

# PARALLEL COMPUTING Shared Memory



Univ.-Prof. Dr. Alois Zoitl LIT | Cyber-Physical Systems Lab Johannes Kepler University Linz



### To whom honor is due....

These slides are based on a slide deck from

#### **Prof. Dr. Armin Biere**

from whom I took over this lecture. He deserves thanks for his kind permission to use them.



## **Why Shared Memory?**

- Wide-spread availability of multi-core
  in servers for more than 20 years
  desktop for more than 15 years
  GPU computing for more than 15 years
  smart phones for more than 10 years
- Power limits in CMOS technology
   Around 2005 frequency scaling stopped
   Moore's law still continued to hold
   More cores instead of higher frequency



Source: Chuck Moore, Data Processing in Exascale-Class Computer Systems, 2011

#### **Processes vs. Threads**

#### **Processes**

- □ Classical but more complicated
- □ Fork / join paradigm
- $\Box$  Communication over files / pipes
- $\Box$  mmap (..., MAP\_SHARED, ...)

#### Threads

- □ "Known" programming model
- □ Similar to sequential model
- □ But with globally shared memory
- □ Multiple processing units



### **Threads vs. Processes**



**Attributes Registers** TO Stack T0 PID Stack T1 ESP **PPID** ... EIP UID Stack Tn ••• GID PRI Unmapped **Registers** T1 NICE Memory ESP TTY EIP 1 1 ... 1 1 Heap 1 1 1 1 Resources 11 BSS 1.1 **Registers** Tn Files 11 1 1 Data Locks ESP 1 1 Sockets EIP Code •••

## **Benefits of Threading**

#### Parallelism

- Computing independent tasks at the same time
  - speed-up (Amdahl's Law!)
- Need multiprocessor HW for "true" parallelism
- Exploiting capabilities of modern multi-core processors

#### Concurrency

- Progress despite of blocking (overlapping) operations
- No multiprocessor HW needed
- $\Box$  "Illusion" of parallelism
  - Analogy: multiple running processes in multitasking operating systems

- Threaded programming model
  - □ Shared-memory (no message passing)
  - $\Box$  Sequential program:
    - implicit, strong synchronization via ordering of operations
  - $\hfill\square$  Threaded program:
    - explicit code constructs for synchronizing threads
  - Synchronization clearly designates dependencies
  - □ Better understanding of "real" dependencies

## Costs of Threading

Overhead (Synchronization, Computation)  $\Box$  Directly: More synchronization  $\rightarrow$  less parallelism, higher costs Indirectly: Scheduling Memory architecture (cache coherence) **Operating system** Calling C library Programming discipline

- "thinking in parallel"
- Careful planning

Avoidance of

Deadlocks: circular waiting for resources

LINZ INSTITUTE CYBER-PHYSIC OF TECHNOLOGY SYSTEMS LAB

Races: threads' speed (scheduling) determines outcome of operation

**CYBER-PHYSICAL** 

#### Debugging and Testing

Nondeterminism:

Timing of events depends on threads' speed (scheduling)

- □ Bugs difficult to reproduce
  - e.g. what thread is responsible for invalid memory access?

#### □ Probe effect:

Adding debugging information can influence behavior

 $\Box$  How to test possible interleaving of threads?

## When (not) to Use Threads?

#### Pro threads

 $\hfill\square$  Independent computations on

- decomposable data
- Example: arraysum
- Frequently blocking operations e.g. waiting for I/O requests
- □ Server applications
- Contra threads
  - □ Highly **sequential** programs:

every operation depends on the previous one

 $\Box$  Massive synchronization requirements

- Challenges in Threaded Programming (applies to parallel computation in general)
   Amdahl's Law is optimistic (ignores underlying HW, operating system,...)
  - Keeping the sequential part small: less synchronization
  - Increasing the parallel part: data decomposition

# **POSIX Threads (Pthreads) Basics**







Parallel Computing - Shared Memory

## **POSIX** Threads

POSIX: Portable Operating System Interface

- IEEE standards defining API of software for UNIX-like operating systems
- POSIX threads (Pthreads)
  - $\Box$  Standard approved 1995, amendments
  - $\Box$  Functions for
    - Creating threads
    - Synchronizing threads
    - Thread interaction
  - $\hfill\square$  Opaque data types for
    - Thread identifiers
    - Synchronization constructs
    - Attributes
    - ...

