

Genome data analysis Computer lab session 3

Theresa Schwarz MSc

theresa.schwarz@jku.at Institute of Biophysics, JKU Gruberstraße 40, 4020 Linz

Overview

- **Genome browsers**
 - > UCSC
 - > ENSEMBL

- > Pairwise alignments
- > Database alignments
- Primer-BLAST

Overview

Genome browsers

> UCSC

> ENSEMBL

BLAST

- > Pairwise alignments
- > Database alignments
- > Primer-BLAST

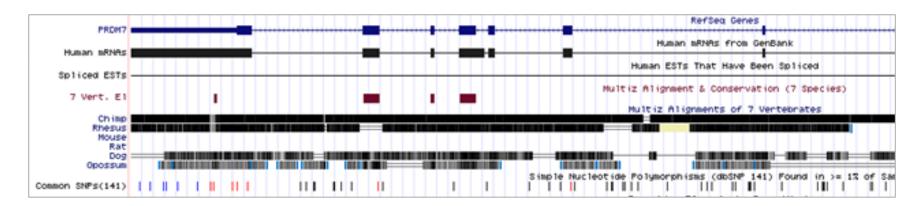
 UCSC Genome Browser (University of California Santa Cruz) https://genome.ucsc.edu/

ENSEMBL (EMBO-Heidelberg/EBI-Cambridge)

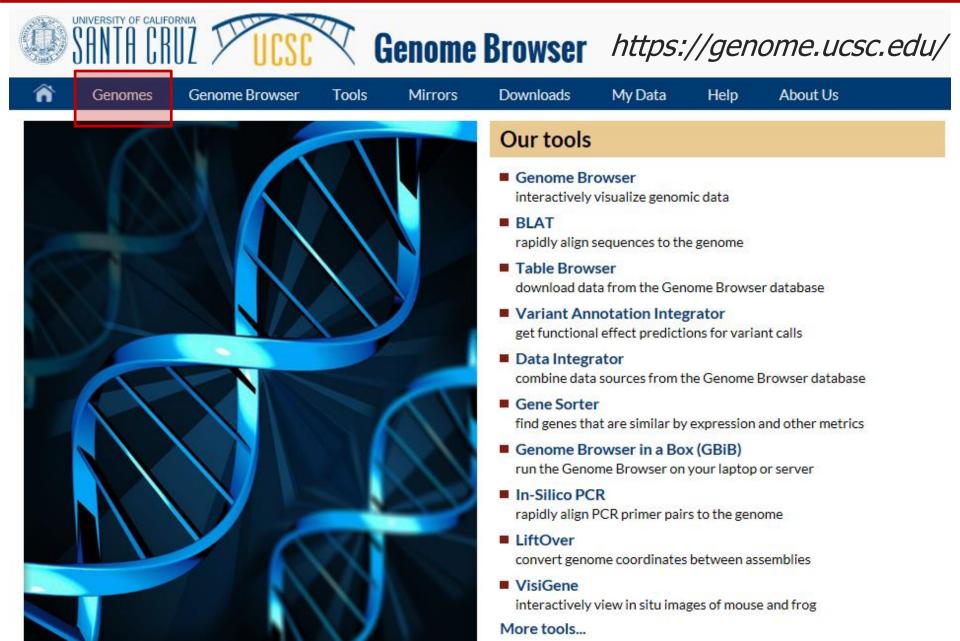
http://www.ensembl.org/

• NCBI (NIH, US) Genome Map Viewer https://www.ncbi.nlm.nih.gov/mapview/

Genome browsers

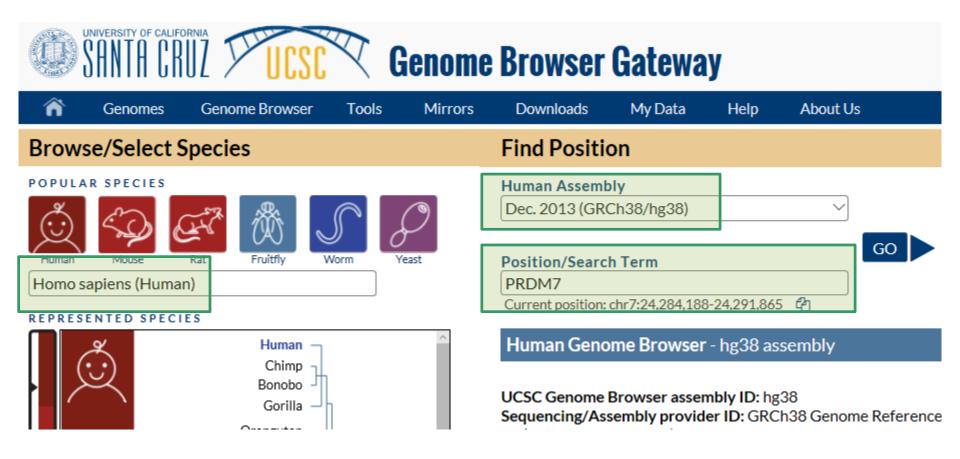


 Genomic DNA is organized in chromosomes.


		З		5	6
Х Т	Ň	ľ ľ			12
N 1 3	14	15	16		18
	20	60 21	679 22		876 X

 Genome browsers display ideograms (pictures) of chromosomes. Users can select `annotation tracks' that display many kinds of information.

00



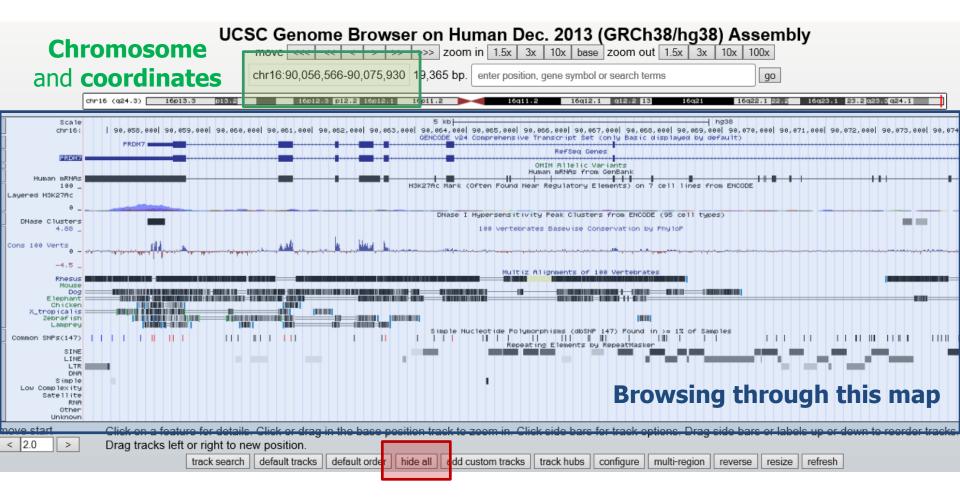
Search for the **human** protein **PRDM7** using the **newest** genome assembly.

Known Genes

DDDM7	(ma010ata 4)		chr16:90057780-90075930	-	Verne enni	and DD d	amain 7	(DDDM7) -	DND /fm	om T	offer MM	001000172
										OIN F	cersed ww	0010981/2
PRDM7	(uc059ywn.1)	at	chr16:90075005-90092072	-	PR domain	. contain	ing 7 (f	rom HGNC B	PRDM7)			
PRDM7	(uc059ywm.1)	at	chr16:90061452-90075930	-	The seque	nce show	n here i	s derived	from an	Ense	embl aut	omatic ana.
PRDM7	(uc059yw1.1)	at	chr16:90061452-90075925	-	PR domain	. contain	ing 7 (f	rom HGNC H	PRDM7)			
PRDM7	(uc002fqo.4)	at	chr16:90056566-90062325	-	PR domain	. contain	ing 7 (f	rom HGNC H	PRDM7)			
TRAF1	(uc010mv1.2)	at	chr9:120902393-120929173	3 -	Homo sap	iens TNF	' recepto	r associat	ed facto	r 1	(TRAF1),	transcrip
TRAF1	(uc0111yg.2)	at	chr9:120902393-120914572	2 -	Homo sap	iens TNF	' recepto	r associat	ed facto	r 1	(TRAF1),	transcrip
TRAF1	(uc004bku.3)	at	chr9:120902393-120928769	9 -	Homo sap	iens TNF	' recepto	r associat	ed facto	r 1	(TRAF1),	transcrip

RefSeq Genes

PRDM7 at chr16:90056566-90075930 - (NM_001098173) probable histone-lysine N-methyltransferase PRDM7

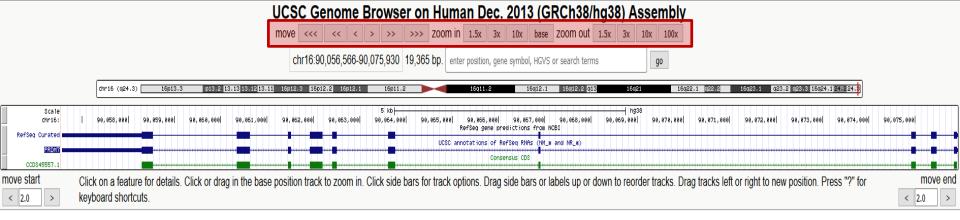

Basic Gene Annotation Set from GENCODE Version 24 (Ensembl 83)

PRDM7 at chr16:90057780-90075930

Comprehensive Gene Annotation Set from GENCODE Version 24 (Ensembl 83)

PRDM7 at chr16:90056566-90062325 PRDM7 at chr16:90057780-90075930 PRDM7 at chr16:90061452-90075925 PRDM7 at chr16:90061452-90075930 PRDM7 at chr16:90075005-90092072

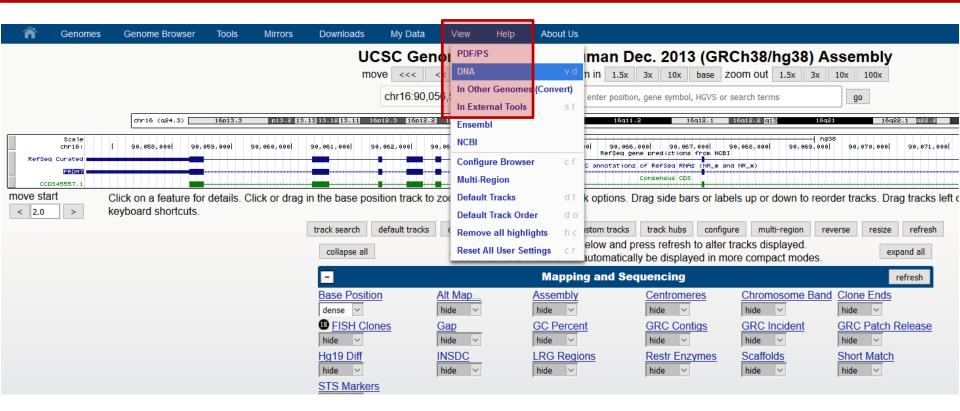
You can hide all tracks


 \rightarrow Scroll down to select your settings

You can choose all 'tracks' (settings) you want.

