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To whom honor is due....

These slides are based on a slide deck from

Prof. Dr. Armin Biere

from whom I took over this lecture.
He deserves thanks for his kind permission to use them.
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Why Shared Memory?

⬛ Wide-spread availability of multi-core
⬜ in servers for more than 20 years
⬜ desktop for more than 15 years
⬜ GPU computing for more than 15 years
⬜ smart phones for more than 10 years

⬛ Power limits in CMOS technology
⬜ Around 2005 frequency scaling stopped
⬜ Moore’s law still continued to hold
⬜ More cores instead of higher frequency

Source: Chuck Moore, Data Processing in Exascale-Class 
Computer Systems, 2011
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Processes vs. Threads

⬛ Processes
⬜ Classical but more complicated
⬜ Fork / join paradigm
⬜ Communication over files / pipes
⬜ mmap (..., MAP_SHARED, ...)

⬛ Threads
⬜ “Known” programming model
⬜ Similar to sequential model
⬜ But with globally shared memory
⬜ Multiple processing units
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Threads vs. Processes

⬛ Process can have multiple threads
⬛ Thread: lightweight process
⬛ Threads share 

⬜ Address space
⬜ File descriptors
⬜ Sockets
⬜ ...

⬛ Per-thread 
⬜ Stack, 
⬜ Program counter
⬜ Registers: thread's context

⬛ Switching threads more efficient than 
switching processes 
➙ lightweight context
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Benefits of Threading

⬛ Parallelism
⬜ Computing independent tasks at the same 

time
⬛ speed-up (Amdahl's Law!)

⬜ Need multiprocessor HW for “true” 
parallelism

⬜ Exploiting capabilities of modern multi-core 
processors

⬛ Concurrency
⬜ Progress despite of blocking (overlapping) 

operations
⬜ No multiprocessor HW needed
⬜ “Illusion” of parallelism

⬛ Analogy: multiple running processes in multi-
tasking operating systems

⬛ Threaded programming model
⬜ Shared-memory (no message passing)
⬜ Sequential program: 

implicit, strong synchronization via ordering 
of operations

⬜ Threaded program: 
explicit code constructs for synchronizing 
threads

⬜ Synchronization clearly designates 
dependencies

⬜ Better understanding of “real” dependencies
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Costs of Threading

⬛ Overhead 
(Synchronization, Computation)
⬜ Directly:

More synchronization  less parallelism,➙
higher costs

⬜ Indirectly:
⬛ Scheduling 
⬛ Memory architecture (cache coherence)
⬛ Operating system
⬛ Calling C library
⬛ …

⬛ Programming discipline
⬜ “thinking in parallel”
⬜ Careful planning
⬜ Avoidance of

⬛ Deadlocks: circular waiting for resources
⬛ Races: threads' speed (scheduling) determines 

outcome of operation 

⬛ Debugging and Testing
⬜ Nondeterminism: 

Timing of events depends on threads' speed 
(scheduling)

⬜ Bugs difficult to reproduce
⬛ e.g. what thread is responsible for invalid 

memory access?
⬜ Probe effect:

Adding debugging information can influence 
behavior 

⬜ How to test possible interleaving of threads?
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When (not) to Use Threads?

⬛ Pro threads
⬜ Independent computations on 

decomposable data
⬛ Example: arraysum

⬜ Frequently blocking operations 
e.g. waiting for I/O requests

⬜ Server applications

⬛ Contra threads
⬜ Highly sequential programs: 

every operation depends on the previous 
one

⬜ Massive synchronization requirements

⬛ Challenges in Threaded Programming 
(applies to parallel computation in general)
⬜ Amdahl's Law is optimistic 

(ignores underlying HW, operating system,...) 
⬜ Keeping the sequential part small: 

less synchronization
⬜ Increasing the parallel part: 

data decomposition
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POSIX Threads (Pthreads) Basics
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POSIX Threads

⬛ POSIX: Portable Operating System Interface
⬜ IEEE standards defining API of software for 

