fdesign matrix for the initial Plackett-Burman plan by D, and the Ax(1+5 and =

Nx(f

2 ) model matrices associated with the intercept and main effects, and two-factor interactions,

by:
X; =(1|D) and X,

respectively. Then the corresponding 2 A row model matrices for the fold-over design are:

11 D X
X{“ = | — and Xg” = —.
1-D X>
The alias matrix for the main effects model is then:
* » ' ! 21'X, | 1'X,
et X)X % = gt | —— ) =

S0, while the intercept may be aliased with two-factor interactions, main effects are not.

Chapter 14

(a) Critical value for Fis Fa(1, 13) = 3.1362, the relevant noncentrality parameter is
_ 24x1? _ )
A = '"2): o= ﬁ, so the power of the test is ProfX W> 3.1362) where W~ F(1,13,6), or 0.7499.

(b) 4x[0.7499+9%0.10] = 6.6.

(a) Because the experiment is unreplicated, the 11 group main effect estimates will be assessed via



(b) 4x[0.7499+9x0.10] = 6.6.

(a) Because the experiment is unreplicated, the 11 group main effect estimates will be assessed via
a normal or half-normal plot. But since the group main effects are normally distributed with
mean 0 and variance approximately 4o, the plot pattern will likely be linear and no factor
groups will be identified for second-stage follow-up.

(b) With replication, o® can be estimated with 12 degrees of freedom in an analysis of variance.
Since most group main effects (with variance 4c¢/) will likely be substantially larger than o?,
most factor groups will likely be identified for second-stage follow-up.

[ L
(%]

Chapter 15

2. The standardized and studentized residuals for the 11 data values as labeled in Table 15.1, based on
a first-order model, are:

A
residuals
run standardized studentized
1 -0.806 -0.763
2 -0.806 —-0.763
3 —-0.990 —0.986
4 —_n aan _N Q]A




3 -0.990 —0.986

4 -0.990 —0.986

5} -0.806 —-0.763

6 -0.806 —-0.763

7 -0.990 —0.986

8 -0.806 —-0.763

9 0.671 0.617
10 0.963 0.951
11 1.372 1.633 >

< >

Although the response at run 7 appears most out of line with the rest of the data, run 11 results in
the largest scaled residual. Its magnitude is not so large as to be strong evidence that the data value
should be ignored. However, there is clearly inadequacy in the first-order model being used here; for
example, all residuals at the center point runs are positive, while all residuals at the factorial points
are negative. While the model we are using in this diagnostic is questionable, the data set is too small
to support estimation of a complete quadratic model. Hence it is difficult to argue, on the basis of

these data alone, that any of the response values should be regarded as outliers.
(a) Design A: N —6 = 36 — 6 = 30. Design B: N —6 = 20 — 6 = 14. Design



are negative. While the model we are using in this diagnostic is questionable, the data set is too small
to support estimation of a complete quadratic model. Hence it is difficult to argue, on the basis of

these data alone, that any of the response values should be regarded as outliers.
(a) Design A: N —6 = 36 — 6 = 30. Design B: N —6 = 20 — 6 = 14. Design
C:N-6=12-6=6.

(b) Design A: T = 321, A = 32X(0HULIH07400) _ 1067, Design B: T

161, A = 18x(UHUATHOH0) _ 533 Design C: T = 8I, A =
squ’*I”;_:"'+n"+n‘*1 — 2.67.

(c) Design A: ProblW > Fg5(5,30)] = 0.619 for W ~ F'(5,30, 10.67). De-
sign B: Prob|W > Fg5(5,14)] = 0.272 for W ~ F'(5, 14, 5.33). Design

I

7 C: Prob[W > Fgs5(5,6)] = 0.115 for W ~ F'(5,6,2.67).
=
Chapter 16
3.
(a) For this design, V=11, app = (4+2x 1.5%)/11 = 0.7727, and the information matrix is:
L= 0 10.12515,2 — 2.568J 342 0
0 0 45151

With " = (2,2,-1,-1,0), the noncentrality parameter for the test of model effectiveness is:
B'IB/o* = 8.664.