- Choose:
 - NCBI RefSeq (full)
 - CCDS (full)
- To update your settings select `refresh'

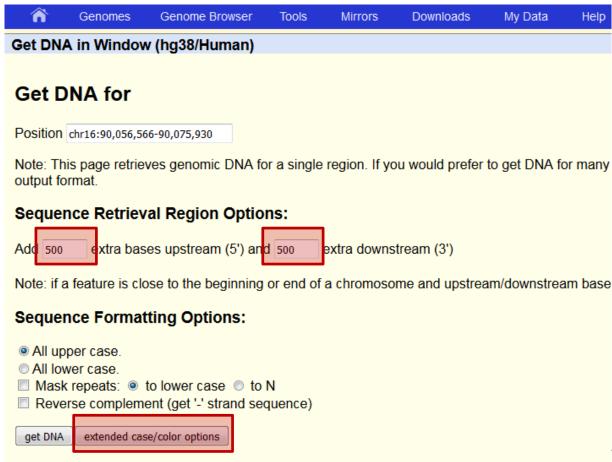
Ξ .	Genes and Gene Predictions											
GENCODE v24 hide v	NCBI RefSeq	All GENCODE	AUGUSTUS hide	CCDS full	CRISPR hide							
Geneid Genes hide	<u>Genscan Genes</u> hide ⊻	IKMC Genes Mapped hide	LRG Transcripts	MGC Genes hide	Non-coding RNA hide v							
Old UCSC Genes	ORFeome Clones	<u>Other RefSeq</u> hide ✓	<u>Pfam in UCSC</u> <u>Gene</u> hide ✓	RetroGenes V9 hide ~	<u>SGP Genes</u> hide ✓							
SIB Genes hide 🗸	<u>TransMap</u> hide ∽	UCSC Alt Events hide	<u>UniProt</u> hide ∽									
•	refresh											



You can see your selected tracks

Boxes = Exons; Lines = Introns

Navigate through the map by **moving** and **zooming**.



If you would like to get the DNA sequence click on **View** \rightarrow **DNA**

- You can add bases up- and/or downstream of the DNA: e.g. 500bp
- You can highlight the 'tracks' you selected by 'extended case/color options'

⁻heresa Schwarz

Note: The "Mask repeats" option applies only to "get DNA", not to "extended case/color options".

Extended DNA Case/Color Options

Use this page to highlight features in genomic DNA text. DNA covered by a **below.**

Position chr16:	ont 🗆	_						
Letters per line	60	Default	case	: 🔍 l	Jpper (C Lowe	r submit	:
Track Name	Toggle Case	Under- line	Bold	Italic	Red	Green	Blue	
NCBI RefSeq					0	0	0	
CCDS					255	0	0	

Coloring Information and Examples

The color values range from 0 (darkest) to 255 (lightest) and are additive. The feature.

- To put exons from RefSeq Genes in upper case red text, check the ap capital letters.
- To see the overlap between RefSeq Genes and Genscan predictions t
- To get a level-of-coverage effect for tracks like Spliced Ests with multip progressively brighter — saturating at 4 ESTs.
- Another track can be used to mask unwanted features. Setting the Re sector.

Further Details and Ideas

Copying and pasting the web page output to a text editor such as Word will and underlining, view the output as "source" in your web browser, or downlc

The default line width of 60 characters is standard, but if you have a reason search function.

Be careful about requesting complex formatting for a very large chromosom and more, however.

CCATTTGTCCTTTGGGTGGGCTAGAAAAGGCCCTTGAAATCTCCCTCTGCCATGTCCTTT **TAT**TCAAGAGTTTGGACCTTTCTTTGATCTCTTGACCTTTGGTTTTGTCATTACAGCAG GTGGATCAGAATATTGCCGCTCCTGATTCTGATCCCCTGGGCAGGGATTCTCTGGTTGG GAAGTTTTCTTGCAGATGGTCCTGGGAAGTTCTGAGAGGAGTGATTGCGTTCCACATGT **GCTTTGGTTCTGAAAGAGGAAGTTTTTGGTCAGGGTAGATGTTTTGTTCAGGCCTTACTA** CATATGAAGGTATGAAGATCAAATGAAGAACCAGTCATTCTTCATATGTTAACAATGCAA GCTCTCTCCCACCAAGTGCTGGATGGACCTTTACAGTCCATTTTCCATTCCACTTTAT TCACTACATCTTAAAAAATCCAGAAATCCCACATCTTGGGCCTTTTCTACGTATCAGCCA GACTCTGGGTAACCTCAAGCAGCATCAGGGGCAGCATCATTCCTTACATAGATGGAACTG CAGTGACCTTTCCCCCATGCCACAGGTATCTTCCAAGTCCTGTAAAGCCTTCCCTGATCA CCTCTGCCACATGCTCCCTCGGGCCCTGGGCACTTTTGCGACGCGAGGTTTTCAGCT ATTTTATTCTATTGAGAAATAACACTCTTGATGACTTAGGTGAGATTGTCCTTAGTGACT TCCTAAGAGGGGAAAAGGATCTATTAGGAGCACTCAGCCTGGAGATCCACAAATGTGGTT AAAGAGATGTGTTAGCAAATCTGAATTTGAGTATCCTCATTCAAAAGGACATATTTAATT GAGGACTGTTATGTGCCCGGTTCTCCATCAGGAAGTGTGATTCAGGTTGGCCAACACAGA GTGGTCCAGGTCCCACTGACTAAAGGACTGTGGGTCCTGCGCCCAACTAGGTGCATGG ACTGCTTCTGTTTCAGATTCCACAAATCATAAAATGAGAATATGCTCTTTGTCAGGCTGC ACATCAAGTATTCATGTCTGAGTTATTTCATTCAGTCTGAACCCATTTTAAATATAATAG GAAGTCTTGTTTCAAAATATATCCCTACTCAGGCTTACCGCCATGCTCCCCACCTTCATC CTGCCCACCATTTTCTCTCACTTGGAAACTGGAGCAGCTCTGAAGGGATGACCCATGGCA GCCTATTTTCCAAAAATGAACCAAAGCTGAACTCTTTCTGGCCTCAGGACCATTGCACTA GCTGCGCCCTGTGCCTGGAATCCTTGGCCCACAGGCACTTGCACTTCTCAAATGCTGTCT CCTAAGAGAAATCTTCCCTGACAATCCCCTGCAACACTCTACTGTCACCTCACACTGACC CCCAGGTCTCACACTGACCTCAGGTCTCACACTGACCCCCAGGTCTCACACTGACCTCAG TCAAAGCACTAATCGCCGTCTGATATTACACATATGTCTGTGTGTATTCGTACGGTTCCC TAATTCACAAGTTATCTGTTCAAGAGCAGTTTTTTTGATTGTCTTCATCAGTCTGTATTT ACACTTCCTGCAACATCGTCTGGCACAGAGTAGGAACTCACATGACAGCTAATTGAGATA ATGAATGAATGAATAACAACATATGCGTATCATTAAGAAATATCAAGGAAATGCCAGAAG AAACTACCTTGTTGGGAGAGCTGGTAGGTGTTTGAGAACTTGATTTTTGTCTTTAAGTCT TTGAGCACTGTATGCTGTTATATACTTTGTGCATGAAGTACTTTGAATATAAAATCGGAA CAAAGATTTAAAAAATATAAAAACTGTTCCAAAGAGGCAAAGGCATATAACATGAATCTTT AATTTTGGAAGCCACTGATGTAAAATTTTACTGACTTTAGACGGCGTTTTACTCTACTTA AATAGTGATGCCTACCTCCCCTGCCATGAGCTCTTTCTTCCACTTGCTGCCCCA TGCCCAGTTCCTGGCCATACTCATCCCCATACCAGACCAGCAGTTCACAGCCTG TGACTCGGCAGGTTCTATAGAAGATCTGATGCCCAGTTCCTGGCCATACTCATC CCAGACCAGCAGTTCACAGCCTGGCCTAATGACTCGGCAGGTTCTATAGAAGAT GTGGTACTGGAAGGCCACCAGGTTCTGCTCTTCATCATCCCGGGCACAGTT ACAATGCTCATCCTGCCTAGAATGCTTCCCTGCTGTGCCTAATCAGCCATTTTTTCAAAG CCCAACTCCAGACTTACCTCCACCTTGATTGGCCATAAAACACATTGACCTCTAGCTTCT CTAAACTCTAAATTAATTCTGTTTTATACCACAGAACTTGGTGCTTGATCACGTTGCTCT CTTCCTCTAATCACCCTACAGTTCACTCAGCTGCCATTCACCTGACTTCTTCAGATTCCT AGAGAAACTCAGAAGTCTCTTTCTCTTGGCCCAATAACATAGAACAGTAATAGTTGATTC ATTTTTCTATTCTCTGATAGAACGACAGCCCATTGTGGAAAGGGGCTGGGTCATCCTGCF GTTCACTTCTGTTCAAGTAGTGAACTTCACTTCCTAACCTGGAACATACTAAGTGTTTAA CAAATGTGGATTACATAAATTAAAGCATGAATTAACCTTATCAAGGTTTATCTTGGTGCC TCAATTTTGTCTAGCATACATATTTGTGTTTTGATACCAATAAATCATAATATCTATATT TTTATTTTTATTTCTAAAAGTTGATGGTATAAAACAGCATTGTATGGAGAAAAATAGAA GAGAGATGGAGGTTCTCTCTGAAACTAAGAGACCTAGTGGCCTTACCTCATCCAG CGAGGATTTATCTTTTCCATCCACATACTCATAGCAGTTTCTCCCCTTGGTGATCTGAGT TTCAAAAAATAAGGTAAAGACTTTTTAGAGGGTAAAAATCCGAAGAATTATTTTACTCCA CGGTCATCAATGGCCTTTGGACCTGCAGAGCTTCAACTGCCAACTGAGACCACATGGCAT

CCDS is highlighted in red.