#### Usage

- □ Header file: pthread.h
- $\Box$  Compilation:
  - gcc -pthread -o prog prog.c

References: D. R. Butenhof, Programming with POSIX Threads, Addison-Wesley, 1997 http://opengroup.org/onlinepubs/007908799/xsh/pthread.h.html

## (P)Threads in Linux

How can a thread-library be implemented?

#### Abstraction levels:

- $\hfill\square$  Threads: created by a user program
- $\hfill\square$  Kernel entity: "process", scheduled by operating system
- $\hfill\square$  Processor: physical device, gets assigned kernel entities by scheduler
- Design decision: How to map threads to kernel entities?

□ M-to-1:

- All threads of process mapped to one kernel entity
- Fast scheduling (in library), but no parallelism

□ M-to-N:

- Threads of process mapped to different kernel entities
- Two-level scheduling (library and kernel) incurs overhead, but allows parallelism

□ 1-to-1:

- Each thread mapped to one kernel entity
- Scheduling in kernel, less overhead than in M-to-N case, allows parallelism
- Used in most modern Linux systems: Native POSIX Threads Library (NPTL)

## **Pthread Lifecycle: States**

#### Ready

 $\Box$  Able to run, waiting for processor

Running

On multiprocessor possibly more than one at a time

- Blocked
  - Thread is waiting for a shared resource

#### Terminated

- □ System resources partially released
- But not yet fully cleaned up
  - Thread's own memory is obsolete
  - Can still return value
- (Recycled)
  - All system resources fully cleaned up

**CYBER-PHYSICAL** 

Controlled by the operating system

LINZ INSTITUTE CYBER-PHYSIC OF TECHNOLOGY SYSTEMS LAB



## **Pthread Creation**

■ int pthread\_create(arg0, arg1, arg2, arg3) □ arg0: pthread\_t \*tid\_ptr ■ Where to store thread ID of type pthread\_t □ arg1: const pthread\_att\_t \*attr May set certain attributes at startup Ignored for the moment: always pass NULL  $\rightarrow$  set default attributes  $\sqcap$  arg2: void \*(\*start)(void \*) Pointer to thread's startup function Takes exactly one void\* as argument □ arg3: void \*arg Actual parameter of thread's startup function □ Returns zero on success, else error code Thread ID is stored in \*tid ptr □ pthread\_t pthread\_self() returns ID of current thread  $\Box$  int pthread\_equal(pthread\_t tid1, pthread\_t tid2) compares IDs

Example: helloworld

## **Main-Thread**

Process creates thread which executes main-function  $\rightarrow$  "main-thread"

- Main-thread behaves slightly differently from ordinary threads:
  - □ Termination of main-thread by returning from main causes process to terminate
    - All threads of process terminate
    - Example: helloworld
  - □ Calling pthread\_exit(...) in main-thread causes process to continue
    - All created threads continue
    - Recall lifecycle:
      - O main-thread terminates  $\rightarrow$  resources partially released
      - O Attention: stack may be released!
    - Memory errors: dereferencing pointers into main-thread's (released) stack
    - Example: helloworld\_buggy