UNIX-like operating systems

⬛ POSIX threads (Pthreads)
⬜ Standard approved 1995, amendments
⬜ Functions for

⬛ Creating threads
⬛ Synchronizing threads
⬛ Thread interaction

⬜ Opaque data types for
⬛ Thread identifiers
⬛ Synchronization constructs
⬛ Attributes
⬛ ... References:

D. R. Butenhof, Programming with POSIX Threads,
Addison-Wesley, 1997

http://opengroup.org/onlinepubs/007908799/xsh/pthread.h.html

⬛ Usage
⬜ Header file: pthread.h
⬜ Compilation: 

gcc -pthread -o prog prog.c
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(P)Threads in Linux

⬛ How can a thread-library be implemented?

⬛ Abstraction levels:
⬜ Threads: created by a user program
⬜ Kernel entity: “process”, scheduled by operating system
⬜ Processor: physical device, gets assigned kernel entities by scheduler

⬛ Design decision: How to map threads to kernel entities?
⬜ M-to-1:

⬛ All threads of process mapped to one kernel entity
⬛ Fast scheduling (in library), but no parallelism

⬜ M-to-N:
⬛ Threads of process mapped to different kernel entities
⬛ Two-level scheduling (library and kernel) incurs overhead, but allows parallelism

⬜ 1-to-1:
⬛ Each thread mapped to one kernel entity
⬛ Scheduling in kernel, less overhead than in M-to-N case, allows parallelism
⬛ Used in most modern Linux systems: Native POSIX Threads Library (NPTL)
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Pthread Lifecycle: States

⬛ Ready
⬜ Able to run, waiting for processor

⬛ Running 
⬜ On multiprocessor possibly more than one at a time

⬛ Blocked
⬜ Thread is waiting for a shared resource

⬛ Terminated
⬜ System resources partially released 
⬜ But not yet fully cleaned up

⬛ Thread's own memory is obsolete
⬛ Can still return value

⬛ (Recycled)
⬜ All system resources fully cleaned up
⬜ Controlled by the operating system
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Pthread Creation

⬛ int pthread_create(arg0, arg1, arg2, arg3)
⬜ arg0: pthread_t *tid_ptr

⬛ Where to store thread ID of type pthread_t
⬜ arg1: const pthread_att_t *attr

⬛ May set certain attributes at startup
⬛ Ignored for the moment: always pass NULL → set default attributes

⬜ arg2: void *(*start)(void *)
⬛ Pointer to thread's startup function
⬛ Takes exactly one void* as argument

⬜ arg3: void *arg
⬛ Actual parameter of thread's startup function

⬜ Returns zero on success, else error code

⬛ Thread ID is stored in *tid_ptr
⬜ pthread_t pthread_self() returns ID of current thread
⬜ int pthread_equal(pthread_t tid1, pthread_t tid2) compares IDs

⬛ Example: helloworld
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Main-Thread

⬛ Process creates thread which executes main-function  “main-thread”➙

⬛ Main-thread behaves slightly differently from ordinary threads:
⬜ Termination of main-thread by returning from main causes process to terminate

⬛ All threads of process terminate
⬛ Example: helloworld

⬜ Calling pthread_exit(...) in main-thread causes process to continue 
⬛ All created threads continue
⬛ Recall lifecycle: 

⭕ main-thread terminates  resources partially released➙
⭕ Attention: stack may be released!

⬛ Memory errors: dereferencing pointers into main-thread's (released) stack 
⬛ Example: helloworld_buggy
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Pthread Termination

⬛ Generally: thread terminates if startup function returns
⬛ int pthread_exit(void *value_ptr)

⬜ Causes thread to terminate (special semantics in main-thread)
⬜ Implicitly called if thread's startup function returns (except in main-thread)
⬜ value_ptr is the thread's return value (see pthread_join(...))