Theresa Schwarz

JOHANNES KEPLER UNIVERSITÄT LINZ

Overview

Genome browsers

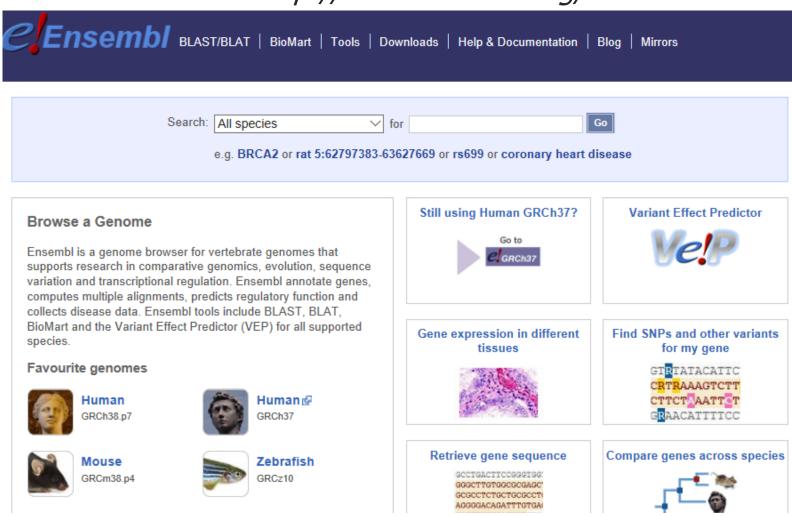
> UCSC

ENSEMBL

BLAST

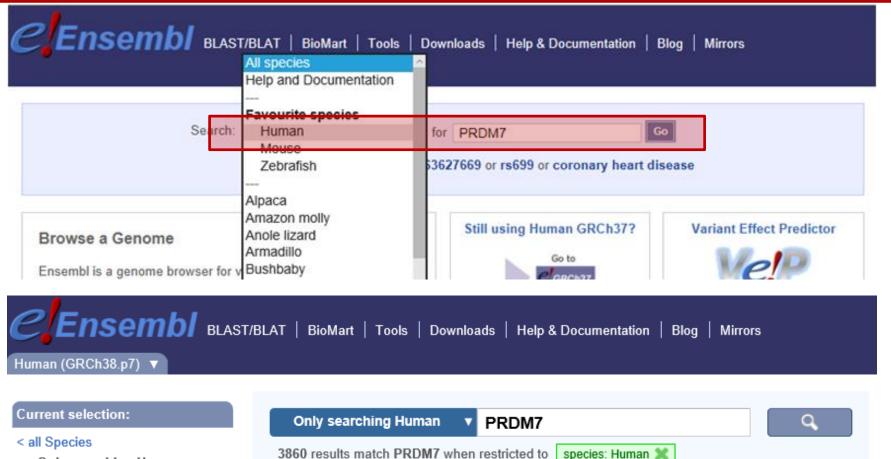
- > Pairwise alignments
- > Database alignments
- > Primer-BLAST

ENSEMBL Genome Browser


CENSEMBI BLAST/BLAT BioMart Tools Downloads Help & Documentation Blog Mirrors	
Search: All species \checkmark for Go e.g. BRCA2 or rat 5:62797383-63627669 or rs699 or coronary heart disease	

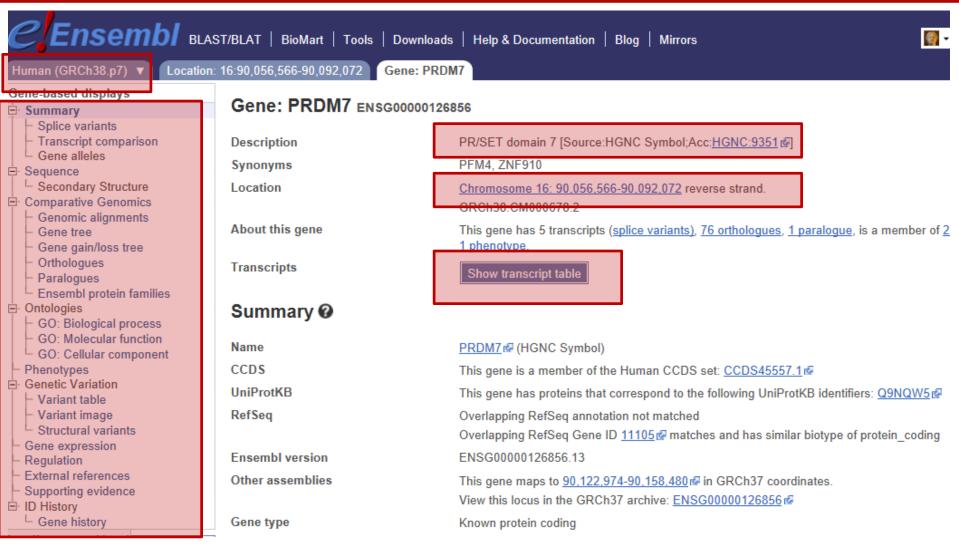
- **ENSEMBL** is a project between EMBL-EBI (European Bioinformatics Institute) and the Wellcome Trust Sanger Institute.
- This Genome Browser provides information about eukaryotic genomes.
- You can find an accurate description of protein coding genes, promoters, exons, introns, transcripts, ...

ENSEMBL Genome Browser



http://www.ensembl.org/

Search again for human PRDM7



Only searching Human

Restrict category to:		<u>Did you mean</u> ▼
Gene	2	PRDM7 (Human Gene)
Transcript	5	ENSC00000126856 16:00056566 00092072:-1 PR/SET domain 7 [Source:HGNC Symbol;Acc:HGNC:9351]
Somatic Mutation	142	PRDM7_V2 (UniProtKB Gene Name), with a synonym of PRDM7, is an external reference matched to Gene ENSG00000126856
GeneTree	1	Variant table • Phenotypes • Location • External Refs. • Regulation • Orthologues • Gene tree

→ Click on **Show transcript table**

Transcripts

Hide transcript table

Show/hide	Show/hide columns (1 hidden)												
Name 🍦	Transcript ID 🛛 🍦	bp 🌲	Protein 🖕	Biotype 🔶	CCDS 🖕	UniProt 🖕	RefSeq 💧	Flags	\$				
PRDM7-002	ENST00000449207.6	2008	<u>492aa</u>	Protein coding	<u>CCDS45557</u> @	<u>Q9NQW5</u>	NM_001098173	TSL:1 GENCODE basic APP	RIS P1				
PRDM7-003	ENST00000564210.2	714	<u>73aa</u>	Nonsense mediated decay	-	H3BUJ3	-	TSL:5					
PRDM7-005	ENST0000568473.5	706	<u>138aa</u>	Nonsense mediated decay	-	<u>A4Q9G9</u>	-	TSL:5					
PRDM7-009	ENST0000569206.1	693	No protein	Processed transcript	-	-	-	TSL:5					
PRDM7-001	ENST00000325921.10	2442	No protein	Retained intron	-	-	-	TSL:1					

Here you can see all transcript versions and some links to other databases like CCDS, UniProt.

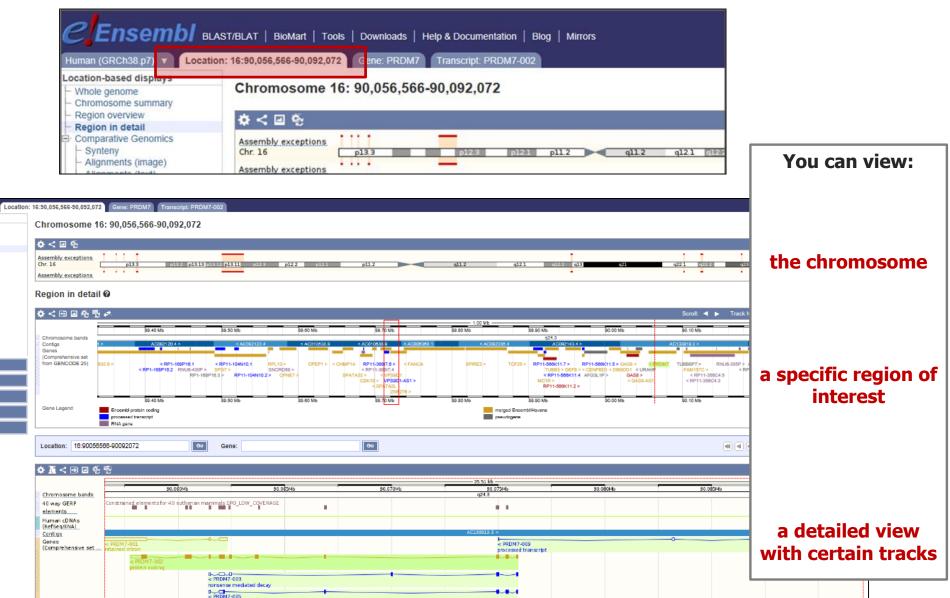
For the first transcript you can also get the NCBI's **RefSeq** sequences for nucleotide and protein.

→ Select the first entry and scroll down!

