
LIT | Cyber-Physical Systems Lab
Johannes Kepler University Linz

PARALLEL COMPUTING
Shared Memory

Univ.-Prof. Dr. Alois Zoitl

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 2

To whom honor is due....

These slides are based on a slide deck from

Prof. Dr. Armin Biere

from whom I took over this lecture.
He deserves thanks for his kind permission to use them.

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 3

Why Shared Memory?

⬛ Wide-spread availability of multi-core
⬜ in servers for more than 20 years
⬜ desktop for more than 15 years
⬜ GPU computing for more than 15 years
⬜ smart phones for more than 10 years

⬛ Power limits in CMOS technology
⬜ Around 2005 frequency scaling stopped
⬜ Moore’s law still continued to hold
⬜ More cores instead of higher frequency

Source: Chuck Moore, Data Processing in Exascale-Class
Computer Systems, 2011

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 4

Processes vs. Threads

⬛ Processes
⬜ Classical but more complicated
⬜ Fork / join paradigm
⬜ Communication over files / pipes
⬜ mmap (..., MAP_SHARED, ...)

⬛ Threads
⬜ “Known” programming model
⬜ Similar to sequential model
⬜ But with globally shared memory
⬜ Multiple processing units

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 5

Threads vs. Processes

⬛ Process can have multiple threads
⬛ Thread: lightweight process
⬛ Threads share

⬜ Address space
⬜ File descriptors
⬜ Sockets
⬜ ...

⬛ Per-thread
⬜ Stack,
⬜ Program counter
⬜ Registers: thread's context

⬛ Switching threads more efficient than
switching processes
➙ lightweight context

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 6

Benefits of Threading

⬛ Parallelism
⬜ Computing independent tasks at the same

time
⬛ speed-up (Amdahl's Law!)

⬜ Need multiprocessor HW for “true”
parallelism

⬜ Exploiting capabilities of modern multi-core
processors

⬛ Concurrency
⬜ Progress despite of blocking (overlapping)

operations
⬜ No multiprocessor HW needed
⬜ “Illusion” of parallelism

⬛ Analogy: multiple running processes in multi-
tasking operating systems

⬛ Threaded programming model
⬜ Shared-memory (no message passing)
⬜ Sequential program:

implicit, strong synchronization via ordering
of operations

⬜ Threaded program:
explicit code constructs for synchronizing
threads

⬜ Synchronization clearly designates
dependencies

⬜ Better understanding of “real” dependencies

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 7

Costs of Threading

⬛ Overhead
(Synchronization, Computation)
⬜ Directly:

More synchronization less parallelism,➙
higher costs

⬜ Indirectly:
⬛ Scheduling
⬛ Memory architecture (cache coherence)
⬛ Operating system
⬛ Calling C library
⬛ …

⬛ Programming discipline
⬜ “thinking in parallel”
⬜ Careful planning
⬜ Avoidance of

⬛ Deadlocks: circular waiting for resources
⬛ Races: threads' speed (scheduling) determines

outcome of operation

⬛ Debugging and Testing
⬜ Nondeterminism:

Timing of events depends on threads' speed
(scheduling)

⬜ Bugs difficult to reproduce
⬛ e.g. what thread is responsible for invalid

memory access?
⬜ Probe effect:

Adding debugging information can influence
behavior

⬜ How to test possible interleaving of threads?

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 8

When (not) to Use Threads?