(b) There are nine distinct experimental runs (e.g., ignoring replicates) in the experiment and the

model contains six parameters. Further, there are two degrees of freedom for “pure error”
based on the three replicate center point runs. So the test for lack of fit is based on H3,2).

design  Var(pi) Var(Bi1) Var(piz)
1 0.08330° 0.25000* 0.12500°
2 0.07140°% 0.36840°% 0.08330°
3 0.10000% 0.25640% 0.25000°




0.083302  0.250002 0.12500°2

1
2 0.07140% 0.36840% 0.083302
3 0.10006% 0.25640% 0.25000°
4 0.16670° 0.333302% 0.250002

8.

Chapter 17

1. Let D= {(x1, %1), (%2, X5»), (X3, X23), (14, X24)}, Where each -1 < X < +1. As noted in the problem, the

I=X’2(l—}—1.])}{g

information matrix

can be written as
7= ( S i(z1i — #1.)? > (@1 — &1 ) (x2i — -'f"z.}) _3 ( 5% SIE)
2oil@1i — 7 )2 — T2) i(wai — 32)? S12 S5
where &2 &2, and &; denote the functional form of sample “variances” and the “covariance” of
selected x; and x, values, respectively. Hence
|I| s 9{5353 e 5122
1s maximized if D1is selected so that:

» 5%isaslarge as is possible,
» S7isaslarge as is possible,
» & 1s as near zero as possible.

This is achieved by {(-1,-1), (-1,+1), (+1,-1), (+1,+1)} because =

» 52is1, the largest “variance” that can be achieved for any distribution of range 2,
» 52is1,and
" Su i5 0.
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» S$2is1,and
»  5,180.
3.

(a) Pm(D) = [(X5X2) ' X5X5]| = & 1X5X3|| = 4 trace(X2X5X3X5).

(b) If Nislarge enough to accommodate a resolution IV (or more) fraction, this is optimal because
X’,X; = 0 for such designs. If Ais smaller X’.X; = 3 x the number of words of length 3 in the
generating relation; therefore the optimal designs are minimum aberation designs of resolution
I11.
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influence of design on quality of
inference, 119-121
Latin square design, 109
matrix formulation, 114-119
model, 112-113
example (dishwashing detergents),
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graphical logic, 112-113
more general constructions, 121-124
extended complete block designs,
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partially balanced incomplete block
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orthogonally blocked design, 124
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BBD, see Box-Behnken design
BIBD, see Balanced incomplete block
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APD, see Augmented pairs design
Associates (in PBIBD), 122
Augmented complete block

design, 66
Augmented design, 236
Augmented pairs design (APD), 288
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B

Balanced design, 271
Balanced incomplete block design (BIBD),
109-127
additive block effects, 122
adjusted treatment totals, 117
associates (PBIBD), 122
balanced incomplete block
design, 109
carryover effect, 110
crossover design, 110
example (drugs and blood pressure),
110-111
exercises, 124-127
existence and construction,
111-112
extended complete block design, 121
incomplete blocks, 109

Completely randomized design (CRD),
37-54, see also CRDs and
orthogonally blocked designs,
data analysis

aliquot, 39

allocation (units), 45
boxplot, 40

cell means model, 38, 42

Uiolepll, o4
Basis (vector space), 13
BBD, see Box-Behnken design
BIBD, see Balanced incomplete block
design
Block, see also Randomized complete
blocks and related designs;
Two-level factorial experiments,
blocking
designs, see Balanced incomplete block
designs
principal, 221
Box-Behnken design (BBD), 287, 296
Boxplot, 40