Reverse strand	_18.15 kb								
Statistics	Exons: 10, Coding exons: 10, Transcript length: 2,008 bps, Translation length: 492 resid	dues							
CCD3	This transcript is a member of the Human CCDS set. CCDS45557 @								
Uniprot	This transcript corresponds to the following Uniprot identifiers: Q9NQW5								
Transcript Support Level (TSL)	TSL:1								
Ensembl version	ENST00000449207.6								
Туре	Known protein coding								
Annotation Method	Transcript where the Ensembl genebuild transcript and the Vegar manual annotation have t article.		nce, for every base pair. See						
Alternative transcripts	This transcript corresponds to the following database identifiers: Havana transcript: <u>OTTHUMT00000420560</u>	Gene	PR/SET domain 7						
GENCODE basic gene	This transcript is a member of the Gencode basic gene set.	Location	ENSG00000126856 Chromosome 16:						

→ To get more information about exons and introns, click on a box and select `Exons'

ne same sequen	ce, for every base pair. See
HGNC Symi	ol: PRDM7-002
Gene	PR/SET domain 7
	ENSG00000126856
Location	Chromosome 16: 90,057,780-90,075,930
	✓ Q
Exon	9 of 10
Transcript	ENST00000449207.6
	Exons
	CDNA Sequence
Protein	ENSP00000396732
	Protein Variations
Gene type	Known protein coding
Transcript	Known protein coding
type	
Strand	Reverse
Base pairs	2,008
Amino	492
	Ensembl/Havana
Source	merge
	HGNC Syml Gene Location Exon Transcript Protein Gene type Transcript type Strand Base pairs


Here you can obtain sequence information on **exons** and **introns.**

Exons/ Introns	Translated s	sequence Fla	anking sequence	Intron sequer	nce UTR			
Variants	Frameshift	Inframe delet	tion Missense	Splice donor	Splice region	Start lost	Stop gained	Synonymous
Markup	loaded							

Show All 🗸 entries				Show/hide columns			Filter
No.	Exon / Intron	Start	End	Start Phase	End Phase	Length	Sequence
	5' upstream sequence						gagctgggagactcaggggcccttcccacactcagaattggagcagggcc
1	ENSE00003598129	90,075,930	90,075,842	-	0	89	TTCTA <mark>G</mark> ACAGTCCCAGCAC <mark>CA</mark> TGA <mark>G</mark> CCC <mark>T</mark> GAA <mark>AG</mark> GTC <mark>C</mark> CAAGAGGAGA <mark>G</mark> CCAG <mark>AAG</mark> G <mark>A</mark> G ACA <mark>CA</mark> GA <mark>GAGA</mark> ACAG <mark>ACCG</mark> GAAG <mark>CCCAT</mark> G
	Intron 1-2	90,075,841	90,075,475			367	gtgagaagtcgggggggggggaggcgaagccatgatggaatctgttacttcctctag
2	ENSE00003486013	90,075,474	90,075,351	0	1	124	GTCAAAG <mark>A</mark> TGCCTTCAAAGACATTTCCATATACTT <mark>C</mark> AC <mark>C</mark> AAGGAA <mark>G</mark> AA <mark>T</mark> GGG <mark>C</mark> AGAAAT <mark>G</mark> G <mark>GAG</mark> ACTGGGAGAAAACTC <mark>G</mark> CTATA <mark>GG</mark> AATG <mark>T</mark> G <mark>A</mark> AAATGAAC <mark>TA</mark> TAA <mark>T</mark> GC <mark>ACT</mark> GA <mark>T</mark> TACT GT <mark>A</mark> G
	Intron 2-3	90,075,350	90,075,024			327	gtaacaggaagtgctgggcacagacagcaaaatttttgcttctttcag
3	ENSE00003621307	90,075,023	90,074,916	1	1	108	<mark>GT</mark> CTCA <mark>G</mark> AGCCACT <mark>CG</mark> ACCAGCTTTCA <mark>T</mark> GT <mark>G</mark> TC <mark>AC<mark>G</mark>GAAG<mark>G</mark>CA<mark>GG</mark>CATC<mark>AA</mark>AC<mark>T</mark>CCAG<mark>G</mark> TGGATGACACA<mark>GA</mark>AG<mark>AT</mark>TC<mark>CG</mark>ATGAAGAATGGA<mark>C</mark>ACCT<mark>A</mark>GGCAGCAAG</mark>
	Intron 3-4	90,074,915	90,066,911			8,005	gtaagagggaagggaaggaggatttccactgatttctcatcacctcttag
4	ENSE00003488323	90,066,910	90,066,861	1	0	50	TCAAA <mark>C</mark> CTCCTT <mark>GGA</mark> T <mark>G</mark> GCCTTCAGAGGAGA <mark>A</mark> CAG <mark>A</mark> GT <mark>A</mark> AACACC <mark>A</mark> GAAG
	Intron 4-5	90,066,860	90,063,769			3,092	gtaagtatctcccaaatcctgttgattaatatgtgattctcacattaaag

• Go back and select **Location**.

Overview

- **Genome browsers**
 - > UCSC
 - > ENSEMBL

- > Pairwise alignments
- > Database alignments
- > Primer-BLAST

BLAST

- BLAST = Basic Local Alignment Search Tool
- BLAST is a nice tool to compare biological sequences and to find regions of identity or similarity.

NE

W

S

Basic Local Alignment Search Tool

BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance.

October 26th NCBI Minute

NCBI staff will introduce two new BLAST databases: the RefSeq Representative Genomes database and the Model Organisms or Landmark protein database. Fri, 07 Oct 2016 18:00:00 EST

Web BLAST

BLAST

- Pairwise alignment: process of lining up two sequences to achieve maximal levels of identity
- Database alignments: input sequence is aligned to similar sequences of an entire database

NE

W

S

Basic Local Alignment Search Tool

BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance.

October 26th NCBI Minute

NCBI staff will introduce two new BLAST databases: the RefSeq Representative Genomes database and the Model Organisms or Landmark protein database. Fri, 07 Oct 2016 18:00:00 EST

Web BLAST

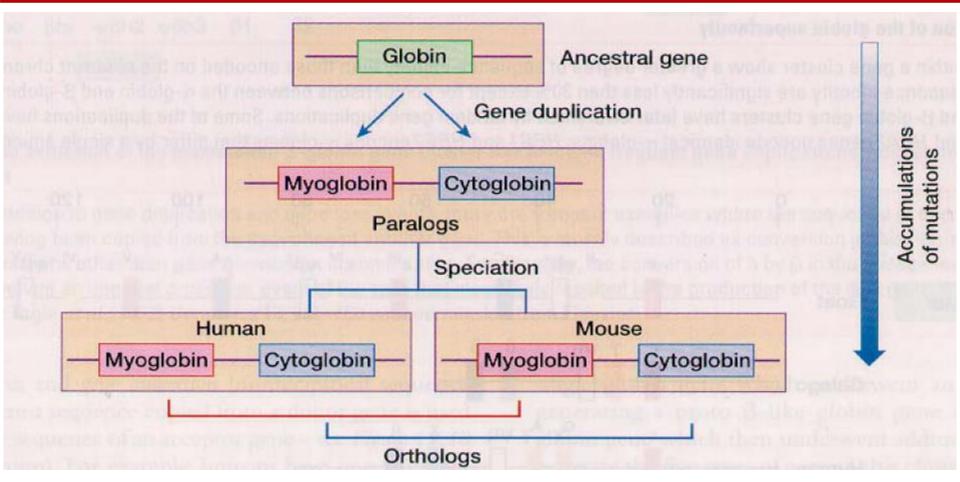
Overview

- **Genome browsers**
 - > UCSC
 - > ENSEMBL

- > Pairwise alignments
- > Database alignments
- > Primer-BLAST

Where do you get the highest level of identity when comparing two sequences?

glu	glu	ala	gly	glu	asp	asp	glu	> 1
asp	gly	ala	glu	asp	glu	asn	asn	
glu	glu	ala	gly	glu	asp	asp	glu	> 2
	asp	gly	ala	glu	asp	glu	asn	asn
glu	glu	ala asp	gly gly	glu ala	asp glu	asp asp	glu glu	> 3 asn asn


- Aims (a few examples):
 - assess the **degree of similarity** of 2 sequences
 - search for conservation (e.g. protein domains or sequence motifs)
 - find functionally or structurally related proteins
 - assess the possibility of homology

When are two genes/proteins homologous, paralogous or orthologous?

- Homologs are related genes that descended from a common ancestral gene. Two genes can be separated by the event of speciation (see ortholog) or gene duplication (see paralog).
- Paralogs are related genes in the same species that have been separated by a duplication event within a genome. Paralogs mostly evolve <u>new</u> <u>functions</u>.
- Orthologs are related genes in different species that evolved from a common ancestral gene by speciation. Normally, orthologs retain the same function in the course of evolution.