## **Pthread Termination**

**Generally:** thread terminates if startup function returns int pthread\_exit(void \*value\_ptr) □ Causes thread to terminate (special semantics in main-thread) □ Implicitly called if thread's startup function returns (except in main-thread) □ value\_ptr is the thread's return value (see pthread\_join(...)) int pthread\_detach(pthread\_t tid) □ Resources of tid can be reclaimed after tid has terminated Default: not detached  $\Box$  Any thread can detach any thread (including itself) ■ int pthread\_join(pthread\_t tid, void \*\*value) □ Returns when tid has terminated (or already terminated), caller blocks □ Optionally stores tid's return value in \*value Return value from calling pthread\_exit(...) or returning from startup function  $\Box$  Joined thread will be implicitly detached  $\Box$  Detached threads can not be joined

## **Pthread Termination - Examples**

#### Example: helloworld\_join

- Returning values from threads
  - □ Returning values from threads via pthread\_join(...)
    - Example: returnval
    - **But:** waiting for termination often not needed
    - Good practice to release system resources as early as possible
  - □ Alternative to pthread\_join(...): custom return mechanism
    - Threads store their return values on the heap
    - Example: returnval\_heap
      - O Problem: need to notify main-thread somehow that all threads have written results
  - □ **Error**: joining a detached thread
    - resources are (may be or not) already released
    - join should fail
    - Example: returnval\_buggy
  - Error: returning pointer to local variable
    - Example: returnval\_buggy

## Pthread Lifecycle Revisited (1/2)

#### **Creation**

- $\Box$  Process creation  $\rightarrow$  main-thread creation
- □ pthread\_create(...): new threads are ready
  - No synchronization between pthread\_create(...) and new thread's execution

#### Startup

- □ Main-thread's main function called after process creation
- $\Box$  Newly created threads execute startup function

#### Running

- $\Box$  Ready threads are eligible to acquire processor  $\rightarrow$  will be running
- $\Box$  Scheduler assigns time-slice to ready thread  $\rightarrow$  threads will be preempted
- $\Box$  Switching threads  $\rightarrow$  context (registers, stack, pc) must be saved

#### Blocking

- $\Box$  Running threads may block, e.g. to wait for shared resource
- $\Box$  Blocking threads become ready (not running) again

## **Pthread Lifecycle Revisited (2/2)**

#### Termination

- $\Box$  Generally: when thread returns from startup function
- pthread\_exit
- $\Box$  Can also explicitly be canceled by pthread\_cancel(...)
- $\Box$  Optional cleanup handlers are called
- □ Only thread's ID and return value remain valid, other resources might be released
- □ Terminated threads can still be joined or detached
- $\Box$  Joined threads will be implicitly detached, i.e. all its system resources will be released

#### Recycling

 $\Box$  Occurs immediately for terminated, detached threads  $\rightarrow$  all resources released

## **Creating and Using Threads: Pitfalls**

Sharing pointers into stack memory of threads

- $\Box$  Perfectly alright, but handle with care
  - Passing arguments
  - returning values

Resources of terminated, non-detached threads can not fully be released

 $\Box$  Large number of threads  $\rightarrow$  performance problems?

- $\Box$  Should join or detach threads
- Relying on the speed/order of individual threads

CYBER-PHYSICAL

- □ Do not make any assumptions!
- Need mechanism to notify threads that certain conditions are true
  - Example: returnval heap

LINZ INSTITUTE CYBER-PHYSIC OF TECHNOLOGY SYSTEMS LAB

- Must prevent threads from modifying shared data concurrently
  - Example: sum

#### $I \rightarrow$ Synchronization

# **Shared Memory Programming**







Parallel Computing - Shared Memory

## Shared Memory Programming Model



**CYBER-PHYSICAL** 

LINZ INSTITUTE CYBER-PHYSIC OF TECHNOLOGY SYSTEMS LAB

Programs / Processes / Threads □ Local architectural (CPU) state Including registers / program counter Shared heap for threads Shared memory for processes Communicate over **global** memory  $\Box$  Think globally shared variables read and write atomic only for machine word values (and pointers) need other synchronization mechanisms solution for mutual exclusion needed