⬛ Pro threads
⬜ Independent computations on

decomposable data
⬛ Example: arraysum

⬜ Frequently blocking operations
e.g. waiting for I/O requests

⬜ Server applications

⬛ Contra threads
⬜ Highly sequential programs:

every operation depends on the previous
one

⬜ Massive synchronization requirements

⬛ Challenges in Threaded Programming
(applies to parallel computation in general)
⬜ Amdahl's Law is optimistic

(ignores underlying HW, operating system,...)
⬜ Keeping the sequential part small:

less synchronization
⬜ Increasing the parallel part:

data decomposition

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 9

POSIX Threads (Pthreads) Basics

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 10

POSIX Threads

⬛ POSIX: Portable Operating System Interface
⬜ IEEE standards defining API of software for

UNIX-like operating systems

⬛ POSIX threads (Pthreads)
⬜ Standard approved 1995, amendments
⬜ Functions for

⬛ Creating threads
⬛ Synchronizing threads
⬛ Thread interaction

⬜ Opaque data types for
⬛ Thread identifiers
⬛ Synchronization constructs
⬛ Attributes
⬛ ... References:

D. R. Butenhof, Programming with POSIX Threads,
Addison-Wesley, 1997

http://opengroup.org/onlinepubs/007908799/xsh/pthread.h.html

⬛ Usage
⬜ Header file: pthread.h
⬜ Compilation:

gcc -pthread -o prog prog.c

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 11

(P)Threads in Linux

⬛ How can a thread-library be implemented?

⬛ Abstraction levels:
⬜ Threads: created by a user program
⬜ Kernel entity: “process”, scheduled by operating system
⬜ Processor: physical device, gets assigned kernel entities by scheduler

⬛ Design decision: How to map threads to kernel entities?
⬜ M-to-1:

⬛ All threads of process mapped to one kernel entity
⬛ Fast scheduling (in library), but no parallelism

⬜ M-to-N:
⬛ Threads of process mapped to different kernel entities
⬛ Two-level scheduling (library and kernel) incurs overhead, but allows parallelism

⬜ 1-to-1:
⬛ Each thread mapped to one kernel entity
⬛ Scheduling in kernel, less overhead than in M-to-N case, allows parallelism
⬛ Used in most modern Linux systems: Native POSIX Threads Library (NPTL)

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 12

Pthread Lifecycle: States

⬛ Ready
⬜ Able to run, waiting for processor

⬛ Running
⬜ On multiprocessor possibly more than one at a time

⬛ Blocked
⬜ Thread is waiting for a shared resource

⬛ Terminated
⬜ System resources partially released
⬜ But not yet fully cleaned up

⬛ Thread's own memory is obsolete
⬛ Can still return value

⬛ (Recycled)
⬜ All system resources fully cleaned up
⬜ Controlled by the operating system

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 13

Pthread Creation

⬛ int pthread_create(arg0, arg1, arg2, arg3)
⬜ arg0: pthread_t *tid_ptr

⬛ Where to store thread ID of type pthread_t
⬜ arg1: const pthread_att_t *attr

⬛ May set certain attributes at startup
⬛ Ignored for the moment: always pass NULL → set default attributes

⬜ arg2: void *(*start)(void *)
⬛ Pointer to thread's startup function
⬛ Takes exactly one void* as argument

⬜ arg3: void *arg
⬛ Actual parameter of thread's startup function

⬜ Returns zero on success, else error code

⬛ Thread ID is stored in *tid_ptr
⬜ pthread_t pthread_self() returns ID of current thread
⬜ int pthread_equal(pthread_t tid1, pthread_t tid2) compares IDs

⬛ Example: helloworld

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 14

Main-Thread

⬛ Process creates thread which executes main-function “main-thread”➙

⬛ Main-thread behaves slightly differently from ordinary threads:
⬜ Termination of main-thread by returning from main causes process to terminate

⬛ All threads of process terminate
⬛ Example: helloworld

⬜ Calling pthread_exit(...) in main-thread causes process to continue
⬛ All created threads continue
⬛ Recall lifecycle:

⭕ main-thread terminates resources partially released➙
⭕ Attention: stack may be released!

⬛ Memory errors: dereferencing pointers into main-thread's (released) stack
⬛ Example: helloworld_buggy

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 15

Pthread Termination

⬛ Generally: thread terminates if startup function returns
⬛ int pthread_exit(void *value_ptr)

⬜ Causes thread to terminate (special semantics in main-thread)
⬜ Implicitly called if thread's startup function returns (except in main-thread)
⬜ value_ptr is the thread's return value (see pthread_join(...))