C

Carryover effect, 110
CBD, see Complete block design
CCD, see Central composite design
Cell means model, 38, 42, 144, 189
Center point, 271
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Central Limit Theorem, 14, 94, 198
CFD, see Complete factorial design
Comparative experiments, 304
Complete block design (CBD), 56, 170
Complete factorial design (CFD), 284
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simulation-based intervals for

specific problems, 102-103
Tukey intervals, 101
power transformations, 97-100
residuals, 93
Scheffé’s simultaneous intervals, 103
simultaneous inference, 101
standardized residuals, 94
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aliquot, 39
allocation (units), 45
boxplot, 40
cell means model, 38, 42
contrast, treatment, 42
effects model, 40
example (radiation and rats), 37-38
exercises, H50-54
experimental controls, 47
influence of design on estimation, 44-49
allocation, 45-48
overall experiment size, 48-49
influence of design on hypothesis
testing, 49-50
matrix formulation, 41-44
Method of Lagrangian Multipliers, 46
models, 38-41
optimal allocation, 45
signal-to-noise ratio, 45
technician bias, 38
treatment structure, unstructured, 37
Condition E, 64
Confounder, 9
Confounding, 211
Contrast, treatment, 42
Control, experimental, 5, 47
Covariates, 19
CRD, see Completely randomized design
CRDs and orthogonally blocked designs,
data analysis, 93-107
basic inference, 100
Central Limit Theorem, 94
data transformations, 93
diagnostics, 93-97
general test for lack of fit, 96
modified Levene test, 95-96

power transiormations, J/—10U0

residuals, 93

Scheffé’s simultaneous intervals, 103

simultaneous inference, 101

standardized residuals, 94

stochastic simulation, 103

studentized range distribution, 101

studentized residuals, 94

true replication, 97

Tukey one-degree-of-freedom test, 97

Tukey simultaneous intervals 101

Tukey test for interaction, 97
Criterion function (in optimal design), 300
Crossover design, 110

D

Data transformations, 93

Defining relation, 229

Design information matrix, 14, 16, 173,
308, 328

DETMAX, 310

Direct (matrix) product, 150

D-optimality, 303, 310

Dunnett’s simultaneous intervals, 102

E

Effect cancelling, 253, 259

Effect Heredity Principle, 200

Effects model, 40

Effect sparsity, 198, 250

Engineering Thermoplastic Polyurethane
(ETPU), 56

Equivalence Theorem, 304

Estimable functions, 24

Fstimahle strines (factorial effects). 230



Lentral Limit 1 heorem, 24
data transformations, 93
diagnostics, 93-97
general test for lack of fit, 96
modified Levene test, 95-96
residuals, 93-95
Tukey one-degree-of-freedom test, 97
Dunnett’s simultaneous intervals, 102
exercises, 106-107
experiment-wise error probability, 100
inequality of variances, detection of, 95
lack of fit, 96
maximum likelihood estimate, 99
modified Levene test, 95
multiple comparisons, 100-104
Dunnett intervals, 102
numerical example, 104
Schefté intervals, 103-104

semiconductors and simulation,
248-249

strength of concrete, 144

strength of fabrics, 168-169

structural reinforcement bars, 56

web page links, 75-76

Exercises

balanced incomplete block designs,
124-127

completely randomized design, 50-54

CRDs and orthogonally blocked designs,

106-107
factorial group screening experiments.
258-260
factorial treatment structure, 163-166
introduction, 10-12
Latin squares and related designs, 87-91
linear statistical models, 31-35

Engineering Thermoplastic Polyurethane
(ETPU), 56
Equivalence Theorem, 304
Estimable functions, 24
Estimable strings (factorial effects), 230
ETPU, see Engineering Thermoplastic
Polyurethane
Examples
bacteria and bacteriocin, 231
bacteria and elastase, 262, 269-271
bacteria and nuclease, 187—188
dishwashing detergent, 113, 136137
drugs and blood pressure, 110-111
English tutoring, 169
gophers and burrow plugs, 210
nasal sprays, 281-282
radiation and rats, 37-38