#### **Data Race**

- Increment function incx just increments the global variable x (without locking)
- The main function creates two threads running incx
- Then waits for them to finish (joins with first thread to first, then with second t1)
- If first thread finishes executing incx before second starts then there is no problem
- Incrementing twice should always yield 2 as output
- But there is a potential data race
  - 1. First thread t0 reads value 0 of x into local register r0
  - 2. Also increments its local copy in r0 to value 1
  - 3. Second thread t1 reads old value 0 of x into its local register r1
  - 4. Also increments its local copy in r1 to value 1
  - 5. Now first thread to writes back r0 to the global variable x with value 1
  - 6. Finally second thread t1 writes back r0 to the global variable x with value 1

## **Detecting Potential Races: Eraser / Lock-Set Algorithm**

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, Thomas E. Anderson: Eraser: A Dynamic Data Race Detector for Multithreaded Programs. ACM Trans. Comput. Syst. 15(4): 391-411 (1997)

- Check for "locking discipline"
  - □ Shared access protected by at least one lock
  - Collect lock sets at read and write events
  - $\Box$  Check that intersection of lock sets non-empty
- If a lock-set becomes empty
  - □ Produce improper locking warning (potential data race)
  - $\hfill\square$  Even though the actual race might not have occurred
- Initialization is tricky (phases)
  - □ Spurious warnings
  - □ Only some can suppressed automatically
- For instance implemented in helgrind
- Major problem is that it needs "sandboxing" (interpreting memory accesses)

## **Detecting Potential Races: Tools**

Testing with massif load (schedule steering)

#### Detection tools

#### $\Box$ Valgrind:

valgrind -tool=helgrind

□ ThreadSanitizer:

gcc -fsanitize=thread

Code sanitizers (https://en.wikipedia.org/wiki/Code\_sanitizer)

- $\Box$  AddressSanitizer
- $\Box$  LeakSanitizer
- □ MemorySanitizer
- □ UndefinedBehaviorSanitizer

## **Avoiding Data Races Through Locking / Mutual Exclusion**

```
void * incx(void * dummy){
    lock();
    int tmp = x;
    tmp++;
    x = tmp;
    unlock();
    return 0;
}
```

Pthread offers Mutex  $\rightarrow$  Slow

How to implement locking?

- $\Box$  Will first look at software only solutions
- □ Hardware solutions much more efficient

## **Mutual Exclusion with Deadlock**

```
#include ...
pthread_t t0, t1;
int x;
int id [] = \{ 0, 1 \};
int flag [] = { 0 , 0 };
void lock ( int * p) {
 int me = *p;
 int other = !me;
 flag[me] = 1;
 while ( flag [ other ])
  ;
}
void unlock ( int * p ) {
 int me = * p;
 flag[me] = 0;
}
```

```
void * incx(void * p){
   lock(p);
   x++;
   unlock(p);
   return 0;
}
```

```
int main (void) {
    pthread_create(&t0, 0, incx, &id[0]);
    pthread_create(&t1, 0, incx, &id[1]);
    pthread_join(t0, 0);
    pthread_join(t1, 0);
    printf("%d\n", x);
    return 0;
```

## Deadlock

#### Data race

- Uncoordinated access to memory
- $\Box$  Interleaved partial views
- $\Box$  Inconsistent global state (incorrect)
- $\Box$  "Always consistent" = safety property
- □ Avoided by locking
- $\Box$  Which in turn might slow-down application

#### Deadlock

- Two threads wait for each other
- □ Each one needs the other to "release its lock" to move on
- □ "No deadlock" = liveliness property
- □ Does not necessarily need sandboxing
- □ Might be easier to debug
- □ Might actually not be that bad ("have you tried turning it off and on again?")
- ☐ More fine-grained versions later

#### Debugging dead-lock

- $\hfill\square$  Tools allow to find locking cycles
- Run your own cycle checker after wrapping lock / unlock
- $\Box$  Attach debugger to deadlocked program