⬛ int pthread_detach(pthread_t tid)
⬜ Resources of tid can be reclaimed after tid has terminated
⬜ Default: not detached
⬜ Any thread can detach any thread (including itself)

⬛ int pthread_join(pthread_t tid, void **value)
⬜ Returns when tid has terminated (or already terminated), caller blocks
⬜ Optionally stores tid's return value in *value

⬛ Return value from calling pthread_exit(...) or returning from startup function
⬜ Joined thread will be implicitly detached
⬜ Detached threads can not be joined

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 16

Pthread Termination - Examples

⬛ Example: helloworld_join

⬛ Returning values from threads
⬜ Returning values from threads via pthread_join(...)

⬛ Example: returnval
⬛ But: waiting for termination often not needed
⬛ Good practice to release system resources as early as possible

⬜ Alternative to pthread_join(...): custom return mechanism
⬛ Threads store their return values on the heap
⬛ Example: returnval_heap

⭕ Problem: need to notify main-thread somehow that all threads have written results
⬜ Error: joining a detached thread

⬛ resources are (may be or not) already released
⬛ join should fail
⬛ Example: returnval_buggy

⬜ Error: returning pointer to local variable
⬛ Example: returnval_buggy

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 17

Pthread Lifecycle Revisited (1/2)

⬛ Creation
⬜ Process creation main-thread creation➙
⬜ pthread_create(...): new threads are ready

⬛ No synchronization between pthread_create(...) and new thread's execution

⬛ Startup
⬜ Main-thread's main function called after process creation
⬜ Newly created threads execute startup function

⬛ Running
⬜ Ready threads are eligible to acquire processor will be running➙
⬜ Scheduler assigns time-slice to ready thread threads will be preempted➙
⬜ Switching threads context (registers, stack, pc) must be saved➙

⬛ Blocking
⬜ Running threads may block, e.g. to wait for shared resource
⬜ Blocking threads become ready (not running) again

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 18

Pthread Lifecycle Revisited (2/2)

⬛ Termination
⬜ Generally: when thread returns from startup function
⬜ pthread_exit
⬜ Can also explicitly be canceled by pthread_cancel(...)
⬜ Optional cleanup handlers are called
⬜ Only thread's ID and return value remain valid, other resources might be released
⬜ Terminated threads can still be joined or detached
⬜ Joined threads will be implicitly detached, i.e. all its system resources will be released

⬛ Recycling
⬜ Occurs immediately for terminated, detached threads all resources released➙

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 19

Creating and Using Threads: Pitfalls

⬛ Sharing pointers into stack memory of threads
⬜ Perfectly alright, but handle with care

⬛ Passing arguments
⬛ returning values

⬛ Resources of terminated, non-detached threads can not fully be released
⬜ Large number of threads performance problems?➙
⬜ Should join or detach threads

⬛ Relying on the speed/order of individual threads
⬜ Do not make any assumptions!
⬜ Need mechanism to notify threads that certain conditions are true

⬛ Example: returnval_heap
⬜ Must prevent threads from modifying shared data concurrently

⬛ Example: sum

⬛ Synchronization➙

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 20

Shared Memory Programming

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 21

Shared Memory Programming Model

⬛ Programs / Processes / Threads
⬜ Local architectural (CPU) state
⬜ Including registers / program counter
⬜ Shared heap for threads
⬜ Shared memory for processes

⬛ Communicate over global memory
⬜ Think globally shared variables

⬛ read and write atomic
⬜ only for machine word values

(and pointers)
⬜ need other synchronization mechanisms

⬛ solution for mutual exclusion needed

Core 1

Memory

Thread 1
◼ PC
◼ SP
◼ Registers

Write Read

Core 2

Thread 2
◼ PC
◼ SP
◼ Registers

Write Read

Stack 1 Stack 2

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 22

Data Race

⬛ Increment function incx just increments the global variable x (without locking)