Homolog-Paralog-Ortholog

Example for paralogs

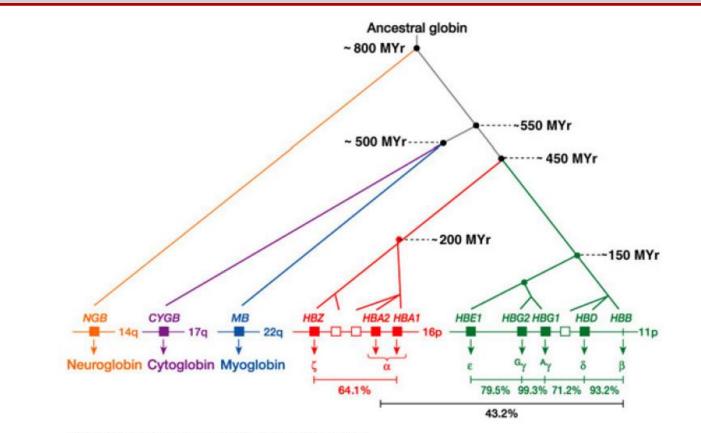


Figure 12-4 Human Molecular Genetics, 3/e. (© Garland Science 2004)

- Hemoglobin tetramer
- Myoglobin
- Neuroglobin
- Cytoglobin

monomer monomer

monomer

oxygen transport in blood oxygen transport in muscle oxygen transport in CNS oxygen transfer blood-brain JOHANNES KEPLER UNIVERSITÄT LINZ

Example for orthologs

- Neuroglobin [Homo sapiens]
- Neuroglobin [Mus musculus]

- Alignment of those two neuroglobins
 - > on level of amino acid sequence

 \rightarrow 92% identities \rightarrow difference in 13 amino acids

- > on level of nucleotide sequence
 - \rightarrow 79% identities \rightarrow difference in 193 bases

(divided by $3 = \sim 64$ aa)

Pairwise alignment – finding homologs

- When you want to find homologs or conserved domains the amino acid sequence is much more informative than the nucleotide sequence !
- Because: the genetic code is redundant (codons are degenerate: changes in the 3rd position often do not change the aa)
 3rd position = "wobble base"

	Because: more characters i	proteins: 20 amino acids vs. 4 bases
--	----------------------------	--------------------------------------

	Second letter							
	1	U	С	А	G			
First letter	υ	$\left. \begin{matrix} UUU\\ UUC \end{matrix} \right\} Phe \\ UUA\\ UUA\\ UUG \end{matrix} \right\} Leu$	UCU UCC UCA UCG	UAU UAC Tyr UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G	Third letter	
	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC His CAA CAG GIn	CGU CGC CGA CGG			
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAG	AGU AGC AGA AGG Arg	UCAG		
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG GIu	GGU GGC GGA GGG	UCAG		

- Protein alignments are used
 - to find common ancestors million or billion of years ago (Amino acid sequences offer a longer "look-back" time)
 - DNA sequences can be translated into protein and then used in pairwise alignments to find homologs

- DNA alignments are used
 - to study DNA **polymorphisms** (SNPs, insertions, deletions, microsatellites,...)
 - to study **non-coding** regions of DNA
 - to confirm the identity of a cDNA

Query: 181 catcaactacaactccaaagacacccttacacccactaggatatcaacaaacctacccac 240

S NCBI Resources 🕑 How To				<u>S</u>	ign in to NCBI
SNCBI National Center for Biotechnology Information	abases 🗸			Search	
NCBI Home	Welcome to NCBI			Popular Resources	
Resource List (A-Z)	The National Center for Biotechnol	ogy Information advances science ar	nd health by providing access to	PubMed	
All Resources	biomedical and genomic informatio	n.		Bookshelf	
Chemicals & Bioassays	About the NCBI Mission Organ	nization NCBI News Blog		PubMed Central	
Data & Software				PubMed Health	
DNA & RNA	Submit	Download	Learn	BLAST	
Domains & Structures	Deposit data or manuscripts	Transfer NCBI data to your	Find help documents, attend a	Nucleotide	
Genes & Expression	into NCBI databases	computer	class or watch a tutorial	Genome	
Genetics & Medicine				SNP	
Genomes & Maps				Gene	
•	T T			Protein	
Homology Literature	—			PubChem	
Literature					

JOHANNES KEPLER UNIVERSITÄT LINZ

http://www.ncbi.nlm.nih.gov/

→ Let's compare **Hemoglobin** and **Myoglobin** by using **Protein BLAST**.

Basic Local Alignment Search Tool

BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance.

October 26th NCBI Minute

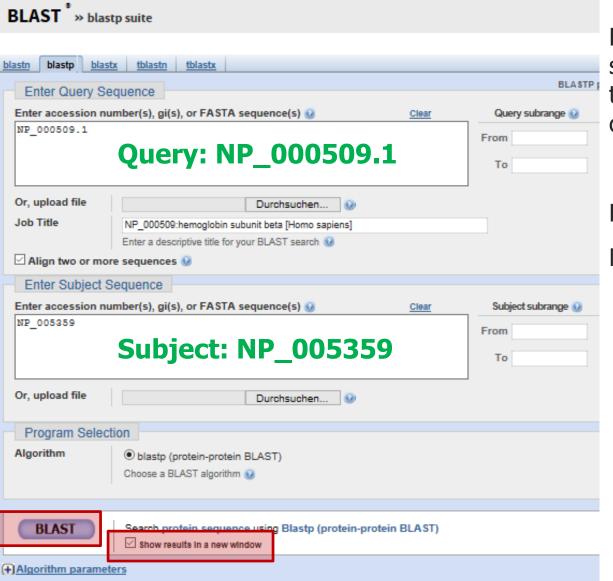
NCBI staff will introduce two new BLAST databases: the RefSeq Representative Genomes database and the Model Organisms or Landmark protein database. Fri, 07 Oct 2016 18:00:00 EST

Web BLAST

NE

W

S



Select Align two or more sequences

..®

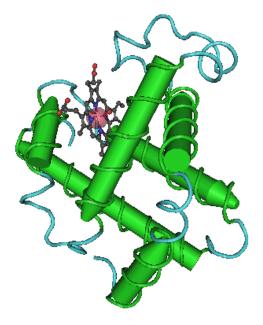
BLAST » blas	tp suite	
		Standard Protein BLAST
blastn blastp blast	tx tblastn tblastx	
Enter Query Se	BLASTP progra	ms search protein databases using a pr
	Imber(s), gi(s), or FASTA sequence(s) 😡 <u>Clear</u>	Query subrange 😡
		From
		То
Or, upload file	Durchsuchen 😡	
Job Title	Enter a descriptive title for your DLACT second (0)	
Align two or more	Enter a descriptive title for your BLAST search () re sequences ()	
Choose Search	Set	
Database	Non-redundant protein sequences (nr)	
Organism Optional	Enter organism name or id-completions will be suggested Exclude Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown	
Exclude Optional	Models (XM/XP) Uncultured/environmental sample sequences	-
Entrez Query Optional	Enter an Entrez query to limit search 😡	custom database

Theresa Schwarz

Enter **Accession number** or sequence in **FASTA format** of the two proteins you want to compare:

UNIVERSITÄT LINZ

Hemoglobin: **NP_000509.1** Myoglobin: **NP_005359**



Do they look similar ?

Human Hemoglobin subunit beta (NP_000509.1)

Human Myoglobin (NP_005359)

Theresa Schwarz

No significant similarity found!

BLAST » blastp suite-2sequences » RID-11BRJMCZ114	
	BLAST Results
Edit and Resubmit Save Search Strategies > Formatting options > Download NP_000509:hemoglobin subunit beta [Homo sapiens]	Blast 2 sequences
RID11BRJMCZ114 (Expires on 10-27 21:26 pm)Query IDNP_000509.1Descriptionhemoglobin subunit beta [Homo sapiens]Molecule typeamino acidQuery Length147	Subject IDNP_005359.1Descriptionmyoglobin [Homo sapiens]Molecule typeamino acidSubject Length154ProgramBLASTP 2.5.1+ ▷ Citation
No significant similarity found. For reasons why, <u>click here</u> Other reports: P <u>Search Summary</u>	

We can go back and change some parameters

BLAST * » blastp suite blastp blastz tblastz Enter Query Sequence	BLASTP	- Select Algorithm parameters (and s down)	croll
Enter accession number(s), gi(s), or FASTA sequence(s) Clear NP_000509.1 Or, upload file Durchsuchen	Query subrange 🕢 From To	- Change the Matrix Parameters) from B to BLOSUM45	
Job Title NP_000509:hemoglobin subunit beta [Homo sapiens] Enter a descriptive title for your BLAST search 🕢		Repeat the BLAST	search!
Enter Subject Sequence			
Enter accession number(s), gi(s), or FASTA sequence(s) 😡 <u>Clear</u>	Subject subrange 😡 From To	Scoring Parameters Matrix BLOSUM45	9
Or, upload file Durchsuchen		Gap Costs Existence: 15	Extension: 2 🖂 😡
Program Selection		Compositional Conditional c adjustments	ompositional score matı
Algorithm			
BLAST Search protein sequence using Blastp (protein-protein BLAST) Image: Show results in a new window			
(+) <u>Algorithm parameters</u>		Theresa	Schwarz

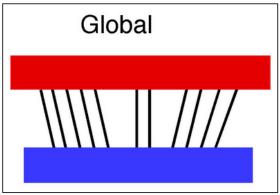
N

JOHANNES KEPLER UNIVERSITÄT LINZ

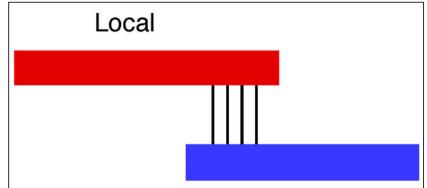
There are two kinds of sequence alignments using different matrices:

GLOBAL alignment algorithm

- Needleman and Wunsch (1970)


LOCAL alignment algorithm

- Smith and Waterman (1981)


GLOBAL alignment extends from one end of each sequence to the other.

→ **PAM** matrices

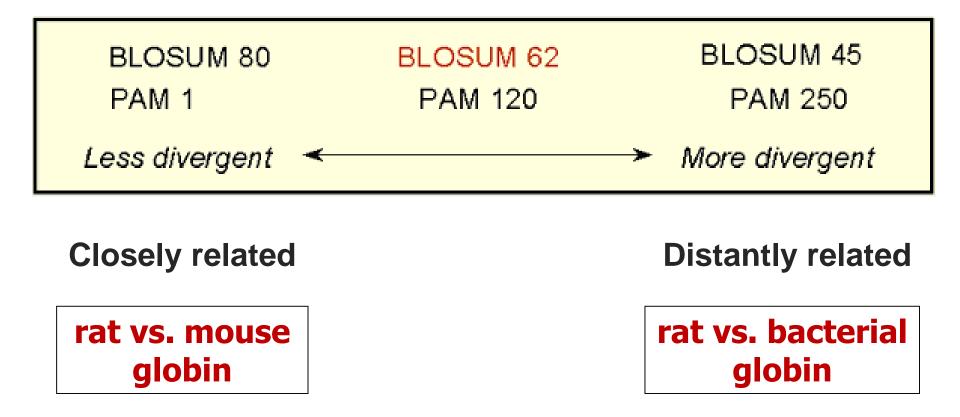
LOCAL alignment finds optimally matching regions within two sequences ("subsequences").