## **Mutual Exclusion with Deadlock**

```
#include ...
pthread_t t0, t1;
int x;
int id[] = { 0 , 1 };
int victim = 0;
void lock ( int * p ) {
  int me = * p ;
  victim = me ;
  while ( victim == me )
   ;
}
void unlock (int * p) {
}
```

| Previous version                                      |
|-------------------------------------------------------|
| $\Box$ Flag to go first                               |
| Hope nobody else has the same idea at the same time   |
| But check that and if this is not the case<br>proceed |
| Deadlock under contention                             |
| This version                                          |
| Even more passive / helpful                           |
| $\Box$ Always let the other go first                  |
| $\Box$ Tell everybody that you are waiting            |
| Wait until somebody else waits too                    |
| $\Box$ Almost always deadlocks (without               |
| contention)                                           |
| The Peterson algorithm combines both ideas            |

## **Peterson Algorithm**

```
void lock ( int * p ) {
  int me = *p;
  int other = ! me;
  flag[me] = 1;
  victim = me;
  //__sync_synchronize();
  while (flag[other] &&
         victim == me)
    1
}
void unlock ( int * p ) {
  int me = * p;
  flag[me] = 0;
}
```

LINZ INSTITUTE CYBER-PHYSIC OF TECHNOLOGY SYSTEMS LAB

CYBER-PHYSICAL

Actually broken on real modern hardware □ Without the memory fence Because read in other thread can be reordered before own write (even for restricted x86 memory model)

```
expected:
  \Box 0: write(flag[0], 1) 1: write(flag[1], 1)
  \Box 0: write(victim, 0) 1: write(victim, 1)
  \Box 0: read(flag[1]) = 1
                           1: read(flag[0]) = 1
```

```
possible:
  \Box 0: read(flag[1]) = 0 1: read(flag[0]) = 0
  □ 0: write(flag[0], 1) 1: write(flag[1], 1)
  \Box 0: write(victim, 0) 1: write(victim, 1)
```

## **Mutual Exclusion Algorithms**

#### Classical "software-only" algorithms

- $\Box$  More of theoretical interest only now
- $\Box$  Because memory model of multi-core machines weak (reorders reads and writes)
- □ But would be on reorder-free hardware still not really efficient (in space and time)

#### Need hardware support anyhow

- □ Various low-level (architecture) dependent primitives
- □ Atomic increment, bit-set, compare-and-swap and memory fences
- $\Box$  Better use platform-independent abstractions, such as pthreads
- We will latter see how-those low-level primitives can be used

## **Sequential Consistency**

Leslie Lamport: How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE Trans. Computers 28(9): 690-691 (1979)

- Systems with processors (cores) and memories (caches)
  - □ Think HW: processors and memories work in parallel
  - □ Processors read (fetch) values and write (store) computed values to memories
  - □ Common abstraction: consider each memory address as single memory module
- (single) processor sequential iff programs (reads / writes) executed sequentially
  - □ Sequentially means without parallelism
  - $\Box$  Between memories and the single processor
  - Processors sequentially consistent iff
    - Every parallel execution of programs
    - Can be reordered into a sequential execution
    - such that sequential semantics of programs and memories are met
    - □ Sequential (single) program semantics: read / writes executed in program order
    - $\Box$  Sequential (single) memory semantics: read returns what was written (array axioms in essence)

### **FIFO Read / Write Order**



Global FIFO read / write operation gives sequential consistency



Projected to individual memory addresses too

## **Store Buffer / Write Buffer**



**CYBER-PHYSICAL** 

Parallel Computing - Shared Memory

LINZ INSTITUTE CYBER-PHYSIC OF TECHNOLOGY SYSTEMS LAB

Hide write latency by collecting written data and continue serving read data (already in the cache or in the write buffer)

