

PARALLEL COMPUTING Algorithms and Complexity

Univ.-Prof. Dr. Alois Zoitl LIT | Cyber-Physical Systems Lab Johannes Kepler University Linz

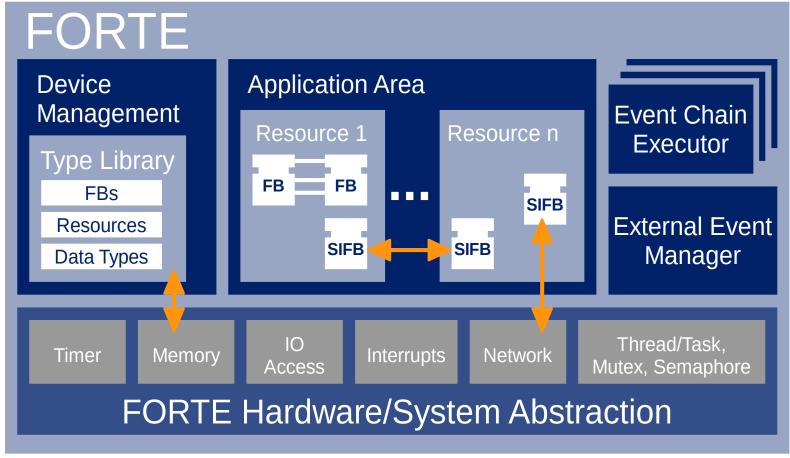
To whom honor is due....

These slides are based on a slide deck from

Prof. Dr. Armin Biere

from whom I took over this lecture. He deserves thanks for his kind permission to use them.

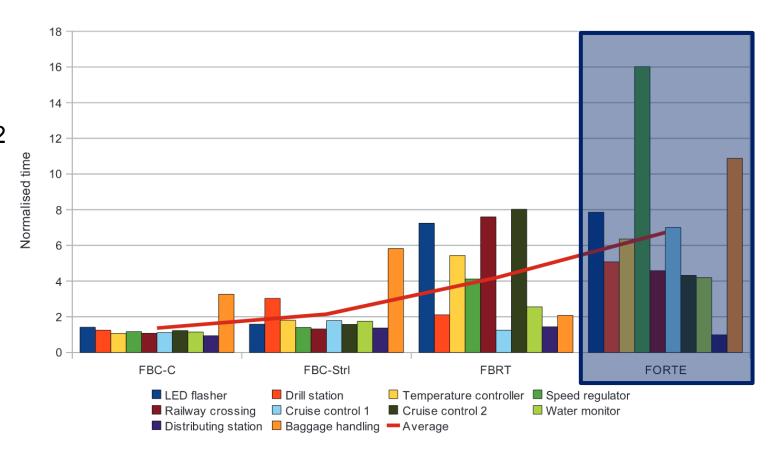
My Background – Embedded Real-time Computing



Eclipse 4diac: https://www.eclipse.dev/4diac

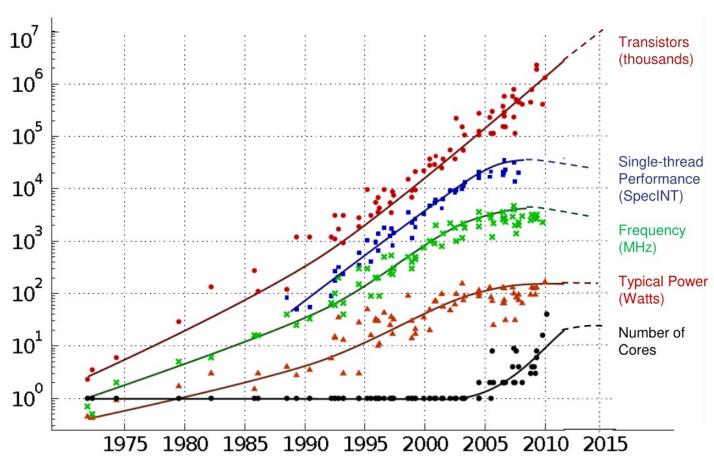
Synchronisation Penalty

Fig. 10 of Implementing Constrained Cyber-Physical Systems with IEC 61499. Yoong, Roop, and Salcic, http://dx.doi.org/10.1145/2362336.2 362345



Need for Parallelization: End of Moores Law on Single Core

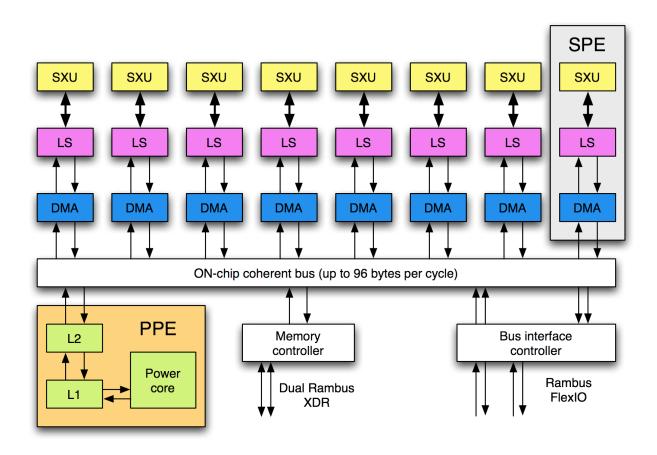
35 Years of Microprocessor Trend Data



Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore

Source: Chuck Moore, Data Processing in Exascale-Class Computer Systems, 2011

Playstation 3: Cell Processor



Source: US Department of Defense

Source: Wipedia

Overview Current CPU Architetures

- Intel
 - ☐ i5: 6 P / 8 E
 - □ i7: 8 P / 12 E
 - ☐ i9: 8 P / 16 E
- AMD
 - ☐ Ryzen: 4 96
- Raspberry Pi
 - ☐ Since Mod 2: 4