→ **BLOSUM** matrices

Theresa Schwarz

- BLOSUM matrices are based on LOCAL alignments.
- BLOSUM stands for blocks substitution matrix.
- BLOSUM80 is a matrix to compare sequences with similarities of >80%.
- BLOSUM62 is a matrix to compare sequences with similarities of >62%.
- BLOSUM45 is a matrix to compare sequences with similarities of >45%.

The <u>higher</u> – the better !


PAM Matrices

- PAM matrices are based on GLOBAL alignments.
- PAM stands for **point accepted mutation**.
- PAM matrices are used to assess the relatedness of two proteins
- PAM matrices work like this: How many differences are allowed per 100 amino acids?
 - PAM1
 - PAM10.7
 - PAM80
 - PAM250

- **1** difference per **100** amino acids
- 10 differences per 100 amino acids
- 50 differences per 100 amino acids
- 80 differences per 100 amino acids

The lower – the better !

By choosing the matrix you can chose **which part** of the sequence should be used (global, local) and **how stringent** the alignment should be done.

Theresa Schwarz

• When using a different **Scoring Matrix** an alignment is possible

I	BLAST [®] » bl	astp suite-2sequences >	» RID-11CAHDRB114	1	Home	Recent Results	Save
				BLAST Res	ults		
E	Edit and Resubmit	Save Search Strategies	Formatting options	▶ Download		You Tube How to re	ead this p
				Blast 2 seque	ences		
NF	P_000509:hem	oglobin subunit beta	[Homo sapiens]				
	RID	11CAHDRB114 (Expires or	n 10-27 21:36 pm)				
	Query ID Description Molecule type Query Length	amino acid	[Homo sapiens]		Description Molecule type Subject Length		

Other reports: Search Summary [Multiple alignment]

Scroll down to get more information about your results

General information:

- Score
- Query coverage
- Expected (E) value
- Ident
- Accession

Descriptions

Sequences producing significant alignments:						
Select: <u>All None</u> Selected:0						
Alignments Download <u>GenPept</u> Graphics Multiple alignment						0
Description	Max score		Query cover		Ident	Accession
myoglobin [Homo sapiens]	46.8	46.8	97%	2e-12	26%	<u>NP_005359.1</u>

• Score:

- > a measure for the **quality** of the alignment
- it is calculated by the scoring matrix and reflects the **degree of** similarity
- Max score: Score of single best aligned sequence
- ➢ <u>Total score</u>: Sum of scores of all aligned sequences
- The higher the better!

<u>criptions</u>						
Sequences producing significant alignments:						
Select: All None Selected:0						
Alignments EDownload GenPept Graphics Multiple alignment						
Description	Max score		Query cover	E value	Ident	Accession
myoglobin [Homo sapiens]	46.8	46.8	97%	2e-12	26%	NP_005359.

Query coverage:

- Information on how much of a sequence is used for the alignment
- Always check the query coverage to see whether the alignment is meaningful
- > The higher the better!

criptions							
Sequences	producing significant alignments:						
	None Selected:0						
	Description	Max score	Tota score	-	E value	Ident	Acces
			46.8	97%			NP_00

• Expected (E) value:

- Represents the **significance** of a result
- Probability of a random alignment
- The lower the E-value the more significant
- The lower the better!

myoglobin [Homo sapiens]

Descriptions Sequences producing significant alignments: Select: All None Selected:0 👖 Alignments 🔚 Download 🗸 GenPept Graphics Multiple alignment Ø Quer Е Max Total Description dent Accession value score score cove

46.8

46.8

97%

2e-12

26% NP 005359.1

• Ident:

Shows how many amino acids of the two sequences match perfectly

Descriptions

Sequences producing significant alignments:

Select: <u>All None</u> Selected:0

Alignments 🔚 Download 🗸 GenPept Graphics Multiple alignment						0
Description	Max score	Total score	Query cover	E value	Ident	Accession
myoglobin [Homo sapiens]	46.8	46.8	97%	2e-1:	2 26% 1	P_005359.1

• Accession:

Protein accession number is directly linked to myoglobin entry in protein database

Descriptions

Sequences producing significant alignments:

Select: <u>All None</u> Selected:0

Alignments 🔚 Download 🔻 GenPept Graphics Multiple alignment						Ö
Description			Query cover		Ident	Accession
myoglobin [Homo sapiens]	46.8	46.8	97%	2e-12	26%	<u>NP_005359.1</u>

Scroll down to **Alignments** for **details**.

- Query = Hemoglobin
- Sbjct = Myoglobin
- Sequence of alignment **hemoglobin vs. myglobin**

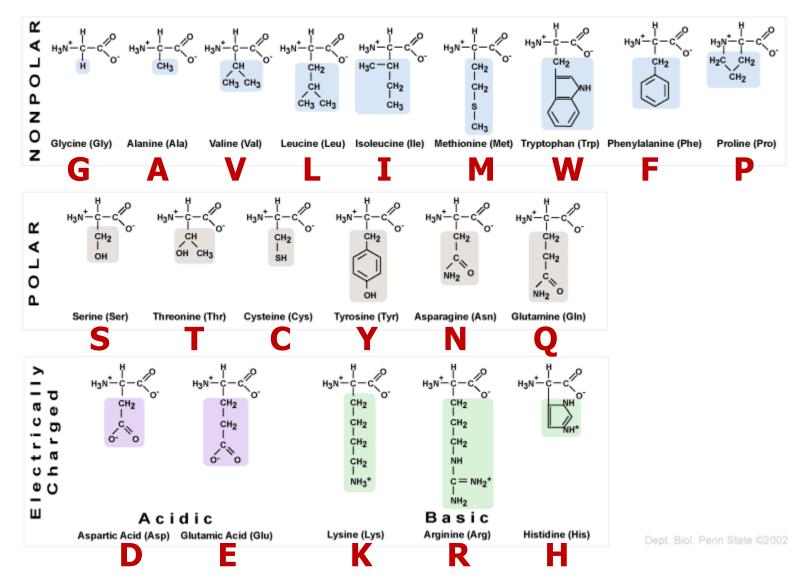
Download	ad 🗸 <u>G</u>	enPept Graphics	V Ne	ext 🔺 Previous 🛕 Descriptio
myoglobir	n [Hom	o sapiens]		
	_	005359.1 Length: 154 Number of Matches: 1		
▶ <u>See 15 r</u>	more titl	<u>e(s)</u>		Related Information
Range 1: 3	8 to 147	GenPept Graphics Vext Match A Previous Match		Gene - associated gene detail
Score		xpect Method Identities Positives Gaps		PubChem BioAssay - bioactivit
40.8 DITS(.	(144) 26	e-12 Compositional matrix adjust. 37/145(26%) 61/145(42%) 2/145(1%)		screening
Query		LTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV	61	Map Viewer - aligned genomic
Sbjct		L+ E V +WGKV D G E L RL+ +P T F+ F L + D + + + LSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASEDL	62	context
50,000	J .		02	Identical Proteins - Identical
Query		KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK	121	proteins to NP_005359.1
Sbjct		K HG VL A+ L + + L++ H K + + + ++ VL KKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECIIQVLQSKHPG	122	
_		~ ~ ~ ~		
Query		EFTPPVQAAYQKVVAGVANALAHKY 146 +F Q A K + +A Y		
Sbjct		DFGADAOGAMNKALELFRKDMASNY 147		

- You can see again the 'Score', 'E-value' and 'Identities'
- Total number of aligned amino acids: 145
- Positives
- Gaps

Bownlo	ad 🗸	<u>GenPep</u>	ot Graphics					Next 🔺 Previous 🛕 Desc
myoglob Sequence	-		iens] <u>9.1</u> Length: 154 Number of Ma	tches: 1				
See 15			t Graphics		V Next Ma	tch 🔺 Previous Mato	ch	Related Information
Score 46.8 bits	5(144)	Expect 2e-12	Method Compositional matrix adjust.	Identities 37/145(26%)	Positives 61/145(42%)	Gaps) 2/145(1%)		<u>Gene</u> - associated gene d <u>PubChem BioAssay</u> - bioa screening
Query Sbjct	4 3	L+	EKSAVTALWGKVNVDEVG E V +WGKV D G EWOLVLNVWGKVEADIPGHG	E L RL+	+P T F+	F L + D +	+ +	1 <u>Map Viewer</u> - aligned gen
Query	62		~ KKVLGAFSDGLAHLDNLKGT	~	OKLHVDPENF	RLLGNVLVCVLA		<u>Identical Proteins</u> - Identi 21 proteins to NP_005359.1
Sbjct	63		ATVLTALGGILKKKGHHEAE				SKHPG 12	22
Query Sbjct	122 123	+F	PVQAAYQKVVAGVANALAHK QAK++A DAOGAMNKALELFRKDMASN	Y				

What is the difference between <u>Identities</u> & <u>Positives</u>?