⬛ The main function creates two threads running incx

⬛ Then waits for them to finish (joins with first thread t0 first, then with second t1)

⬛ If first thread finishes executing incx before second starts then there is no problem

⬛ Incrementing twice should always yield 2 as output

⬛ But there is a potential data race
1. First thread t0 reads value 0 of x into local register r0
2. Also increments its local copy in r0 to value 1
3. Second thread t1 reads old value 0 of x into its local register r1
4. Also increments its local copy in r1 to value 1
5. Now first thread t0 writes back r0 to the global variable x with value 1
6. Finally second thread t1 writes back r0 to the global variable x with value 1

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 23

Detecting Potential Races: Eraser / Lock-Set Algorithm

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, Thomas E. Anderson:
Eraser: A Dynamic Data Race Detector for Multithreaded Programs. ACM Trans. Comput. Syst.
15(4): 391-411 (1997)
⬛ Check for “locking discipline”

⬜ Shared access protected by at least one lock
⬜ Collect lock sets at read and write events
⬜ Check that intersection of lock sets non-empty

⬛ If a lock-set becomes empty
⬜ Produce improper locking warning (potential data race)
⬜ Even though the actual race might not have occurred

⬛ Initialization is tricky (phases)
⬜ Spurious warnings
⬜ Only some can suppressed automatically

⬛ For instance implemented in helgrind
⬛ Major problem is that it needs “sandboxing” (interpreting memory accesses)

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 24

Detecting Potential Races: Tools

⬛ Testing with massif load (schedule steering)

⬛ Detection tools
⬜ Valgrind:

valgrind –tool=helgrind
⬜ ThreadSanitizer:

gcc -fsanitize=thread

⬛ Code sanitizers (https://en.wikipedia.org/wiki/Code_sanitizer)
⬜ AddressSanitizer
⬜ LeakSanitizer
⬜ MemorySanitizer
⬜ UndefinedBehaviorSanitizer

https://en.wikipedia.org/wiki/Code_sanitizer

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 25

Avoiding Data Races Through Locking / Mutual Exclusion

void * incx(void * dummy){

 lock();

 int tmp = x;

 tmp++;

 x = tmp;

 unlock();

 return 0;

}

⬛ Pthread offers Mutex Slow ➙

⬛ How to implement locking?
⬜ Will first look at software only solutions
⬜ Hardware solutions much more efficient

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 26

Mutual Exclusion with Deadlock

#include ...

pthread_t t0, t1;

int x;

int id [] = { 0 , 1 };

int flag [] = { 0 , 0 };

void lock (int * p) {

 int me = *p;

 int other = !me;

 flag[me] = 1;

 while (flag [other])

 ;

}

void unlock (int * p) {

 int me = * p ;

 flag[me] = 0;

}

void * incx(void * p){
 lock(p);
 x++;
 unlock(p);
 return 0;
}

int main (void) {
 pthread_create(&t0, 0, incx, &id[0]);
 pthread_create(&t1, 0, incx, &id[1]);
 pthread_join(t0, 0);
 pthread_join(t1, 0);
 printf("%d\n", x);
 return 0;
}

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 27

Deadlock

⬛ Data race
⬜ Uncoordinated access to memory
⬜ Interleaved partial views
⬜ Inconsistent global state (incorrect)
⬜ “Always consistent” = safety property
⬜ Avoided by locking
⬜ Which in turn might slow-down application

⬛ Deadlock
⬜ Two threads wait for each other
⬜ Each one needs the other to “release its

lock” to move on
⬜ “No deadlock” = liveliness property
⬜ Does not necessarily need sandboxing
⬜ Might be easier to debug
⬜ Might actually not be that bad (“have you

tried turning it off and on again?”)
⬜ More fine-grained versions later

⬛ Debugging dead-lock
⬜ Tools allow to find locking cycles
⬜ Run your own cycle checker after wrapping

lock / unlock
⬜ Attach debugger to deadlocked program

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 28

Mutual Exclusion with Deadlock

#include ...
pthread_t t0, t1;
int x;
int id[] = { 0 , 1 };
int victim = 0;