⬛ int pthread_detach(pthread_t tid)
⬜ Resources of tid can be reclaimed after tid has terminated
⬜ Default: not detached
⬜ Any thread can detach any thread (including itself)

⬛ int pthread_join(pthread_t tid, void **value)
⬜ Returns when tid has terminated (or already terminated), caller blocks
⬜ Optionally stores tid's return value in *value

⬛ Return value from calling pthread_exit(...) or returning from startup function
⬜ Joined thread will be implicitly detached
⬜ Detached threads can not be joined
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Pthread Termination - Examples

⬛ Example: helloworld_join

⬛ Returning values from threads
⬜ Returning values from threads via pthread_join(...)

⬛ Example: returnval
⬛ But: waiting for termination often not needed
⬛ Good practice to release system resources as early as possible

⬜ Alternative to pthread_join(...): custom return mechanism
⬛ Threads store their return values on the heap
⬛ Example: returnval_heap

⭕ Problem: need to notify main-thread somehow that all threads have written results
⬜ Error: joining a detached thread

⬛ resources are (may be or not) already released
⬛ join should fail
⬛ Example: returnval_buggy

⬜ Error: returning pointer to local variable
⬛ Example: returnval_buggy
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Pthread Lifecycle Revisited (1/2)

⬛ Creation
⬜ Process creation  main-thread creation➙
⬜ pthread_create(...): new threads are ready

⬛ No synchronization between pthread_create(...) and new thread's execution

⬛ Startup
⬜ Main-thread's main function called after process creation
⬜ Newly created threads execute startup function

⬛ Running
⬜ Ready threads are eligible to acquire processor  will be running➙
⬜ Scheduler assigns time-slice to ready thread  threads will be preempted➙
⬜ Switching threads  context (registers, stack, pc) must be saved➙

⬛ Blocking
⬜ Running threads may block, e.g. to wait for shared resource
⬜ Blocking threads become ready (not running) again
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Pthread Lifecycle Revisited (2/2)

⬛ Termination
⬜ Generally: when thread returns from startup function
⬜ pthread_exit
⬜ Can also explicitly be canceled by pthread_cancel(...)
⬜ Optional cleanup handlers are called
⬜ Only thread's ID and return value remain valid, other resources might be released
⬜ Terminated threads can still be joined or detached
⬜ Joined threads will be implicitly detached, i.e. all its system resources will be released

⬛ Recycling
⬜ Occurs immediately for terminated, detached threads  all resources released➙
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Creating and Using Threads: Pitfalls

⬛ Sharing pointers into stack memory of threads
⬜ Perfectly alright, but handle with care

⬛ Passing arguments
⬛ returning values

⬛ Resources of terminated, non-detached threads can not fully be released
⬜ Large number of threads  performance problems?➙
⬜ Should join or detach threads

⬛ Relying on the speed/order of individual threads
⬜ Do not make any assumptions!
⬜ Need mechanism to notify threads that certain conditions are true

⬛ Example: returnval_heap
⬜ Must prevent threads from modifying shared data concurrently

⬛ Example: sum

⬛  Synchronization➙
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Shared Memory Programming
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Shared Memory Programming Model

⬛ Programs / Processes / Threads
⬜ Local architectural (CPU) state
⬜ Including registers / program counter
⬜ Shared heap for threads
⬜ Shared memory for processes

⬛ Communicate over global memory
⬜ Think globally shared variables

⬛ read and write atomic
⬜ only for machine word values 

(and pointers)
⬜ need other synchronization mechanisms

⬛ solution for mutual exclusion needed

Core 1

Memory

Thread 1
◼ PC
◼ SP
◼ Registers

Write Read

Core 2

Thread 2
◼ PC
◼ SP
◼ Registers

Write Read

Stack 1 Stack 2
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Data Race

⬛ Increment function incx just increments the global variable x (without locking)

⬛ The main function creates two threads running incx

⬛ Then waits for them to finish (joins with first thread t0 first, then with second t1)

⬛ If first thread finishes executing incx before second starts then there is no problem