- Apple
 - \square M1: 4 16 P / 4 E
 - \square M2: 4 16 P / 4 8 E
 - \square M3: 4 12 P / 4 E
 - □ M4: 4 − 12 P / 4 − 10 E / 10 − 40 GPU
- Nvidia
 - ☐ Tesla: 128 18,176 Cuda cores

Parallelizing Existing Algorithms

Slow-Down in Parallel SAT

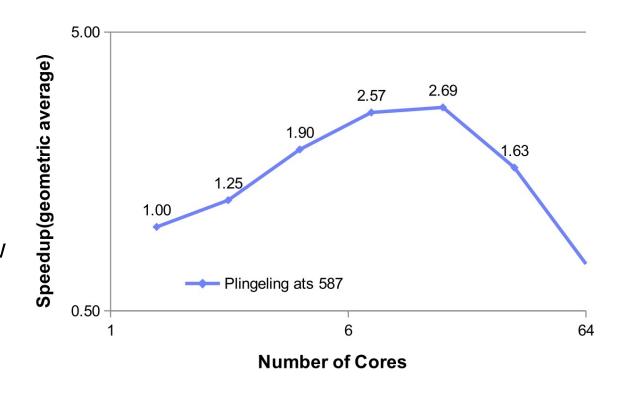
- Parallel Multithreaded Satisfiability Solver:
 Design and Implementation.
 Yulik Feldman, Nachum Dershowitz, Ziyad Hanna http://dx.doi.org/10.1016/j.entcs.2004.10.020
- Paper is inconclusive about the reason for slowdown
- Probably more threads work on useless sub-tasks
- Sharing clauses caching sub-computation increases pressure on memory system
- Maybe search space splitting was not a good idea (guiding path)

 ${\it Table \ 2}$ Performance of SAT solver with different numbers of working threads

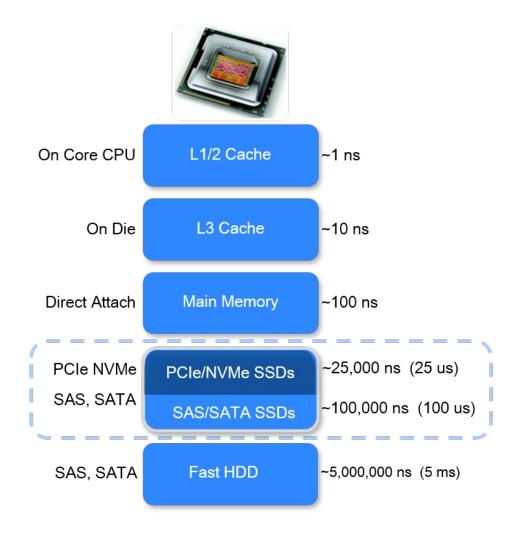
Configuration	One	Two	Three	Four	Four:One
A	13	15	61	89	6.8
В	20	21	42	47	2.4
С	14	16	19	22	1.6
D	13	15	14	15	1.2
E	7	7	7	10	1.4
F	8	20	27	53	6.6
G	6	55	195	168	28.0
Н	6	52	86	107	17.8

Low Speedup in Parallel SAT

- http://www.birs.ca/events/2014/5-day-workshops/14w5101/videos/watch/201401221154-Sabharwal.html slide 4 of (video 3:30)
- Sequential SAT algorithms produce proofs of large depth (= span)
- So need new algorithms which produce low depth proofs



Limiting Factor Memory Access?



Memory System is Good Enough

- Analysis of Portfolio-Style Parallel SAT Solving on Current Multi-Core Architectures. Martin Aigner, Armin Biere, Christoph Kirsch, Aina Niemetz, Mathias Preiner. http://fmv.jku.at/papers/AignerBiereKirsch NiemetzPreiner-POS13.pdf
- Largest speed-up obtained by portfolio approach
 - ☐ Run different search strategies in parallel
 - \square If one terminates stop all
 - ☐ In practice share some important learned clauses caching sub-computations

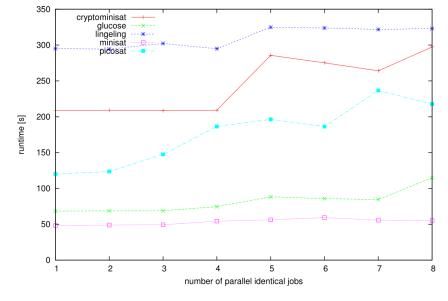


Figure 8: Absolute runtime required for an increasing number of parallel jobs solving the narain-vpn-clauses-10 benchmark on the amd-opteron-2350-8vcores machine.