void lock (int * p) {
 int me = * p ;
 victim = me ;
 while (victim == me)
 ;
}

void unlock (int * p) {
}

⬛ Previous version
⬜ Flag to go first
⬜ Hope nobody else has the same idea at the

same time
⬜ But check that and if this is not the case

proceed
⬜ Deadlock under contention

⬛ This version
⬜ Even more passive / helpful
⬜ Always let the other go first
⬜ Tell everybody that you are waiting
⬜ Wait until somebody else waits too
⬜ Almost always deadlocks (without

contention)
⬜ The Peterson algorithm combines both ideas

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 29

Peterson Algorithm

void lock (int * p) {
 int me = *p;
 int other = ! me;
 flag[me] = 1;
 victim = me;
 //__sync_synchronize();
 while (flag[other] &&
 victim == me)
 ;
}
void unlock (int * p) {
 int me = * p;
 flag[me] = 0;
}

⬛ Actually broken on real modern hardware
⬜ Without the memory fence
⬜ Because read in other thread can be reordered

before own write
(even for restricted x86 memory model)

⬛ expected:
⬜ 0: write(flag[0], 1) 1: write(flag[1], 1)
⬜ 0: write(victim, 0) 1: write(victim, 1)
⬜ 0: read(flag[1]) = 1 1: read(flag[0]) = 1

⬛ possible:
⬜ 0: read(flag[1]) = 0 1: read(flag[0]) = 0
⬜ 0: write(flag[0], 1) 1: write(flag[1], 1)
⬜ 0: write(victim, 0) 1: write(victim, 1)

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 30

Mutual Exclusion Algorithms

⬛ Classical “software-only” algorithms
⬜ More of theoretical interest only now
⬜ Because memory model of multi-core machines weak (reorders reads and writes)
⬜ But would be on reorder-free hardware still not really efficient (in space and time)

⬛ Need hardware support anyhow
⬜ Various low-level (architecture) dependent primitives
⬜ Atomic increment, bit-set, compare-and-swap and memory fences
⬜ Better use platform-independent abstractions, such as pthreads

⬛ We will latter see how-those low-level primitives can be used

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 31

Sequential Consistency

Leslie Lamport: How to Make a Multiprocessor Computer That Correctly Executes Multiprocess
Programs. IEEE Trans. Computers 28(9): 690-691 (1979)

⬛ Systems with processors (cores) and memories (caches)
⬜ Think HW: processors and memories work in parallel
⬜ Processors read (fetch) values and write (store) computed values to memories
⬜ Common abstraction: consider each memory address as single memory module

⬛ (single) processor sequential iff programs (reads / writes) executed sequentially
⬜ Sequentially means without parallelism
⬜ Between memories and the single processor

⬛ Processors sequentially consistent iff
⬛ Every parallel execution of programs
⬛ Can be reordered into a sequential execution
⬛ such that sequential semantics of programs and memories are met

⬜ Sequential (single) program semantics: read / writes executed in program order
⬜ Sequential (single) memory semantics: read returns what was written (array axioms in essence)

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 32

FIFO Read / Write Order

Projected to individual memory addresses tooGlobal FIFO read / write operation gives
sequential consistency

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 33

Store Buffer / Write Buffer

Hide write latency by collecting written data
and continue serving read data
(already in the cache or in the write buffer)

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 34

Out-of-Order Write-to-Read

long a, b;

void * f (void * q) {
 a = 1;
 long c = a;
 long d = b;
 long u = c + d;
 return (void*)u;
}

void * g (void *p) {
 b = 1;
 long e = b;
 long f = a;
 long v = e + f;
 return (void*)v;
}

pthread_t s , t ;

int main () {

 pthread_create(&s, 0, f, 0);

 pthread_create(&t, 0, g, 0);

 long u, v;

 pthread_join(s, (void **) &u);

 pthread_join(t, (void **) &v);

 long m = u + v;

 printf("%ld\n", m);

 return 0;