rainfall and grassland, 1-2
348

348
two-level factorial experiments

(blocking), 334-335
two-level factorial experiments
(fractional factorials). 335-336
split-plot designs, 182-186
two-level factorial experiments (basics),
201-205
two-level factorial experiments
(blocking), 223-225
two-level factorial experiments
(fractional factorials), 243-245
Experimental controls, 5, 47
Experimental design, 1-12
aboveground net primary
productivity, 2
basic elements of experiment, 2-8
control and comparison, 4-5
replication, blocking, and
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factorial treatment structure, 163166
introduction, 10-12
Latin squares and related designs, 87-91
linear statistical models, 31-35
optimal design, 311-312
random block effects, 139-142
randomized complete blocks and related
designs, 67-71
regression experiments
first-order polynomial models,
27680
second-order polynomial models,
296298
solution notes, 321-339
balanced incomplete block designs,
328-329
completely randomized designs,
323—-324
CRDs and orthogonally blocked
designs, data analysis, 327-328
experimental design, 321-322
factorial group screening
experiments, 336
factorial treatment structure,
331-332
Latin squares and related designs,
326
linear statistical models, 322
optimal design, 338-339
random block effects, 329-331
randomized complete blocks and
related designs, 324-326
regression experiments, first-order
polynomial models, 337
regression experiments, second-order
polynomial models, 338
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productivity, 2
basic elements of experiment, 2-8
control and comparison, 4-5
replication, blocking, and
randomization, 6-7
responses and measurement process,
56
treatments and material, 3-4
validity and optimality, 7-8
blocking, 6
confounder, 9
example (rainfall and grassland), 1-2
exercises, 10-12
experimental controls, 5
experimental run, 3
experimental treatments, 3
experimental trial, 3
experimental unit, 4
experiments and experiment-like
studies, 8-9
factors, 3
fixed effects model, 9
functional treatments, 3
interval factor, 3
level (factor), 3
measurement error, 6
measurement process, 5
mixed effects model, 9
models and data analysis, 9
natural/natural treatment, 5
observational studies, 1
optimality, 8
pseudo-experiments, 9
randomization, 6-7
replication, 6
responses, 2, 3, 5
sham shelters, 5
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regression experiments, first-order
polynomial models, 337
regression experiments, second-order
polynomial models, 338
split-plot designs, 332-333
two-level factorial experiments

(basics), 333-334

Experimental treatments, 3

Experimental trial, 3

Experimental unit, 4

Experiment-wise error probability, 100

Extended complete block design, 121

Extended randomized complete block
design, 322

F

Factorial effect, 146
Factorial experiment, 143
Factorial group screening experiments,
247-260
case study, 256-257
effect cancelling, 253, 259
effect sparsity, 250
example (semiconductors and
simulation), 248-249
exercises, 258-260
factorial structure of group screening
designs, 250-253
factor screening, 247
generalized interaction, 250
generating relation, 252
group factor, 250
group screening design considerations,
253255

pseudo-experinents, o
randomization, 6-7
replication, 6
responses, 2, 3, 5
sham shelters, 5
treatment, 2
treatment structure, 3
validity, 8

g8

interactions, two-factor, 153
level (factor), 143
main effects, 153
matrix direct products, 150
model
cell means, 144
factorial, 145
hierarchical, 161
overparameterized, 144
reduction, 160-162
overparameterized model, 144-152
graphical logic, 147-148
matrix development, 148-152
parameter group, 150
partitioning of variability and
hypothesis testing, 157-159
regressors, 152
two-factor interactions, 153
unreplicated factorial experiment, 148

Factor(s), 3, 143

screening, 162, 247
tutoring program, 169

First-order polynomial models, 261-280

blocking experiments for first-order
models, 266-269
designs for first-order models, 264-266
simplex designs, 265266
two-level designs, 264-265
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generating relation, 252

group factor, 250
group screening design considerations,
263-255
aliasing, 254-255
effect canceling, 253
screening efficiency, 255
screening failure, 253-254
product array, 244
screening efficiency, 255
screening failure, 254
Factorial model, 145
Factorial notation, 267
Factorial treatment structure, 143-166
cell means model, 144
direct (matrix) product, 150
equivalent full-rank model, 152-144
estimation, 155-157
example (strength of concrete), 144
exercises, 163166
factorial effect, 146
factorial experiment, 143

factorial experiments as CRDs, CBDs,

LSDs, and BIBDs, 159-160
factorial model, 145
factors, 143
factor screening, 162
full factorial experiment, 144
hierarchical model, 161
interactions, 146

Generalized variance, 303

Generating relation, 212, 252

GLSD, see Graeco-Latin square design
Graeco-Latin square design (GLSD), 85
Group factor, 250