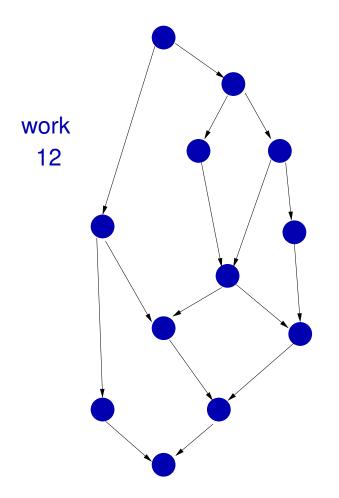
- Slow-down due to memory system?
 - ☐ Since memory system (memory / caches / bus) are shared in multi-core systems
 - ☐ Slow-down not too bad (particularly for solvers with small working set)
 - \square Even though considered memory-bound (but random access)
 - ☐ Waiting time for memory to arrive overlaps

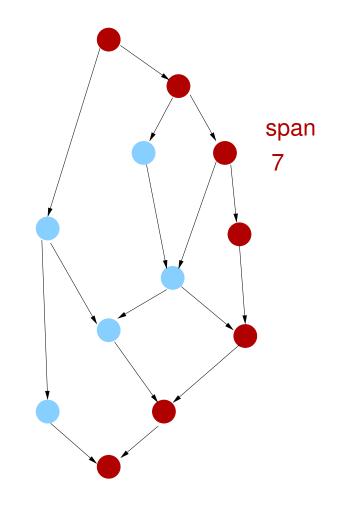
Clever Splitting

- Marijn Heule, Oliver Kullmann, Siert Wieringa, Armin Biere. Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads. Haifa Verification Conference 2011: 50-65, Springer 2012 http://dx.doi.org/10.1007/978-3-642-34188-5_8
- Marijn J.H. Heule, Oliver Kullmann, and Victor Marek Solving and Verifying the boolean Pythagorean Triples problem via Cube-and-Conquer. SAT 2016, 196-211, Springer 2016 http://dx.doi.org/10.1007/978-3-319-40970-2_15
- Everything is Bigger in Texas https://www.cs.utexas.edu/~marijn/ptn/ JKU CS Colloquium 22. June 2016

Theory on Parallelizabilty

Work and Span





Amdahl's Law with Work and Span

T = work = sequential time $T_p = wall-clock time p CPUs$ $T_{\infty} = wall-clock time \infty CPUs$

- Speedup: $S_P = T/T_P$
- Span ... critical path (also called "makespan" in the context of scheduling)
- \blacksquare $f \dots$ fraction of sequential work, thus

f = span / work

Simplified Amdahl's law in terms of work and span: $S_p \le 1/f = \text{work /span}$

- Reduce *span* as much as possible:
 - ☐ keep sequential blocks short!

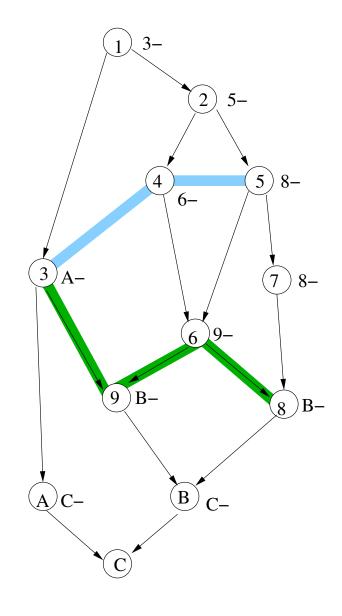
→ coarse grained locking is evil

□ keep sequential dependencies short!

→ (non-logarithmic) loops are evil

Pebble Games

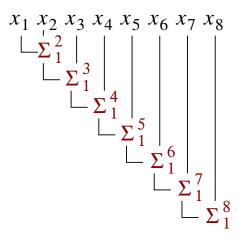
- Given a directed acyclic graph with one sink.
- Nodes of the graph have a pebble or not.
- One step can either . . .
 - ... remove a pebble from a node ...
 - ... or add a new pebble to a node without one, ...
 - ... but only if all its predecessor have a pebble.
- Goal is to only have a pebble on the sink node.
- What is the smallest maximum number of pebbles needed?
- Common concept in complexity theory
 - ☐ Assuming intermediate results have to be stored
 - ☐ Relates to smallest p needed to reach maximum speed-up
 - ☐ This version (black pebble game) actually only gives space bounds

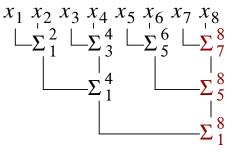


Sum

- Compute sum $\sum_{i=1}^{n} x_i$ for *n* numbers xi in parallel
- Sequential

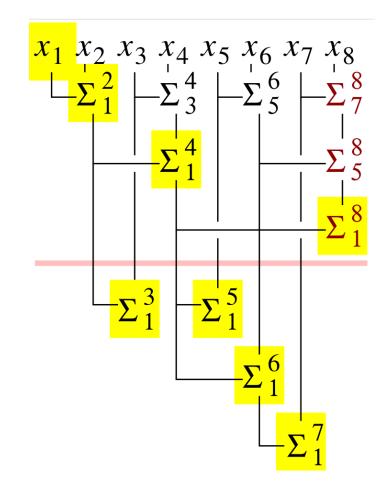
 - \square work = T = O(n) (n 1 additions)
 - \square span = O(n) too
 - \Box Since y_{i+1} depends on all previous y_j with j ≤ i
 - \square Thus no speed-up Sp = O(1)
- Parallel
 - ☐ Associativity allows to regroup computation
 - \square Work = O(n) remains the same
 - \square Span = O(log n) reduces exponentially
 - \square Speed-up not ideal but $S_n = O(n / \log n)$
 - \square Note p > n does not make sense