⬛ Incrementing twice should always yield 2 as output

⬛ But there is a potential data race
1. First thread t0 reads value 0 of x into local register r0
2. Also increments its local copy in r0 to value 1
3. Second thread t1 reads old value 0 of x into its local register r1
4. Also increments its local copy in r1 to value 1
5. Now first thread t0 writes back r0 to the global variable x with value 1
6. Finally second thread t1 writes back r0 to the global variable x with value 1
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Detecting Potential Races: Eraser / Lock-Set Algorithm

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, Thomas E. Anderson:
Eraser: A Dynamic Data Race Detector for Multithreaded Programs. ACM Trans. Comput. Syst. 
15(4): 391-411 (1997)
⬛ Check for “locking discipline”

⬜ Shared access protected by at least one lock
⬜ Collect lock sets at read and write events
⬜ Check that intersection of lock sets non-empty

⬛ If a lock-set becomes empty
⬜ Produce improper locking warning (potential data race)
⬜ Even though the actual race might not have occurred

⬛ Initialization is tricky (phases)
⬜ Spurious warnings
⬜ Only some can suppressed automatically

⬛ For instance implemented in helgrind
⬛ Major problem is that it needs “sandboxing” (interpreting memory accesses)
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Detecting Potential Races: Tools

⬛ Testing with massif load (schedule steering)

⬛ Detection tools
⬜ Valgrind:

valgrind –tool=helgrind 
⬜ ThreadSanitizer:

gcc -fsanitize=thread

⬛ Code sanitizers (https://en.wikipedia.org/wiki/Code_sanitizer)
⬜ AddressSanitizer
⬜ LeakSanitizer
⬜ MemorySanitizer
⬜ UndefinedBehaviorSanitizer

https://en.wikipedia.org/wiki/Code_sanitizer


Parallel Computing - Shared Memory © 2025 JKU, Zoitl 25

Avoiding Data Races Through Locking / Mutual Exclusion

void * incx(void * dummy){

  lock();

  int tmp = x;

  tmp++;

  x = tmp;

  unlock();

  return 0;

}

⬛ Pthread offers Mutex  Slow ➙

⬛ How to implement locking?
⬜ Will first look at software only solutions
⬜ Hardware solutions much more efficient
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Mutual Exclusion with Deadlock

#include ...

pthread_t t0, t1;

int x;

int id [] = { 0 , 1 };

int flag [] = { 0 , 0 };

void lock ( int * p) {

  int me = *p;

  int other = !me;

  flag[me] = 1;

  while ( flag [ other ])

   ;

}

void unlock ( int * p ) {

  int me = * p ;

  flag[me] = 0;

}

void * incx(void * p){
  lock(p);
  x++;
  unlock(p);
  return 0;
}

int main (void) {
  pthread_create(&t0, 0, incx, &id[0]);
  pthread_create(&t1, 0, incx, &id[1]);
  pthread_join(t0, 0);
  pthread_join(t1, 0);
  printf("%d\n", x);
  return 0;
}
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Deadlock

⬛ Data race
⬜ Uncoordinated access to memory
⬜ Interleaved partial views
⬜ Inconsistent global state (incorrect)
⬜ “Always consistent” = safety property
⬜ Avoided by locking
⬜ Which in turn might slow-down application

⬛ Deadlock
⬜ Two threads wait for each other
⬜ Each one needs the other to “release its 

lock” to move on
⬜ “No deadlock” = liveliness property
⬜ Does not necessarily need sandboxing
⬜ Might be easier to debug
⬜ Might actually not be that bad (“have you 

tried turning it off and on again?”)
⬜ More fine-grained versions later

⬛ Debugging dead-lock
⬜ Tools allow to find locking cycles
⬜ Run your own cycle checker after wrapping 

lock / unlock
⬜ Attach debugger to deadlocked program
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Mutual Exclusion with Deadlock