Range 1: 3 to 147 GenPept Graphics Wext Match 🛦 Previous Match							
Score Expect Method Identities Positives Gaps							
46.8 bits	44) 2e-12 Compositional matrix adjust. 37/145(26%) 61/145(42%) 2/145(1%)	_					
Query 4	LTPEEKSAVTALWGKVNVDEVGGEALGRLLVVVPWTORFFESEGDLSTPDAVMGNPKV 61 L+ E V +WGKV D G E L RL+ +P T F+ F L + D + + +						
Sbjct 3	LSDGEWQLVLNVWGKVERDIPGHGQEVIK RLFKSHPETLEKFDKFKHLKSEDEMKRSEDL 62						
Query 62	KAHGKKVLGAFSDGLAHLDNLKGTFA K HG VL A+ L + + Middle row displays identical						
Sbjct 63	KKHGAIVI, LAUJGII, KKKGHHPAP, IKI						
Query 12							
Sbjct 12	+F Q A K + +A Y $(+$ SIGN FOR CONSERVED AMINO ACIDS)						

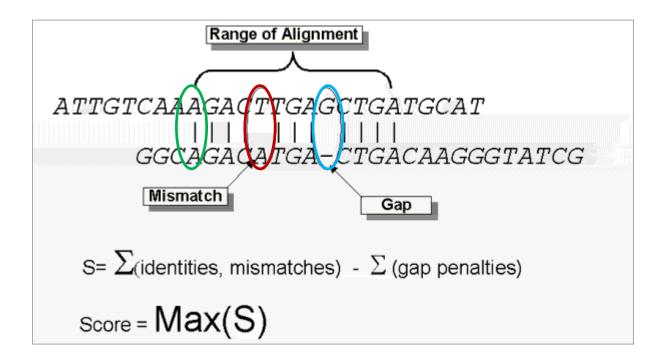

Identities: amino acids that are **identical** at a specific position in the two sequences

Similarity/Conservation: amino acids at a specific position in the two sequences are **not identical**, however they share the same chemical properties (see amino acid classification on the next slide) = they are **similar**

Positives: The **sum** of identical and similar amino acids.

Classification of amino acids

Theresa Schwarz


- You can see again the 'Score', 'E-value' and 'Identities'
- The alignment ranges from aa 3-147 = 145 (relative to the Sbjct)
- **Positives**: aligned amino acids which are either **ident** or **similar**
- Gaps: NO alignment with any amino acid. Signed with a ` `

<u>ments</u>				
Downlo	oad 🗸	GenPept Graphics	▼ Ne	ext 🔺 Previous 🛕 Descriptio
		mo sapiens]		
	-	005359.1 Length: 154 Number of Matches: 1		
▶ <u>See 18</u>	5 more	<u>title(s)</u>	-	Related Information
Range 1:	3 to 14	7 GenPept Graphics Vext Match Previous Match		
Score		Expect Method Identities Positives Gaps		<u>Gene</u> - associated gene detail PubChem BioAssay - bioactivi
46.8 bits	s(144)	2e-12 Compositional matrix adjust. 37/145(26%) 61/145(42%) 2/145(1%)		screening
Query	4	LTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV L+ E V +WGKV D G E L RL+ +P T F+ F L + D + + +	61	Map Viewer - aligned genomi
Sbjct	3	L+ E V +WGKV D G E L RL+ +P I F+ F L + D + + + LSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASEDL	62	context
2	60		101	Identical Proteins - Identical
Query	62	KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK K HG VL A+ L + + L++ H K + + + ++ VL	121	proteins to NP_005359.1
Sbjct	63	KKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECIIQVLQSKHPG	122	
Query	122	EFTPPVQAAYQKVVAGVANALAHKY 146 +F O A K + +A Y		
Sbjct	123	DFGADAQGAMNKALELFRKDMASNY 147		

How is the score calculated?

The score is a sum of match, mismatch and gap.

Pairwise alignment – Summary

- Choose two sequences
- Select an **algorithm** that generates a score
- This algorithm can be used for <u>global</u> or <u>local</u> alignments
- **Score** reflects degree of similarity (quality control)
- **E-value** tells you the significance of the alignment
- Check whether your results are meaningful → Query coverage

Overview

- **Genome browsers**
 - > UCSC
 - > ENSEMBL

- > Pairwise alignments
- > Database alignments
- > Primer-BLAST

BLAST

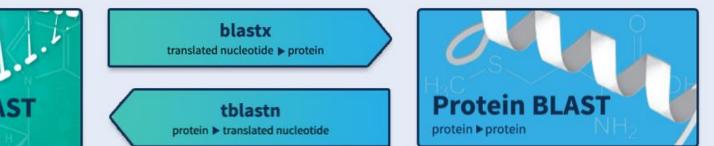
Despite pairwise alignment you can also align a sequence against an entire database

NE

W

S

Basic Local Alignment Search Tool


BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance.

October 26th NCBI Minute

NCBI staff will introduce two new BLAST databases: the RefSeq Representative Genomes database and the Model Organisms or Landmark protein database. Fri, 07 Oct 2016 18:00:00 EST

Web BLAST

BLAST

- 1. Choose the BLAST program
- 2. Choose sequence (query)
- 3. Choose the database to search
- 4. Choose optional parameters

Then click "BLAST"

1. Choose the BLAST program

- BLAST hemoglobin NP_000509.1 against a very general protein database
- Therefore, first select **Protein BLAST** again.

BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance. Learn more Learn more

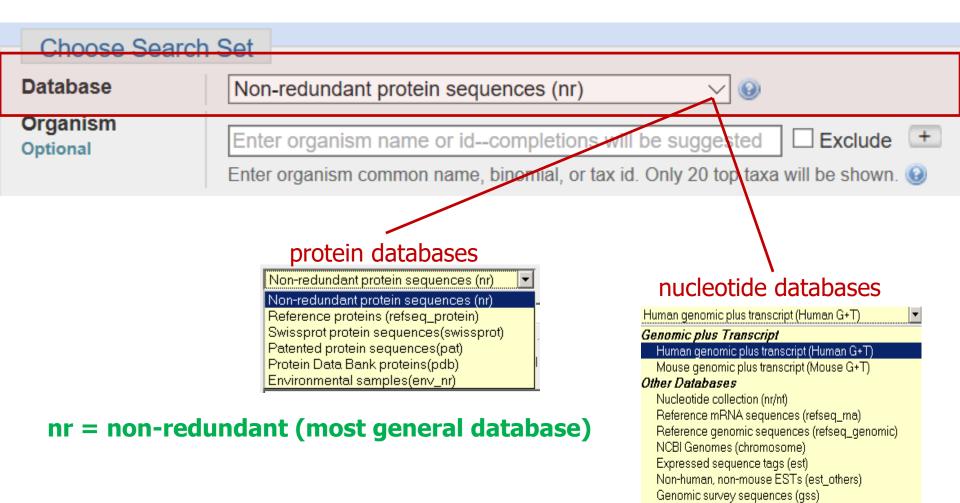
Web BLAST

2. Choose sequence (query)

<u>blastn</u>	blastp	<u>blastx</u>	<u>tblastn</u>	<u>tblastx</u>				
En	ter Que	ry Sequ	ence		BLASTP programs search protein d	atabases using a p	rotein query. <u>more</u>	Reset page
Ente	r accessi	ion numb	er(s), gi(s), or FAST	A sequence(s) 🤢	<u>Clear</u>	Query subrange 🥹	
NP_	000509.	1					From	Reset page
			N	P_(000509.1		То	
Or, u	pload fil	e			Durchsuchen		-	
Job '	Title							
		E	inter a desc	riptive title f	or your BLAST search 😡			

Sequence can be entered in FASTA format or as accession number

3. Choose the database



High throughput genomic sequences (HTGS)

Human ALU repeat elements (alu_repeats)

Patent sequences(pat) Protein Data Bank (pdb)

Sequence tagged sites (dbsts) Whole-genome shotgun reads (wgs) Environmental samples (env. nt)

JYJU JOHANNES KEPLER UNIVERSITÄT LINZ

You can...

- choose the organism to search
- turn filtering on/off
- change the substitution matrix
- change the expect (e) value
- change the word size
- change the output format

4. Choose optional parameters

-Algorithm parameters

Enter accession	number(s), gi(s), or FASTA sequence(s) 🕢 Clear Query subrange 😡 From To
Or, upload file	Durchsuchen Keine Datei ausgewählt.
Job Title	NP_000509:hemoglobin subunit beta [Homo sapiens]
	Enter a descriptive title for your BLAST search 😡
Align two or m	ore sequences 😣
Chasse Cree	h Cat
Choose Sear	
Database	Non-redundant protein sequences (pr)
Organism	Homo sapiens (taxid:9606)
Optional	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown.
Exclude Optional	Models (XM/XP) Uncultured/environmental sample sequences
Entrez Query	You Tube Create custom database
Optional	Enter an Entrez query to limit search 🚱
Program Sele	ction
Algorithm	blastp (protein-protein BLAST)
	© PSI-BLAST (Position-Specific Iterated BLAST)
	© PHI-BLAST (Pattern Hit Initiated BLAST)
	DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST)
	C DEETA-DEAST (Domain Enhanced Eboxup Time Accelerated DEAST)
	Choose a BLAST algorithm (9)

Organism

Algorithm

4. Choose optional parameters

Algorithm parameter	Note: Parameter values that differ from the default are highlighted in yellow and marked with • sign
General Paran	neters
Max target sequences	20000 Select the maximum number of aligned sequences to display @
Short queries	Automatically adjust parameters for short input sequences is
Expect threshold	Expect threshold = set a max. E-value
Word size	◆ 3 • ● Word size
Max matches in a query range	0
Scoring Param	inters
Matrix	BLOSUM62 • Scoring matrix
Gap Costs	Existence: 11 Extension: 1 🔹 😡
Compositional adjustments	Conditional compositional score matrix adjustment 👻 🐵
 Filters and Mas 	sking
Filter	Low complexity regions ()
Mask	Mask for lookup table only Mask lower case letters
BLAST	Search database Non-redundant protein sequences (nr) using Blastp (protein-protein BLAST) Show results in a new window

- The query sequence is cut into pieces ("words")
 e.g. one piece consists of 3 amino acids when the word size is 3
- 2. The BLAST algorithm uses those "words" to find similar regions in sequences which are present in the chosen database
- 3. The default word size = 3 amino acids or 11 nucleic acids

Word size = 3

SWVSQA = Query SWV WVS VSQ SQA

ref|NP_000509.1| (147 letters)

Query ID			nr All non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF excluding environmental samples from WGS projects BLASTP 2.5.1+ Citation
Other reports: 🕨	Search Summary Taxonomy reports] [Distance tree of New Analyze you	of results] [Multiple alignmen ur query with SmartBl	
Graphic Sumr	nary		
Show Conserve	ed Domains		
	Putative conserved domains have been d	letected, click on the image	below for detailed results.
Query seq.	1 25 50 MVHLTPEEKSAVTALWGKVMVDEVGGEALG RLLVV YPWTQ RFF ESFGDLSTPDAVMGN heme binding site		
Specific hit		Hb-beta_like	· · · · · · · · · · · · · · · · · · ·
Superfamilie	es G	lobin_like superfam	ily