Prefix / Scan

- Compute all sums $s_j = \sum_{i=1}^{J} x_i$ for all $j = 1 \dots n$ and again n numbers x_i in parallel
- Sequential version as in previous slide
- \blacksquare Parallel version needs a second depth $O(\log n)$ pass
- \blacksquare Works even "in place" (first pass overwrites original x_i)
- But actual "wiring" complicated
- \blacksquare Still span = $O(\log n)$
- Basic algorithmic idea for many "parallel" algorithms
- Propagate and generate adders with prefix trees instead of ripple carry adder



Ripple-Carry-Adder

$$s_i = x_i \oplus y_i \oplus c_i$$
 sum $c_{i+1} = x_i y_i + x_i c_i + y_i c_i$ carry

$$c_{0} = 0$$

$$s_{0} = x_{0} \oplus y_{0}$$

$$c_{1} = x_{0} y_{0}$$

$$s_{1} = x_{1} \oplus y_{1} \oplus c_{1}$$

$$c_{2} = x_{1} y_{1} + x_{1} c_{1} + y_{1} c_{1}$$

$$s_{2} = x_{2} \oplus y_{2} \oplus c_{2}$$

$$c_{3} = x_{2} y_{2} + x_{2} c_{2} + y_{2} c_{2}$$

$$s_{3} = x_{3} \oplus y_{3} \oplus c_{3}$$

$$c_{4} = x_{3} y_{3} + x_{3} c_{3} + y_{3} c_{3}$$

$$s_{4} = x_{4} \oplus y_{4} \oplus c_{4}$$

$$c_{5} = x_{4} y_{4} + x_{4} c_{4} + y_{4} c_{4}$$

$$s_{5} = x_{5} \oplus y_{5} \oplus c_{5}$$

$$c_{6} = x_{5} y_{5} + x_{5} c_{5} + y_{5} c_{5}$$

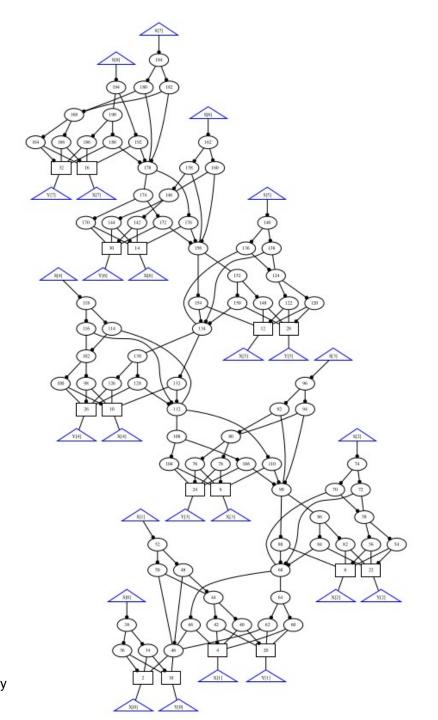
$$s_{6} = x_{6} \oplus y_{6} \oplus c_{6}$$

$$c_{7} = x_{6} y_{6} + x_{6} c_{6} + y_{6} c_{6}$$

$$s_{7} = x_{7} \oplus y_{7} \oplus c_{7}$$

$$c_{8} = x_{7} y_{7} + x_{7} c_{7} + y_{7} c_{7}$$

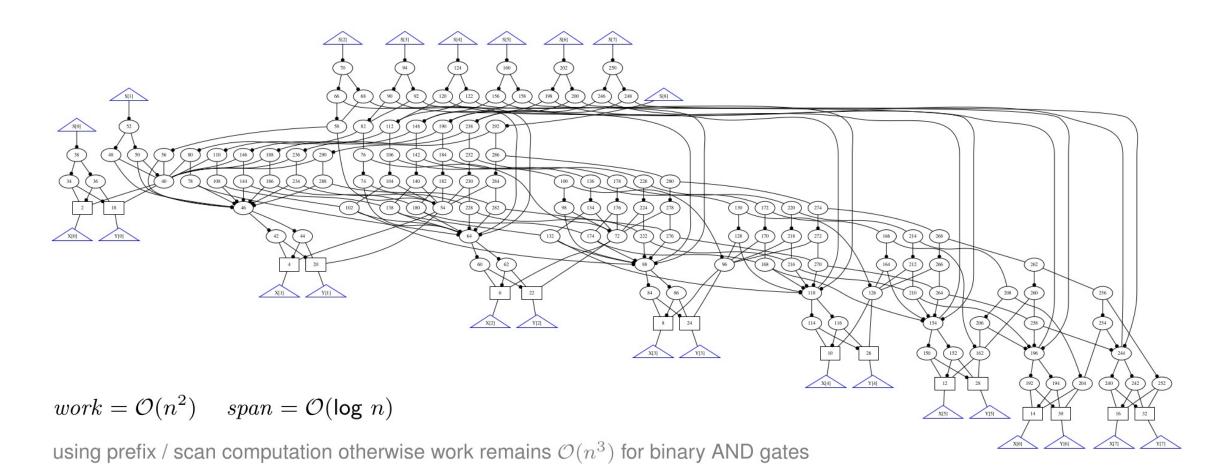
$$work = \mathcal{O}(n)$$
 $span = \mathcal{O}(n)$