Cironn sereenine. 247 see also Factorial

models, 266-269
designs for first-order models, 264-266
simplex designs, 265266
two-level designs, 264-265
diagnostics, 271-276
general test for lack-of-fit, 272-276
use of center point, 271-272
example (bacteria and elastase), 262,
269-271
exercises, 276-280
polynomial models, 263-264
split-plot regression experiments,
269-271
Fisher’s information matrix, 16
Fixed-block analysis, 132
Fixed effects model, 9
Fold-over design, 237, 243
Fractional factorial design, 227, see also
Two-level factorial experiments,
fractional factorials
Fractions (3/8), 244
Full factorial experiment, 144
Functional treatments, 3
Functional treatment structure, 261

G

Generalized interaction, 217, 250
Generalized inverse (matrix), 14

Generalized least-squares, 130
3R0

351

replicated Latin squares, 76-77
row-column design, 73
Least-squares estimate, 14
Lenth’s method, 199
Level (factor), 3, 143

[inearlv indenendent vectors. 13
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GLSD, see Graeco-Latin square design

Graeco-Latin square design (GLSD), 85

Group factor, 250

Group screening, 247, see also Factorial
group screening experiments

H

Half-normal plot, 198
Hat matrix, 14
Heredity principle, 200
Hierarchical model, 161
Hierarchy principle, 200

I

Idempotent matrix, 15, 24

Identifying relation, 229

Identity element, 2080

Incidence matrix, 65

Incomplete blocks, 109

Inequality of variances, detection of, 95
Information matrix, 132

Interactions, 146, 153

Inter-block estimate, 131, 137

Interval factor, 3

Intra-block estimate, 131, 137
[-optimality, 304

Irregular fractional factorial design, 240
Iteratively reweighted least-squares, 130

L
Lack of fit, 26, 28, 96, 272

Lasraneian Multinliers. Method of. 46

row-column design, 73
Least-squares estimate, 14
Lenth’s method, 199
Level (factor), 3, 143
Linearly independent vectors, 13
Linear statistical models, 13-35
analysis of covariance, 19
basic linear model, 14
basis (vector space), 13
blocking and information, 30-31
Central Limit Theorem, 14
covariates, 19
design information matrix, 14, 16
estimable functions, 24
estimation and information, 24-28
exercises, 31-35
Fisher's information matrix, 16
generalized inverse (matrix), 14
hat matrix, least-squares estimates,
and design information matrix,
14-18
hypothesis testing and information,
28-30
idempotent matrix, 15, 24
lack of fit, 26, 28
least-squares estimate, 14
linearly independent vectors, 13
linear and quadratic forms, 23-24
linear vector spaces, 13-14
matrix
Fisher’s information, 16
generalized inverse, 14
hat, 14
idempotent, 15, 24
model, 14
rank of, 15

trare 15



L

Lack of fit, 26, 28, 96, 272
Lagrangian Multipliers, Method of, 46
Latin square design (LSD), 73, 75, 109, 186
Latin squares and related designs, 73-91
example (web page links), 75-76
exercises, 87-91
Graeco-Latin squares, 84-87
graphical logic, 79-80
influence of design on quality of
inference, 83-84
Latin square design, 73, 75
matrix
formulation, 8083
permutation, 81
model, 77-80
nested blocks within replicates, 78
orthogonal Latin squares, 85
permutation matrix, 81

M

Main effects, 153

Matrix
alias, 294
direct products, 150
Fisher’s information, 16
generalized inverse, 14
hat, 14
idempotent, 15, 24
incidence, 65
information, 132
model, 14
permutation, 81
rank of, 15

-

hat, 14

idempotent, 15, 24

model, 14

rank of, 15

trace, 15
model matrix, 14
noncentrality parameter, 24
normal equations, 15
orthogonal complement, 14
orthogonal vectors, 14
partitioned linear model, 18-19
power (F-test), 29
projection operator, 15
pure error, 26
quadratic form, 23
rank (matrix), 15
reduced normal equations, 19-23
spanning set, 13
trace (matrix), 15
vector space, 13