33

## **Out-of-Order Write-to-Read**

long a, b;

```
void * f (void * q) {
    a = 1;
    long c = a;
    long d = b;
    long u = c + d;
    return (void*)u;
}
```

```
void * g (void *p) {
    b = 1;
    long e = b;
    long f = a;
    long v = e + f;
    return (void*)v;
}
```

```
pthread_t s , t ;
```

int main () {
 pthread\_create(&s, 0, f, 0);
 pthread\_create(&t, 0, g, 0);
 long u, v;
 pthread\_join(s, (void \*\*) &u);
 pthread\_join(t, (void \*\*) &v);
 long m = u + v;
 printf("%ld\n", m);
 return 0;

#### }

#### **Out-of-Order Write-to-Read**

long a, b;

```
long f () { a = 1; long tmp = a; return tmp + b; }
long g () { b = 1; long tmp = b; return tmp + a; }
void * f (void * q) {
 a = 1;
        // fwa1 = f writes a value 1 to memory
 long c = a; // frac = f reads a value c from memory
 long d = b; // frbd = f reads b value d from memory
 long u = c + d; // fadd = f adds c and d locally
 return (void*) u;
}
void * g (void * p) {
 b = 1;
         // gwb1 = g writes b value 1 to memory
 long e = b; // grbe = g reads b value e from memory
 long f = a; // graf = g reads a value f from memory
 long v = e + f; // gadd = g adds e and f locally
```

}

return (void\*) v;

#### **Common Sequentially Consistent Interleaved Scenario** with Result 3

long a, b;

}

long f () { a = 1; long tmp = a; return tmp + b; } long g () { b = 1; long tmp = b; return tmp + a; } void \* f (void \* q) { // fwa1 a = 1; long c = a; // frac long d = b; // frbd long u = c + d; // fadd return (void\*) u; } void \* g (void \* p) { b = 1;// gwb1 long e = b; // grbe long f = a; // graf long v = e + f; // gadd return (void\*) v;

| abcdefuvm | memory - fifo  |  |
|-----------|----------------|--|
| 00        | fwa1           |  |
| 00        | fwa1 frac frbd |  |
| 10        | frac frbd      |  |
| 101       | frbd           |  |
| 1010      | gwb1           |  |
| 1010      | gwb1 grbe      |  |
| 1010      | gwb1 grbe graf |  |
| 1110      | grbe graf      |  |
| 11101     | graf           |  |
| 111011    | fadd           |  |
| 111011    | fadd gadd      |  |
| 111011    | fadd gadd madd |  |
| 1110111   | gadd madd      |  |
| 11101112- | madd           |  |
| 111011123 |                |  |

# Rare Sequentially Consistent Interleaved Scenario with Result 4

long a, b; long f () { a = 1; long tmp = a; return tmp + b; } long g () { b = 1; long tmp = b; return tmp + a; } void \* f (void \* q) { // fwa1 a = 1; long c = a; // frac long d = b; // frbd long u = c + d; // fadd return (void\*) u; } void \* g (void \* p) { b = 1;// gwb1 long e = b; // grbe long f = a; // graf

long v = e + f; // gadd

return (void\*) v;

00---- fwa1 00----- fwa1 gwb1 00----- fwa1 gwb1 frac 00----- fwa1 gwb1 frac grbe 00----- fwa1 gwb1 frac grbe frbd 00----- fwa1 gwb1 frac grbe frbd graf 10----- gwb1 frac grbe frbd graf 11----- frac grbe frbd graf 111----- grbe frbd graf 111-1---- frbd graf 11111---- graf 111111--- fadd 111111--- fadd gadd 111111--- fadd gadd madd 1111112-- gadd madd 11111122madd 111111224

abcdefuvm memory-fifo

}

# Less Frequent Sequentially *Inconsistent* Scenario with Result 2

long a, b; long f () { a = 1; long tmp = a; return tmp + b; } long g () { b = 1; long tmp = b; return tmp + a; } void \* f (void \* q) { // fwa1 a = 1; long c = a; // frac long d = b; // frbd long u = c + d; // fadd return (void\*) u; } void \* g (void \* p) { b = 1;// gwb1 long e = b; // grbe long f = a; // graf long v = e + f; // gadd return (void\*) v;