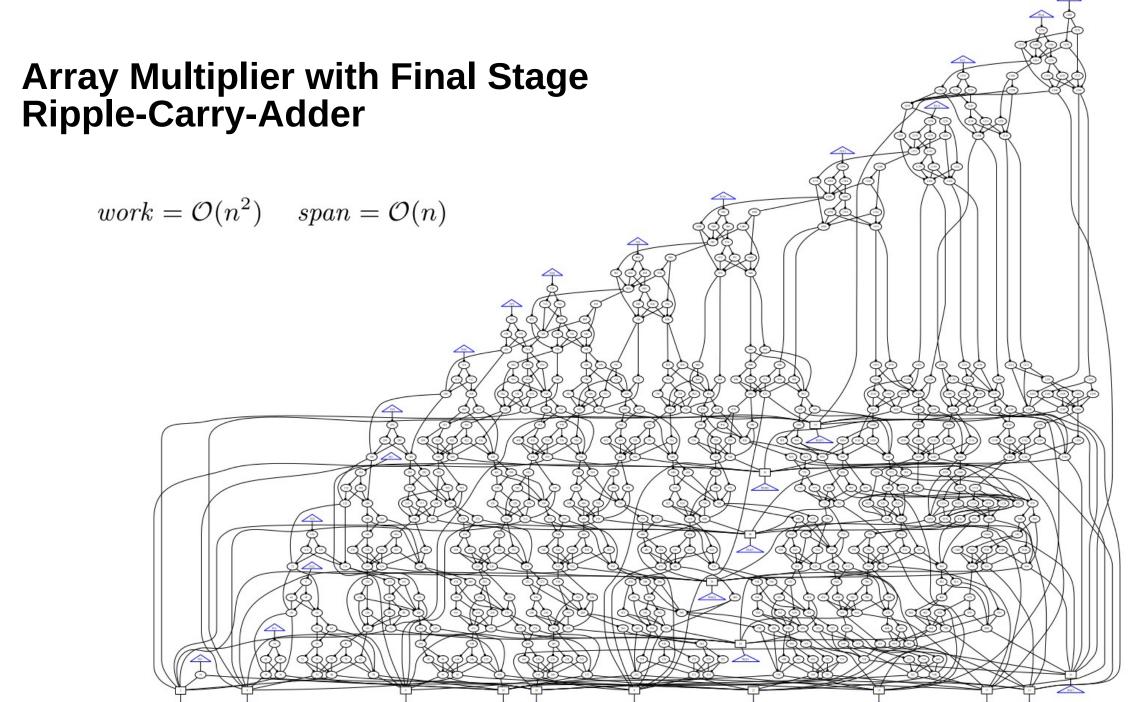


Propagate-and-Generate Adder / Lookahead Adder

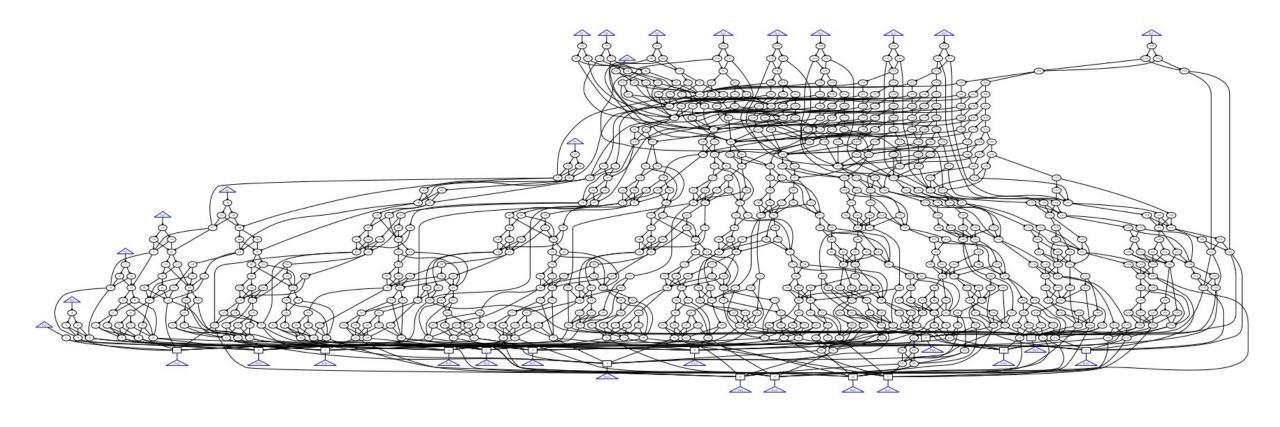
```
x_i + y_i
                         propagate
                         generate
     = x_i y_i
c_{i+1} = g_i + p_i c_i new carry computation formula
c_0
c_1
                                                                  g_1 +
c_2
                                                                                p_1 g_0
                                                g_2 + p_2 g_1 + p_2 p_1 g_0
c_3
                            g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0
                   g_4 + p_4 g_3 + p_4 p_3 g_2 + p_4 p_3 p_2 g_1 + p_4 p_3 p_2 p_1 g_0
c_5
     = g_5 + p_5 g_4 + p_5 p_4 g_3 + p_5 p_4 p_3 g_2 + p_5 p_4 p_3 p_2 g_1 + p_5 p_4 p_3 p_2 p_1 g_0
     = g_6 + \dots
                                                       \dots p_6 p_5 p_4 p_3 p_2 p_1 g_0
     = g_7 + \dots
                                                    + \qquad \qquad p_7 \, p_6 \, p_5 \, p_4 \, p_3 \, p_2 \, p_1 \, g_0
work = \mathcal{O}(n^2) span = \mathcal{O}(\log n) assuming n-ary gates otherwise work = \mathcal{O}(n^3)
```