LSD, see Latin square design
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algorithms, 309-310
A-optimality, 301
comparative experiments, 304
criterion function (optimal design), 300
design information matrix, 308
DETMAX, 310
D-optimality, 303, 310
Equivalence Theorem, 304
exercises, 311-312
fundamentals, 299-301
generalized variance, 303
I-optimality, 304
near-optimal design, 309
optimality criteria, 301-309
A-optimality, 301-302



information, 132
model, 14
permutation, 81
rank of, 15
trace, 15
Maximum likelihood estimate (MLE), 99
Measurement
error, 6
process, b
Mixed effects model, 9, 129
MLE, see Maximum likelihood estimate
Model
cell means, 38, 42, 144, 189
effects, 40
factorial, 145
fixed effects, 9
hierarchical, 161
main-effects, 242
matrix, 14
mixed effects, 9, 129
overparameterized, 144
partitioned linear, 18
treatment-by-block interactions added
to, 138
Modified Levene test, 95
Multiple comparisons, 100

N

Natural /natural treatment, 5
Near-optimal design, 309

Nested blocks within replicates, 78
Noncentrality parameter, 24
Nongeometric design, 242

Normal equations, 15

Normal plot, 198

generalized variance, 4o
l-optimality, 304
near-optimal design, 309
optimality criteria, 301-309
A-optimality, 301-302
D-optimality, 303-304
examples, 304-309
other criteria, 304
point-exchange algorithm, 309
region, experimental, 311
Optimality, 8
Orthogonal arrays, 241
Orthogonal blocking, 291
Orthogonal complement, 14
Orthogonal Latin squares, 85
Orthogonally blocked designs, 65, 124, see
also CRDs and orthogonally
blocked designs, data analysis
Orthogonal vectors, 14
Outliers, 198
Overparameterized model, 144

P

Parameter group, 150

Partial confounding, 215

Partially balanced incomplete block design
(PBIBD), 122

Partitioned linear model, 18

PBIBD, see Partially balanced incomplete
block design

Permutation matrix, 81

Plackett-Burman design, 241

Plots, 168

Plus-and-minus plan, 277

Point-exchange algorithm, 309

Polynomial models, see First-order
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Noncentrality parameter, 24
Nongeometric design, 242
Normal equations, 15
Normal plot, 198

O

Observational studies, 1
One factor at a time, 277

Optimal allocation, 45
Optimal design, 299-312

Pseudo standard error, 200
Pure error, 26, 275

Q

Quadratic form, 23

R

R, calculations using, 313-319
example calculations, 315-319
R commands, 313-314
Random block effects, 129-142
additive block effects, 139
balanced incomplete block designs,
134-135
combined estimator, 135-137
complete block designs
augmented CBDs and, 132-134
reprise, 138-139
example (dishwashing detergents),
136-137
exercises, 139-142
fixed-block analysis, 132
generalized least-squares, 130

Plots, 168

Plus-and-minus plan, 277

Point-exchange algorithm, 309

Polynomial models, see First-order
polynomial models; Second-order
polynomial models

Power (F-test), 29

Principal block, 221

Product array, 244

Projection operator, 15

Pseudo-experiments, 9

- a5z
matrix

formulation, 59-61
incidence, 65
model, 57-59
orthogonality and Condition E, 64-67
orthogonally blocked design, 65
randomized complete block design, 56
signal-to-noise ratio, 63
Rank (matrix), 15
Recovered information, 131
Reduced normal equations, 19
Region
design, 261
experimental, 261, 311
Regression experiments, first-order
polynomial models, 261-280
additive block effects, 272
adequacy of fit, 271
balanced design, 271
blocking experiments for first-order
models, 266-269
center point, 271

designs for first-order models,
264266
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example (dishwashing detergents),
136-137