#include ...
pthread_t t0, t1;
int x;
int id[] = { 0 , 1 };
int victim = 0;

void lock ( int * p ) {
  int me = * p ;
  victim = me ;
  while ( victim == me )
  ;
}

void unlock (int * p) {
}

⬛ Previous version
⬜ Flag to go first
⬜ Hope nobody else has the same idea at the 

same time
⬜ But check that and if this is not the case 

proceed
⬜ Deadlock under contention

⬛ This version
⬜ Even more passive / helpful
⬜ Always let the other go first
⬜ Tell everybody that you are waiting
⬜ Wait until somebody else waits too
⬜ Almost always deadlocks (without 

contention)
⬜ The Peterson algorithm combines both ideas
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Peterson Algorithm

void lock ( int * p ) {
  int me = *p;
  int other = ! me;
  flag[me] = 1;
  victim = me;
  //__sync_synchronize();
  while (flag[other] && 
         victim == me)
    ;
}
void unlock ( int * p ) {
  int me = * p;
  flag[me] = 0;
}

⬛ Actually broken on real modern hardware
⬜ Without the memory fence
⬜ Because read in other thread can be reordered 

before own write
(even for restricted x86 memory model)

⬛ expected:
⬜ 0: write(flag[0], 1)   1: write(flag[1], 1)
⬜ 0: write(victim, 0)    1: write(victim, 1)
⬜ 0: read(flag[1]) = 1   1: read(flag[0]) = 1

⬛ possible:
⬜ 0: read(flag[1]) = 0  1: read(flag[0]) = 0
⬜ 0: write(flag[0], 1)  1: write(flag[1], 1)
⬜ 0: write(victim, 0)   1: write(victim, 1)
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Mutual Exclusion Algorithms

⬛ Classical “software-only” algorithms
⬜ More of theoretical interest only now
⬜ Because memory model of multi-core machines weak (reorders reads and writes)
⬜ But would be on reorder-free hardware still not really efficient (in space and time)

⬛ Need hardware support anyhow
⬜ Various low-level (architecture) dependent primitives
⬜ Atomic increment, bit-set, compare-and-swap and memory fences
⬜ Better use platform-independent abstractions, such as pthreads

⬛ We will latter see how-those low-level primitives can be used
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Sequential Consistency

Leslie Lamport: How to Make a Multiprocessor Computer That Correctly Executes Multiprocess 
Programs. IEEE Trans. Computers 28(9): 690-691 (1979)

⬛ Systems with processors (cores) and memories (caches)
⬜ Think HW: processors and memories work in parallel
⬜ Processors read (fetch) values and write (store) computed values to memories
⬜ Common abstraction: consider each memory address as single memory module

⬛ (single) processor sequential iff programs (reads / writes) executed sequentially
⬜ Sequentially means without parallelism
⬜ Between memories and the single processor

⬛ Processors sequentially consistent iff
⬛ Every parallel execution of programs
⬛ Can be reordered into a sequential execution
⬛ such that sequential semantics of programs and memories are met

⬜ Sequential (single) program semantics: read / writes executed in program order
⬜ Sequential (single) memory semantics: read returns what was written (array axioms in essence)
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FIFO Read / Write Order

Projected to individual memory addresses tooGlobal FIFO read / write operation gives 
sequential consistency
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Store Buffer / Write Buffer

Hide write latency by collecting written data 
and continue serving read data 
(already in the cache or in the write buffer)
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Out-of-Order Write-to-Read

long a, b;

void * f (void * q) {
  a = 1;
  long c = a;
  long d = b;
  long u = c + d;
  return (void*)u;
}

void * g (void *p) {
  b = 1;
  long e = b;
  long f = a;
  long v = e + f;
  return (void*)v;
}

pthread_t s , t ;

int main () {

  pthread_create(&s, 0, f, 0);

  pthread_create(&t, 0, g, 0);

  long u, v;

  pthread_join(s, (void **) &u);

  pthread_join(t, (void **) &v);

  long m = u + v;

  printf("%ld\n", m);

  return 0;