}

abcdefuvm memory-fifo 00---- fwa1 00----- fwa1 frac frbd 001----- fwa1 frbd // frac 000 0010---- fwa1 gwb1 0110---- fwa1 0110---- fwa1 grbe 01101---- fwa1 graf 011010--- fwa1 111010--- fadd 111010--- fadd gadd 111010--fadd gadd madd gadd madd 1110101--11101011- madd 111010112

### **No Sequentially Consistent Scenario with Result 2**

long a, b;

}

```
long f () { a = 1; long tmp = a; return tmp + b; }
long g () { b = 1; long tmp = b; return tmp + a; }
void * f (void * q) {
         // fwa1
 a = 1;
 long c = a; // frac
 long d = b; // frbd
 long u = c + d; // fadd
 return (void*) u;
}
void * g (void * p) {
 b = 1;
                   // gwb1
 long e = b; // grbe
 long f = a; // graf
 long v = e + f; // gadd
 return (void*) v;
```



## Linearizability

Consistency can be extended to method calls

- Method calls take time during a time interval: invocation to response
- Example above with read / write on memory
- Below with engueue / degueue on gueue

#### Execution linearizable iff

LINZ INSTITUTE OF TECHNOLOGY

- There is a linearization point between invocation and response
- Where the method appears to take effect instantaneously
- At the linearization point the effect of a method becomes visible to other threads

SYSTEMS LAB



# Locally Sequentially Consistent but Globally not (nor Linearizable)



## **Progress Conditions: Wait-Free, Lock-Free**

- A total method is defined in any state, otherwise partial
  - □ like "dequeue" is partial and "enqueue" (in an unbounded queue) is total
  - $\hfill\square$  same for "read" and "write"
- Method is blocking iff response can not be computed immediately
  - □ common scenario in multi-processor systems
- Linearizable computations can always be extended with pending responses of total messages
  - □ So in principle pending total method responses never have to be blocking
  - □ But it might be difficult to compute the actual response

- Method m wait-free iff every invocation eventually leads to a response
  - □ In the strong liveness sense, e.g., within a finite number of steps
  - $\Box$  Or in LTL  $\forall m[G (m.invocation \rightarrow F m.response)]$
- Method m lock-free iff infinitely often some method call finishes
  - □ So some threads might "starve", but the overall system makes progress
  - □ Or in LTL ( $\exists m[GFm.invocation]$ ) → GF  $\exists m'[m'.response]$
- Every wait-free method is also lock-free
  - Wait-free provides stronger correctness guarantee
  - □ Usually minimizes "latency" and leads to less efficiency in terms of through put
  - $\Box$  Is harder to implement

## **Compare-And-Swap (CAS)**

#### // GCC's builtin function for CAS

bool \_\_sync\_bool\_compare\_and\_swap (type \*ptr, type oldval, type newval);

 $\Box$  If processors does not support corresponding operations

□ Like atomic increment

□ C++11 atomics

## **Treiber Stack**

Treiber, R.K..

Systems programming: Coping with parallelism. IBM, Thomas J. Watson Research Center, 1986.

- Probably first lock-free data-structure
- Implements a parallel stack
- Suffers from ABA problem
- See demo

## Others

- Hazard pointers
- False sharing
- Queues (Michael & Scott Queue)
- Relaxed data structures (k-stack)
- Andreas Haas, Thomas Hütter, Christoph M. Kirsch, Michael Lippautz, Mario Preishuber, Ana Sokolova: Scal: A Benchmarking Suite for Concurrent Data Structures. NETYS 2015: 1-14, http://scal.cs.uni-salzburg.at
- Paul E. McKenney: Is Parallel Programming Hard, And, If So, What Can You Do About It? https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html



# Thank you!

Univ.-Prof. Dr. Alois Zoitl, alois.zoitl@jku.at LIT | Cyber-Physical Systems Lab Johannes Kepler University Linz