exercises, 139-142

fixed-block analysis, 132

generalized least-squares. 130

information matrix, 132

inter- and intra-block analysis,
129-132

inter- and intra-block estimates, 131,
137

iteratively reweighted least-squares, 130

matrix, information, 132

mixed effects model, 129

model, treatment-by-block interactions
added to, 138

recovered information, 131

recovery of information, 137-138

Randomization, 6-7
Randomized complete blocks and related

designs, 55-T71

augmented complete block design, 66

complete block design, 56

Condition E, 64

Engineering Thermoplastic
Polyurethane, 56

example (structural reinforcement bars),
56

exercises, 67-T1

graphical logic, 58-59

incidence matrix, 65

influence of design on estimation,
61-63

influence of design on hypothesis
testing, 63-64

bias due to omitted model terms,
293-296

models, 266269
center point, 271
designs for first-order models,
264-266
simplex designs, 265-266
two-level designs, 264-265
diagnostics, 271-276
general test for lack-of-fit, 272-276
use of center point, 271-272
example (bacteria and elastase), 262,
269-271
exercises, 276-280
factorial notation, 267
functional treatment structure, 261
lack of fit, 272
one factor at a time, 277
plus-and-minus plan, 277
polynomial models, 263-264
pure error, 275
region
design, 261
experimental, 261
simplex design, 265
split-plot regression experiments,
269-271
steepest ascent, 279
treatment structure, functional, 261
units of measurement, 263
Regression experiments, second-order
polynomial models, 281-298
alias matrix, 294
augmented pairs design, 288
axial subdesign, 286

L]
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quadratic polynomial models, 282-284

split-plot designs, 292-293
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testing, 63-64

bias due to omitted model terms,
293-296
Box-Behnken design, 287, 296
central composite design, 286
complete factorial design, 284
design scaling and information, 289-291
designs for second-order models,
284288
augmented pairs designs, 288
Box-Behnken designs, 287
central composite designs, 286
complete three-level factorial
designs, 284285
example (nasal sprays), 281-282
exercises, 296-298
matrix, alias, 294
orthogonal blocking, 291-292
quadratic polynomial models, 282-284
response surface, 281
split-plot designs, 292-293
stationary point, 283
steepest ascent, 281
Regressors, 152
Regular blocking (in factorial experiments),
211
Regular fractional factorial design, 227
Repeated measures design, 168
Replication, 6
Residuals, 93
Resolution (design), 231
Responses, 2, 3, 5
Response surface, 281
Row-column design, 73
Run, experimental, 3
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axial subdesign, 286

guadratic polynomial models, 282-284
split-plot designs, 292-293
Sham shelters, 5
Signal-to-noise ratio, 45, 63
Simplex design, 265
Simultaneous inference, 101
Spanning set, 13
SPD, see Split-plot design
Split-plot design (SPD), 167-186
among-subjects factor, 168
complete block design, 170
design information matrix, 173
example (English tutoring), 169
example (strength of fabrics), 168-169
exercises, 182-186
factor tutoring program, 169
Latin square design, 186
more than two experimental factors, 178
more than two strata of experimental
units, 178-180
plots, 168
repeated measures design, 168
SPD(B,B), 175-177
analysis, 177
model, 176-177
SPD(R,B), 169-175
analysis, 171-175
model, 170-171
strata (split-plot experiment), 170
whole-plot experiment, 170
within-subjects factor, 168
Standardized residuals. 94
Stationary point, 283
Steepest ascent, 279, 281
Stochastic simulation, 103
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Response surface, 281
Row-column design, 73
Run, experimental, 3

S

Scheffé’s simultaneous intervals, 103
Screening efficiency, 255
Screening failure, 254
Second-order polynomial models, 281-298
bias due to omitted model terms,
293296
design scaling and information, 289-291
designs for second-order models,
284-288
augmented pairs designs, 288
Box-Behnken designs, 287
central composite designs, 286
complete three-level factorial
designs, 284-285
example (nasal sprays), 281-282
exercises, 296-298
orthogonal blocking, 291-292

Tukey test for interaction, 97
Two-factor interactions, 153
Two-level factorial experiments, basics,
187-205
additional guidelines for model editing,
200-201
cell means model, 189
Central Limit Theorem, 198
effect heredity principle, 200
effect sparsity, 198
estimation of treatment contrasts,
193-195
examples, 195-196
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Standardized residuals, 94
Stationary point, 283
Steepest ascent, 279, 281
Stochastic simulation, 103
Strata (split-plot experiment), 170
Studentized range distribution, 101
Studentized residuals, 94