}
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Out-of-Order Write-to-Read

long a, b;

long f () { a = 1; long tmp = a; return tmp + b; }

long g () { b = 1; long tmp = b; return tmp + a; }

void * f (void * q) {

  a = 1;                // fwa1 = f writes a value 1 to memory

  long c = a;           // frac = f reads  a value c from memory

  long d = b;           // frbd = f reads  b value d from memory

  long u = c + d;       // fadd = f adds   c and   d locally

  return (void*) u;

}

void * g (void * p) {

  b = 1;                // gwb1 = g writes b value 1 to memory

  long e = b;           // grbe = g reads  b value e from memory

  long f = a;           // graf = g reads  a value f from memory

  long v = e + f;       // gadd = g adds   e and   f locally

  return (void*) v;

}
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Common Sequentially Consistent Interleaved Scenario 
with Result 3

abcdefuvm  memory - fifo 
00-------  fwa1
00-------  fwa1 frac frbd
10-------  frac frbd
101------  frbd
1010-----  gwb1
1010-----  gwb1 grbe
1010-----  gwb1 grbe graf
1110-----  grbe graf
11101----  graf
111011---  fadd
111011---  fadd gadd
111011---  fadd gadd madd
1110111--  gadd madd
11101112-  madd
111011123

long a, b;

long f () { a = 1; long tmp = a; return tmp + b; }

long g () { b = 1; long tmp = b; return tmp + a; }

void * f (void * q) {

  a = 1;                // fwa1

  long c = a;           // frac

  long d = b;           // frbd

  long u = c + d;       // fadd

  return (void*) u;

}

void * g (void * p) {

  b = 1;                // gwb1

  long e = b;           // grbe

  long f = a;           // graf

  long v = e + f;       // gadd

  return (void*) v;

}
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Rare Sequentially Consistent Interleaved Scenario with 
Result 4

abcdefuvm  memory-fifo
00-------  fwa1
00-------  fwa1 gwb1
00-------  fwa1 gwb1 frac
00-------  fwa1 gwb1 frac grbe
00-------  fwa1 gwb1 frac grbe frbd
00-------  fwa1 gwb1 frac grbe frbd graf
10-------  gwb1 frac grbe frbd graf
11-------  frac grbe frbd graf
111------  grbe frbd graf
111-1----  frbd graf
11111----  graf
111111---  fadd
111111---  fadd gadd
111111---  fadd gadd madd
1111112--  gadd madd
11111122-  madd
111111224

long a, b;

long f () { a = 1; long tmp = a; return tmp + b; }

long g () { b = 1; long tmp = b; return tmp + a; }

void * f (void * q) {

  a = 1;                // fwa1

  long c = a;           // frac

  long d = b;           // frbd

  long u = c + d;       // fadd

  return (void*) u;

}

void * g (void * p) {

  b = 1;                // gwb1

  long e = b;           // grbe

  long f = a;           // graf

  long v = e + f;       // gadd

  return (void*) v;

}
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Less Frequent Sequentially Inconsistent Scenario with 
Result 2
long a, b;

long f () { a = 1; long tmp = a; return tmp + b; }

long g () { b = 1; long tmp = b; return tmp + a; }

void * f (void * q) {

  a = 1;                // fwa1

  long c = a;           // frac

  long d = b;           // frbd

  long u = c + d;       // fadd

  return (void*) u;

}

void * g (void * p) {

  b = 1;                // gwb1

  long e = b;           // grbe

  long f = a;           // graf

  long v = e + f;       // gadd

  return (void*) v;

}

abcdefuvm  memory-fifo
00-------  fwa1
00-------  fwa1 frac frbd
001------  fwa1 frbd        // frac 
ooo
0010-----  fwa1 gwb1
0110-----  fwa1
0110-----  fwa1 grbe
01101----  fwa1 graf
011010---  fwa1
111010---  fadd
111010---  fadd gadd
111010---  fadd gadd madd
1110101--  gadd madd
11101011-  madd
111010112
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No Sequentially Consistent Scenario with Result 2

long a, b;

long f () { a = 1; long tmp = a; return tmp + b; }

long g () { b = 1; long tmp = b; return tmp + a; }

void * f (void * q) {

  a = 1;                // fwa1

  long c = a;           // frac

  long d = b;           // frbd

  long u = c + d;       // fadd

  return (void*) u;