}

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 35

Out-of-Order Write-to-Read

long a, b;

long f () { a = 1; long tmp = a; return tmp + b; }

long g () { b = 1; long tmp = b; return tmp + a; }

void * f (void * q) {

 a = 1; // fwa1 = f writes a value 1 to memory

 long c = a; // frac = f reads a value c from memory

 long d = b; // frbd = f reads b value d from memory

 long u = c + d; // fadd = f adds c and d locally

 return (void*) u;

}

void * g (void * p) {

 b = 1; // gwb1 = g writes b value 1 to memory

 long e = b; // grbe = g reads b value e from memory

 long f = a; // graf = g reads a value f from memory

 long v = e + f; // gadd = g adds e and f locally

 return (void*) v;

}

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 36

Common Sequentially Consistent Interleaved Scenario
with Result 3

abcdefuvm memory - fifo
00------- fwa1
00------- fwa1 frac frbd
10------- frac frbd
101------ frbd
1010----- gwb1
1010----- gwb1 grbe
1010----- gwb1 grbe graf
1110----- grbe graf
11101---- graf
111011--- fadd
111011--- fadd gadd
111011--- fadd gadd madd
1110111-- gadd madd
11101112- madd
111011123

long a, b;

long f () { a = 1; long tmp = a; return tmp + b; }

long g () { b = 1; long tmp = b; return tmp + a; }

void * f (void * q) {

 a = 1; // fwa1

 long c = a; // frac

 long d = b; // frbd

 long u = c + d; // fadd

 return (void*) u;

}

void * g (void * p) {

 b = 1; // gwb1

 long e = b; // grbe

 long f = a; // graf

 long v = e + f; // gadd

 return (void*) v;

}

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 37

Rare Sequentially Consistent Interleaved Scenario with
Result 4

abcdefuvm memory-fifo
00------- fwa1
00------- fwa1 gwb1
00------- fwa1 gwb1 frac
00------- fwa1 gwb1 frac grbe
00------- fwa1 gwb1 frac grbe frbd
00------- fwa1 gwb1 frac grbe frbd graf
10------- gwb1 frac grbe frbd graf
11------- frac grbe frbd graf
111------ grbe frbd graf
111-1---- frbd graf
11111---- graf
111111--- fadd
111111--- fadd gadd
111111--- fadd gadd madd
1111112-- gadd madd
11111122- madd
111111224

long a, b;

long f () { a = 1; long tmp = a; return tmp + b; }

long g () { b = 1; long tmp = b; return tmp + a; }

void * f (void * q) {

 a = 1; // fwa1

 long c = a; // frac

 long d = b; // frbd

 long u = c + d; // fadd

 return (void*) u;

}

void * g (void * p) {

 b = 1; // gwb1

 long e = b; // grbe

 long f = a; // graf

 long v = e + f; // gadd

 return (void*) v;

}

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 38

Less Frequent Sequentially Inconsistent Scenario with
Result 2
long a, b;

long f () { a = 1; long tmp = a; return tmp + b; }

long g () { b = 1; long tmp = b; return tmp + a; }

void * f (void * q) {

 a = 1; // fwa1

 long c = a; // frac

 long d = b; // frbd

 long u = c + d; // fadd

 return (void*) u;

}

void * g (void * p) {

 b = 1; // gwb1

 long e = b; // grbe

 long f = a; // graf

 long v = e + f; // gadd

 return (void*) v;

}

abcdefuvm memory-fifo
00------- fwa1
00------- fwa1 frac frbd
001------ fwa1 frbd // frac
ooo
0010----- fwa1 gwb1
0110----- fwa1
0110----- fwa1 grbe
01101---- fwa1 graf
011010--- fwa1
111010--- fadd
111010--- fadd gadd
111010--- fadd gadd madd
1110101-- gadd madd
11101011- madd
111010112