T

Technician bias, 38
Trace (matrix), 15
Transformations, data, 93
Treatment, 2
Treatment structure, 3
factorial, see Factorial treatment
structure
functional, 261
unstructured, 37
Trial, experimental, 3
True replication, 97
Tukey one-degree-of-freedom test, 97

Tukey simultaneous intervals 101
354

355

regular blocks, general case, 219-222

regular blocks of size 2/~1, 211-216
partial confounding, 215-216
random blocks, 214-215

regular blocks of size 2/—2, 216-219

Two-level factorial experiments, fractional
factorials, 227-245

3/8 fractions, 244

aberration (design), 233

aliased factorial effects, 229

analysis, 230-231

augmented design, 236

augmenting regular fractional factorial
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effect sparsity, 198
estimation of treatment contrasts,
193-195
examples, 195-196
full model, 193
reduced model, 193-195
example (bacteria and nuclease),
187188
exercises, 201-205
half-normal plot, 198
heredity principle, 200
hierarchy principle, 200
Lenth’s method, 199
model, cell means, 189
normal plot, 198
outliers, 198
pseudo standard error, 200
testing factorial effects, 196-200
experiments without replication,
197-200
individual model terms, experiments
with replication, 196
multiple model terms, experiments
with replication, 197
two-level factorial structure, 188-193
unreplicated factorial experiment, 198

Two-level factorial experiments, blocking,

207-225

balanced incomplete block designs,
210-211

block, principal, 221

complete blocks, 208-210

confounding, 211

example (gophers and burrow plugs),
210

exercises, 223-225

generalized interaction, 217
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aliased factorial effects, 229
analysis, 230-231
augmented design, 236
augmenting regular fractional factorial
designs, 235-240
blocking combined fractions, 239-240
combining fractions, 235-237
fold-over designs 237239
blocking regular fractional factorial
designs, 234-235
comparison of fractions, 231-234
comparing fractions of equal
resolution (aberration), 233-234
resolution, 231-233
defining relation, 229
estimable strings (factorial effects), 230
example (bacteria and bacteriocin), 231
exercises, 243-245
fold-over design, 237, 243
fractional factorial design, 227
identifying relation, 229
irregular fractional factorial designs,
240-242
model, main-effects, 242
nongeometric design, 242
orthogonal arrays, 241
Plackett-Burman design, 241
regular fractional factorial designs,
227-230
resolution (design), 231

Unit, experimental, 4
Units of measurement, 263
Unreplicated factorial experiment, 148, 198



exercises, 201-205
half-normal plot, 198
heredity principle, 200
hierarchy principle, 200
Lenth’s method, 199
model, cell means, 189
normal plot, 198
outliers, 198
pseudo standard error, 200
testing factorial effects, 196-200
experiments without replication,
197-200
individual model terms, experiments
with replication, 196
multiple model terms, experiments
with replication, 197
two-level factorial structure, 188-193
unreplicated factorial experiment, 198

Two-level factorial experiments, blocking,

207-225

balanced incomplete block designs,
210-211

block, principal, 221

complete blocks, 208-210

confounding, 211

example (gophers and burrow plugs),
210

exercises, 223-225

generalized interaction, 217

generating relation, 212

identity element, 208

models, 207-208

notation, 208

partial confounding, 215

principal block, 221

regular blocking (in factorial
experiments), 211

blocking regular fractional factorial
designs, 234-235

comparison of fractions, 231-234

comparing fractions of equal
resolution (aberration), 233-234
resolution, 231-233

defining relation, 229

estimable strings (factorial effects), 230

example (bacteria and bacteriocin), 231

exercises, 243-245

fold-over design, 237, 243

fractional factorial design, 227

identifying relation, 229

irregular fractional factorial designs,
240-242

model, main-effects, 242

nongeometric design, 242

orthogonal arrays, 241

Plackett-Burman design, 241

regular fractional factorial designs,
227-230

resolution (design), 231

U

Unit, experimental, 4
Units of measurement, 263
Unreplicated factorial experiment, 148, 198

\"%

Validity, 8
Vector space, 13

W

Whole-plot experiment, 170
Within-subjects factor, 168