}

void * g (void * p) {

  b = 1;                // gwb1

  long e = b;           // grbe

  long f = a;           // graf

  long v = e + f;       // gadd

  return (void*) v;

}
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Linearizability

⬛ Consistency can be extended to method calls
⬜ Method calls take time during a time interval:

invocation to response
⬜ Example above with read / write on memory
⬜ Below with enqueue / dequeue on queue

⬛ Execution linearizable iff
⬜ There is a linearization point between 

invocation and response
⬜ Where the method appears to take effect 

instantaneously

⬛ At the linearization point the effect of a 
method becomes visible to other threads
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Locally Sequentially Consistent but Globally not 
(nor Linearizable)
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Progress Conditions: Wait-Free, Lock-Free

⬛ A total method is defined in any state, 
otherwise partial
⬜ like “dequeue” is partial and “enqueue” (in an 

unbounded queue) is total
⬜ same for “read” and “write”

⬛ Method is blocking iff response can not be 
computed immediately
⬜ common scenario in multi-processor systems

⬛ Linearizable computations can always be 
extended with pending responses of total 
messages
⬜ So in principle pending total method responses 

never have to be blocking
⬜ But it might be difficult to compute the actual 

response

⬛ Method m wait-free iff every invocation 
eventually leads to a response
⬜ In the strong liveness sense, e.g., within a finite 

number of steps
⬜ Or in LTL ∀m[G (m.invocation → F m.response)]

⬛ Method m lock-free iff infinitely often some 
method call finishes
⬜ So some threads might “starve”, but the overall 

system makes progress
⬜ Or in LTL (∃m[GFm.invocation]) → 

GF ∃m´[m´.response]

⬛ Every wait-free method is also lock-free
⬜ Wait-free provides stronger correctness 

guarantee
⬜ Usually minimizes “latency” and leads to less 

efficiency in terms of through put
⬜ Is harder to implement
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Compare-And-Swap (CAS)

// GCC’s builtin function for CAS
bool __sync_bool_compare_and_swap (type *ptr, type oldval, type newval);

// it atomically executes the following function
bool CAS ( type * address , type expected , type update ) {
  if (*address != expected) return false;
  *address = update;
  return true;
}

⬛ Considered the foundation of all atomic operations
⬜ Many modern architectures support CAS
⬜ Alternatives: load-linked / store-conditional (LL/SC)
⬜ See discussion of memory model for RISC-V too

⬛ Compiler uses CAS or LL/SC to implement other 
atomic operations
⬜ If processors does not support corresponding operations
⬜ Like atomic increment
⬜ C++11 atomics



Parallel Computing - Shared Memory © 2025 JKU, Zoitl 44

Treiber Stack

Treiber, R.K..
Systems programming: Coping with parallelism.
IBM, Thomas J. Watson Research Center, 1986.

⬛ Probably first lock-free data-structure

⬛ Implements a parallel stack

⬛ Suffers from ABA problem

⬛ See demo
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Others

⬛ Hazard pointers

⬛ False sharing

⬛ Queues (Michael & Scott Queue)

⬛ Relaxed data structures (k-stack)

⬛ Andreas Haas, Thomas Hütter, Christoph M. Kirsch, Michael Lippautz, Mario Preishuber, 
Ana Sokolova: Scal: A Benchmarking Suite for Concurrent Data Structures. NETYS 2015: 1-
14, http://scal.cs.uni-salzburg.at

⬛ Paul E. McKenney: Is Parallel Programming Hard, And, If So, What Can You Do About It? 
https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
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Thank you!

Univ.-Prof. Dr. Alois Zoitl, alois.zoitl@jku.at
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