Carry-Look-Ahead Adder



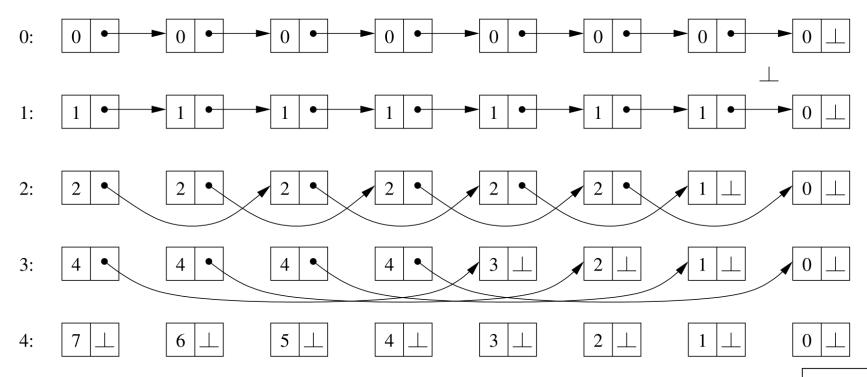


Wallace-Tree Multiplier with Final Stage Carry-Look-Ahead Adder



$$work = \mathcal{O}(n^2)$$
 $span = \mathcal{O}(\log n)$

List Ranking / Pointer Jumping



determine distance to head of list:

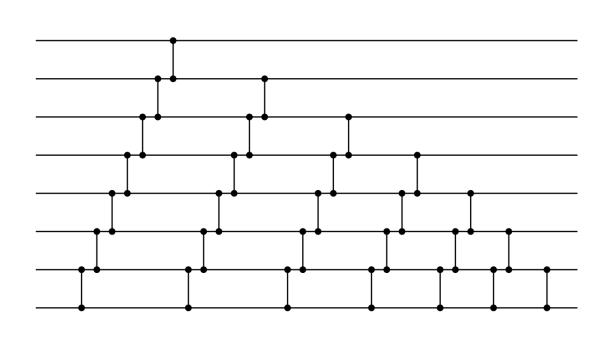
as long there is i with $next[i] \neq \bot$: val[i] += val[next[i]] next[i] = next[next[i]]

Sorting Networks

- Circuits for sorting fixed number n of inputs \Box Basic "gate" compare-and-swap: Cmpswap(x, y) := (min(x, y), max(x, y)) \Box Interesting challenge to get smallest sorting network

 for n = 11 size only known to be between 33 and 35 compare-and-swap operations
- Zero-one principle
 - ☐ Correctness of sorting network (it sorts!) only requires sorting 0 and 1 inputs (bits) as long only compare-and-swap is used.
- Asymptotic complexity of algorithms
 - ☐ Examples: Bitonic Sorting, Batcher Odd-Even Merge Sort
 - \square with span = $O(\log^2 n)$
 - \square with work = $O(n \cdot log^2 n) = T1$
 - \square but sequential time $T = O(n \cdot \log n)$
 - \square maximum absolute speed-up $S_n = O(n/\log n)$

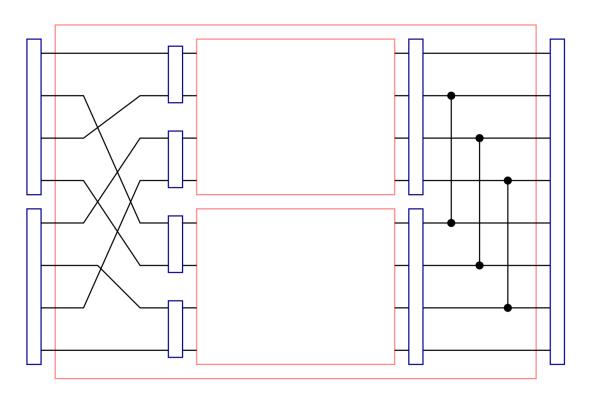
Bubble Sort Example



- \blacksquare Top-most *i* sorted after *i* phases
- Lowest value only sorted after n-1 compare-and-swaps
- \blacksquare span = O(n)
- Looks like perfect speedup $S_n = O(n)$ w.r.t. (bad) sequential algorithm
- However, if we compare against Quicksort $T = O(n \cdot log n)$ we only get