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 39

No Sequentially Consistent Scenario with Result 2

long a, b;

long f () { a = 1; long tmp = a; return tmp + b; }

long g () { b = 1; long tmp = b; return tmp + a; }

void * f (void * q) {

 a = 1; // fwa1

 long c = a; // frac

 long d = b; // frbd

 long u = c + d; // fadd

 return (void*) u;

}

void * g (void * p) {

 b = 1; // gwb1

 long e = b; // grbe

 long f = a; // graf

 long v = e + f; // gadd

 return (void*) v;

}

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 40

Linearizability

⬛ Consistency can be extended to method calls
⬜ Method calls take time during a time interval:

invocation to response
⬜ Example above with read / write on memory
⬜ Below with enqueue / dequeue on queue

⬛ Execution linearizable iff
⬜ There is a linearization point between

invocation and response
⬜ Where the method appears to take effect

instantaneously

⬛ At the linearization point the effect of a
method becomes visible to other threads

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 41

Locally Sequentially Consistent but Globally not
(nor Linearizable)

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 42

Progress Conditions: Wait-Free, Lock-Free

⬛ A total method is defined in any state,
otherwise partial
⬜ like “dequeue” is partial and “enqueue” (in an

unbounded queue) is total
⬜ same for “read” and “write”

⬛ Method is blocking iff response can not be
computed immediately
⬜ common scenario in multi-processor systems

⬛ Linearizable computations can always be
extended with pending responses of total
messages
⬜ So in principle pending total method responses

never have to be blocking
⬜ But it might be difficult to compute the actual

response

⬛ Method m wait-free iff every invocation
eventually leads to a response
⬜ In the strong liveness sense, e.g., within a finite

number of steps
⬜ Or in LTL ∀m[G (m.invocation → F m.response)]

⬛ Method m lock-free iff infinitely often some
method call finishes
⬜ So some threads might “starve”, but the overall

system makes progress
⬜ Or in LTL (∃m[GFm.invocation]) →

GF ∃m´[m´.response]

⬛ Every wait-free method is also lock-free
⬜ Wait-free provides stronger correctness

guarantee
⬜ Usually minimizes “latency” and leads to less

efficiency in terms of through put
⬜ Is harder to implement

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 43

Compare-And-Swap (CAS)

// GCC’s builtin function for CAS
bool __sync_bool_compare_and_swap (type *ptr, type oldval, type newval);

// it atomically executes the following function
bool CAS (type * address , type expected , type update) {
 if (*address != expected) return false;
 *address = update;
 return true;
}

⬛ Considered the foundation of all atomic operations
⬜ Many modern architectures support CAS
⬜ Alternatives: load-linked / store-conditional (LL/SC)
⬜ See discussion of memory model for RISC-V too

⬛ Compiler uses CAS or LL/SC to implement other
atomic operations
⬜ If processors does not support corresponding operations
⬜ Like atomic increment
⬜ C++11 atomics

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 44

Treiber Stack

Treiber, R.K..
Systems programming: Coping with parallelism.
IBM, Thomas J. Watson Research Center, 1986.

⬛ Probably first lock-free data-structure

⬛ Implements a parallel stack

⬛ Suffers from ABA problem

⬛ See demo

Parallel Computing - Shared Memory © 2025 JKU, Zoitl 45

Others

⬛ Hazard pointers

⬛ False sharing

⬛ Queues (Michael & Scott Queue)

⬛ Relaxed data structures (k-stack)

⬛ Andreas Haas, Thomas Hütter, Christoph M. Kirsch, Michael Lippautz, Mario Preishuber,
Ana Sokolova: Scal: A Benchmarking Suite for Concurrent Data Structures. NETYS 2015: 1-
14, http://scal.cs.uni-salzburg.at

⬛ Paul E. McKenney: Is Parallel Programming Hard, And, If So, What Can You Do About It?
https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

LIT | Cyber-Physical Systems Lab
Johannes Kepler University Linz

Thank you!

Univ.-Prof. Dr. Alois Zoitl, alois.zoitl@jku.at

	LIT CPS Lab
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