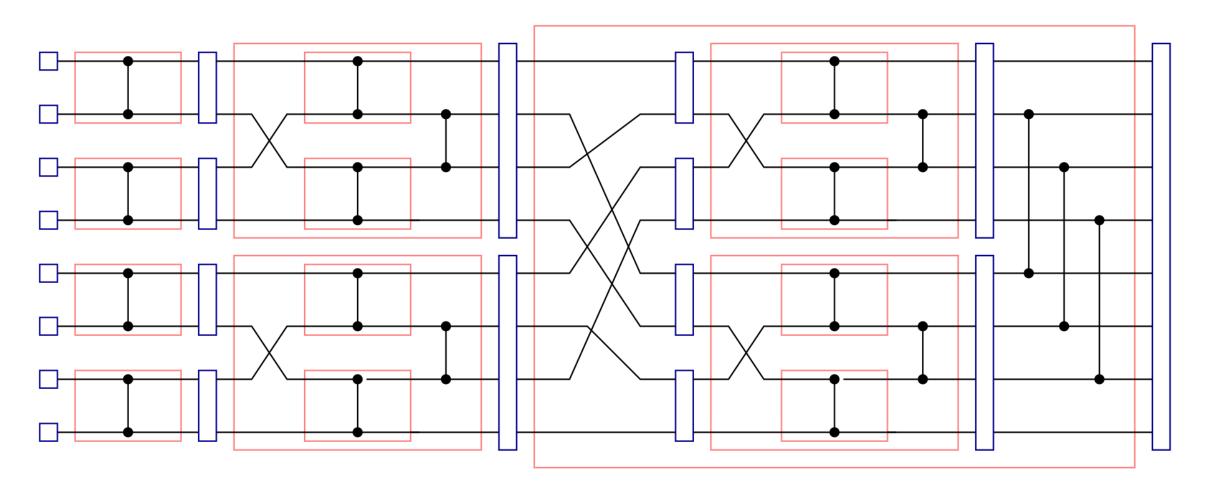
$$S_n = \mathcal{O}(\frac{n \cdot \log n}{n}) = \mathcal{O}(\log n) < \mathcal{O}(n/\log n)$$

Batcher Odd-Even Merge Sort



- Basically as merge sort
 - \square Split input into two parts . . .
 - ... sort parts recursively ...
 - ... merge sorted sequence.
- **Example**: recursion for n = 8
 - ☐ Outer block takes two sorted sequences of size 4 each
 - ☐ Each inner block takes two sorted sequences of size 2 each
 - ☐ Outer input sequences need to be sorted too

Batcher Odd-Even Merge Sort



NC - Nick's Class

- \blacksquare f (n) polylogarithmic iff exists constant c such that $f(n) = O(\log^c n)$
- NC is set of decision problems . . .
 - ... which can be decided in polylogarithmic time ...
 - ... on a parallel computer with polynomial many processors, i.e., ...
 - ... exists constant c such that $p = O(n^k)$.
- NC c requires (parallel) computation time (span) in $O(log^{c} n)$
- $\blacksquare NC = \cup NC^c$

L, NL, AC

- L is set of decision problems solvable in logarithmic space deterministically
- **NL** is set of decision problems with logarithmic space non-deterministically
- \blacksquare NC = AC is the set of decision problems with logarithmic circuit complexity, i.e., . . .
 - ... each input of size n can be decided by polynomial circuit with logarithmic depth in n, ...
 - ... made of gates with bounded (NC) or unbounded (AC) number of inputs
- \blacksquare As before define NC^c and AC^c requiring O(log^c n) depth (layers)

P Completeness

$$NC^1 \subseteq L \subseteq NL \subseteq AC^1 \subseteq NC^2 \subseteq AC^2 \subseteq NC^3 \subseteq \cdots \subseteq NC = AC \subseteq P$$

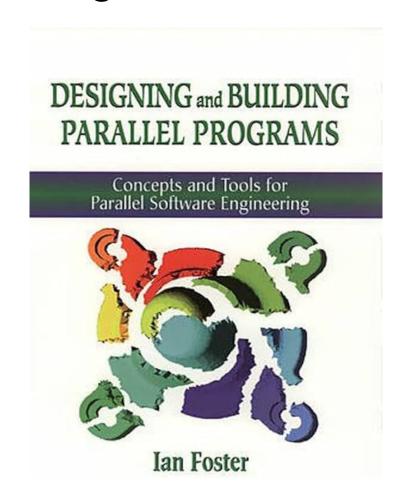
- Using "logarithmic" reductions
- It is commonly believed that NC ≠ P
- Accordingly P-hard problems are supposed to be NOT "parallelizable"
- Similar to the common belief that $P \neq NP$

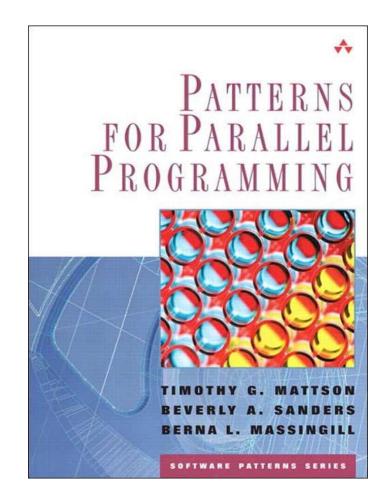
Circuit Evaluation Problem

- Given a boolean circuit with one output, and an evaluation to its inputs.
- Evaluate the circuit and determine its output value for that input assignment.
- This problem (deciding whether output yields one) is P-complete . . .
 - . . . and thus considered not to be parallelizable.
- Thus evaluating a function can not be done "effectively" in parallel.
- One step of simulation or constraint propagation are not parallelizable! (?)

Parallel Design Patterns

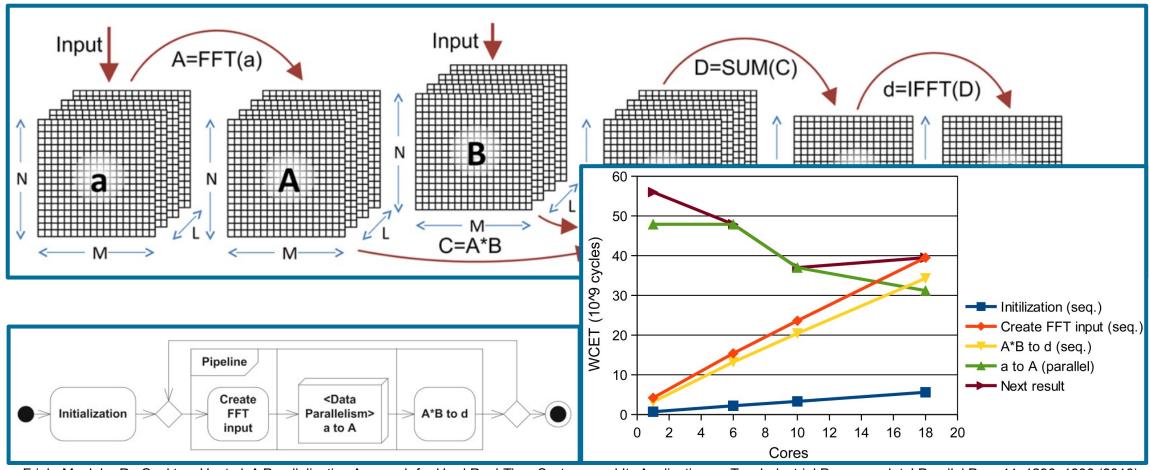
Guidelines and Methodologies for Implementing Parallel Programs





Examples from Real-Time Domain

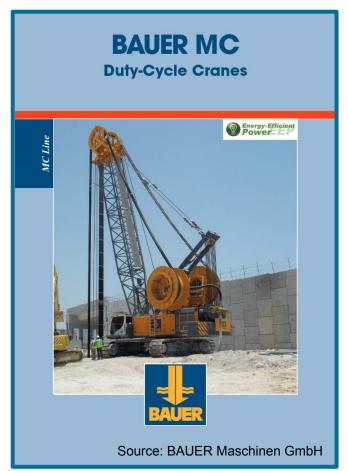
Signal Processing Pipeline

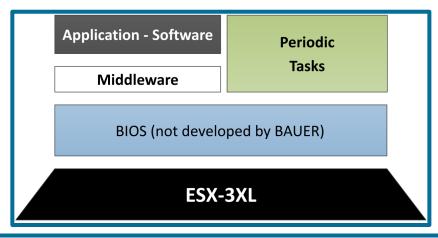


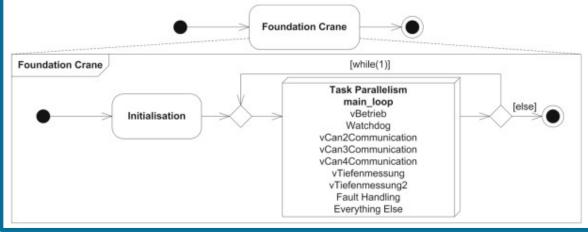
Frieb, M., Jahr, R., Ozaktas, H. et al. A Parallelization Approach for Hard Real-Time Systems and Its Application on Two Industrial Programs. Int J Parallel Prog 44, 1296–1336 (2016).

https://doi.org/10.1007/s10766-016-0432-7

Control Program of BAUER MC 128







Frieb, M., Jahr, R., Ozaktas, H. et al. A Parallelization Approach for Hard Real-Time Systems and Its Application on Two Industrial Programs. Int J Parallel Prog 44, 1296–1336 (2016). https://doi.org/10.1007/s10766-016-0432-7

Control Program of BAUER MC 128

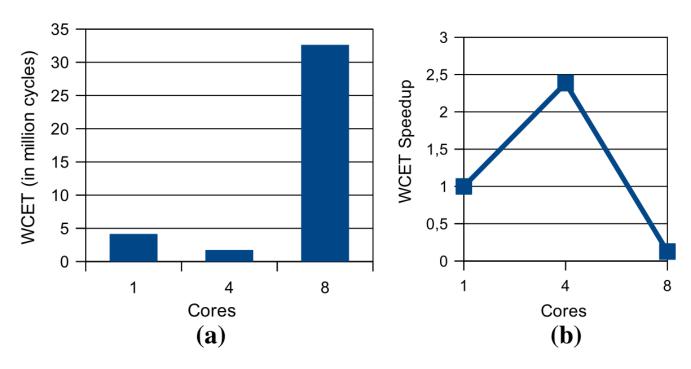


Fig. 17 Evaluation results: static WCETs and WCET speedup, **a** WCET for 1, 4 and 8 cores. At the 4 core version, the WCET falls to around 40% of the sequential version, while it rises to a multiple at the 8 core version, **b** WCET Speedup for 1, 4 und 8 cores. At 4 cores, the speedup reaches around 2.4, while at 8 cores a slowdown to around 0.15 shows up

Frieb, M., Jahr, R., Ozaktas, H. et al. A Parallelization Approach for Hard Real-Time Systems and Its Application on Two Industrial Programs. Int J Parallel Prog 44, 1296–1336 (2016). https://doi.org/10.1007/s10766-016-0432-7

Thank you!

Univ.-Prof. Dr. Alois Zoitl, alois.zoitl@jku.at LIT | Cyber-Physical Systems Lab Johannes Kepler University Linz