You can find:

- general information about your search
- **Graphic Summary** with the **Conserved Domains** of your Query sequence
- click on search summary to see all the chosen parameters

Search Parameters					
Program	blastp				
Word size	3				
Expect value	10				
Hitlist size	20000				
Gapcosts	11,1				
Matrix	BLOSUM62				
Filter string	F				
Genetic Code	1				
Window Size	40				
Threshold	11				
Composition-based stats	2				

Database					
Posted date	Nov 18, 2016 8:24 AM				
Number of letters	38,985,428,197				
Number of sequences	106,376,657				
Entrez query	txid9606 [ORGN]				

Karlin-Altschul statistics					
Lambda	0.320339	0.267			
К	0.136843	0.041			
Н	0.422367	0.14			
Alpha	0.7916	1.9			
Alpha_v	4.96466	42.6028			
Sigma		43.6362			

Schwarz

Direct links

Scroll down to **Descriptions** to get an overview of all the results

Select: All None Selected:270 Select 'All' to see how many results you got = 270							
Alignments Download - GenPept Graphics Distance tree of results Multiple alignment						0	
Description	Max score	Total score	Query cover	E value	Ident	Accession	
hemoglobin subunit beta [Homo sapiens]	301	301	100%	4e-106	100%	<u>NP 000509.1</u>	
✓ beta globin chain variant [Homo sapiens]	299	299	100%	2e-105	99%	AAN84548.1	
☑ beta globin [Homo sapiens]	299	299	100%	2e-105	99%	AAZ39780.1	
✓ beta-globin [Homo sapiens]	299	299	100%	2e-105	99%	ACU56984.1	
 ✓ hemoglobin beta chain [Homo sapiens] % Ident 	299	299	100%	2e-105	99%	AAD19696.1	
Chain B, Structure Of Haemoglobin In The Deoxy Quaternary State With Ligand Bound At The Alpha Haems	298	298	99%	3e-105	100%	<u>1СОН В</u>	
hemoglobin beta subunit variant [Homo sapiens]	298	298	100%	4e-105	99%	AAF00489.1	
Chain B, Human Hemoglobin D Los Angeles: Crystal Structure	298	298	99%	6e-105	99%	<u>2YRS B</u>	
Chain B, Structure Of Aquomet Hemoglobin Bristol-alesha Alphawtbetav67m	297	297	99%	8e-105	99%	<u>4MQI B</u>	
Chain B, High-Resolution X-Ray Study Of Deoxy Recombinant Human Hemoglobins Synthesized From Beta-Globins Having Mutated Amino Termini	297	297	99%	8e-105	99%	<u>1DXU B</u>	
Chain B, Analysis Of The Crystal Structure, Molecular Modeling And Infrared Spectroscopy Of The Distal Beta-Heme Pocket Valine67(E11)-Threonine Mutation Of Hemoglobin	297	297	99%	9e-105	99%	<u>1HDB_B</u>	
Chain B, High-resolution X-ray Study Of Deoxy Recombinant Human Hemoglobins Synthesized From Beta-globins Having Mutated Amino Termini	297	297	98%	9e-105	100%	<u>1DXV B</u>	
Chain B, Crystal Structure Of Deoxygenated Hemoglobin In Complex With An Allosteric Effector And Nitric Oxide	297	297	98%	1e-104	100%	<u>5E29 B</u>	
Chain C, Room Temperature Time-Of-Flight Neutron Diffraction Study Of Deoxy Human Normal Adult Hemoglobin	297	297	98%	1e-104	100%	<u>3KMF C</u>	
☑ mutant beta-globin [Homo sapiens]	297	297	100%	1e-104	99%	AAL68978.1	
Chain B, Crystal Structure Of Human Hemoglobin E At 1.73 A Resolution	297	297	99%	1e-104	99%	<u>1NQP B</u>	

• Scroll down to **Alignments** to get **details** for single alignments

e

H Down	load	✓ GenPe	pt Graphics					
hemod	lobin	subunit b	eta [Homo s	apiensl				
			9.1 Length: 1		of Mat	ches: 1		
▶ See	77 mo	re title(s)						
Pange	l• 1 to	147 GonDo	pt Graphics				Vext Match	Previous M
Score		Expect			I	dentities	Positives	Gaps
	ts(770			al matrix adju	_) 147/147(100%)	
Query	1						FGDLSTPDAVMGNPK FGDLSTPDAVMGNPK	
Sbjct	1						FGDLSTPDAVMGNPK	
Query	61						LLGNVLVCVLAHHFG LLGNVLVCVLAHHFG	120
Sbjct	61	VKAHGKK	VLGAFSDGLAHI	LDNLKGTFATI	SELH	CDKLHVDPENFR	LLGNVLVCVLAHHFG	120
Query	121		QAAYQKVVAGVA QAAYQKVVAGVA		147			
Sbjct	121	KEFTPPV	QAAYQKVVAGVA	ANALAHKYH	147			
Down	load	✓ GenPe	pt Graphics					
				anianal				
•			iant [Homo s 3.1 Length: 14		f Moto	haar 1		
Sequen	ce iD.	AAN04340	<u>. i</u> Lengui. 14	number o	I Matc	lies. I		
Range 1	l: 1 to	147 <u>GenPe</u>	pt Graphics				🔻 Next Match 🖌	Previous M
Score		Expect	Method		L	dentities	Positives	Gaps

BLAST programs

What other BLAST programs can we use?

Basic Local Alignment Search Tool

BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance.

October 26th NCBI Minute

NCBI staff will introduce two new BLAST databases: the RefSeq Representative Genomes database and the Model Organisms or Landmark protein database. Fri, 07 Oct 2016 18:00:00 EST

Web BLAST

Ν

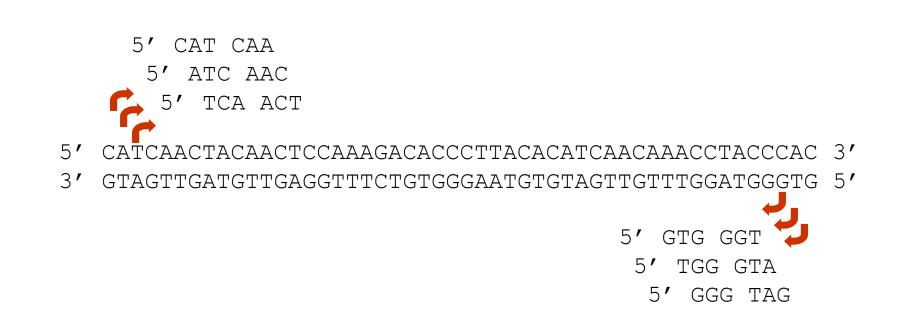
E

W

S

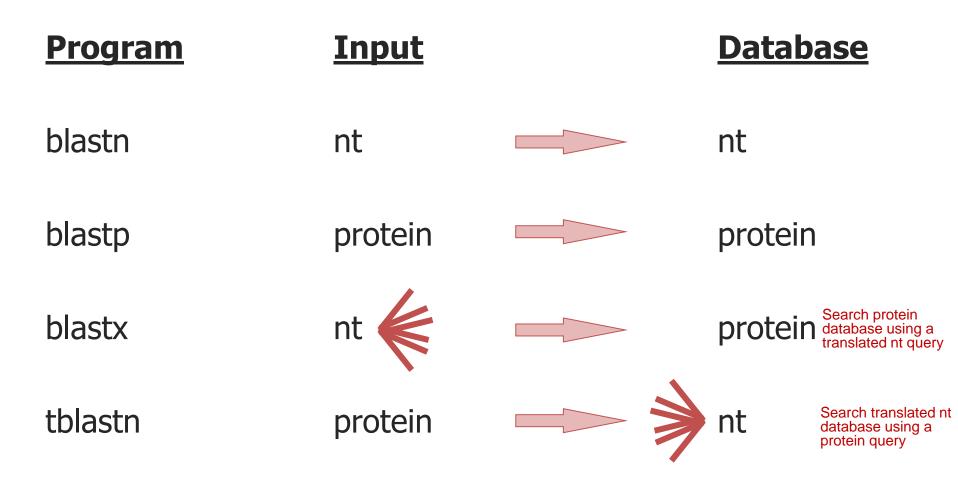
- Nucleotide BLAST = blastn
- Protein BLAST = blastp
- blastx
- tblastn

BLAST programs



Program	<u>Input</u>	<u>Database</u>
blastn	nt	nt
blastp	protein	protein
blastx	nt	protein
tblastn	protein	nt

BLAST programs - blastx



- When using blastx the input is a **nucleotide sequence**
- Then the program translates this sequence into a **protein sequence**
- Since the program does not know where the translation starts there are 6 possibilities

BLAST programs

Overview

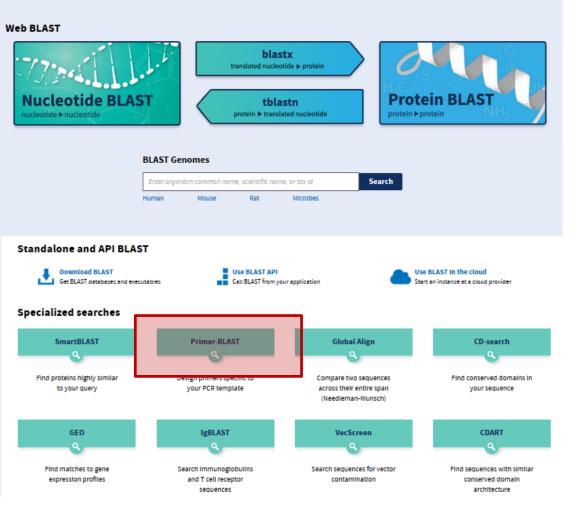
- **Genome browsers**
 - > UCSC
 - > ENSEMBL

- > Pairwise alignments
- > Database alignments
- Primer-BLAST

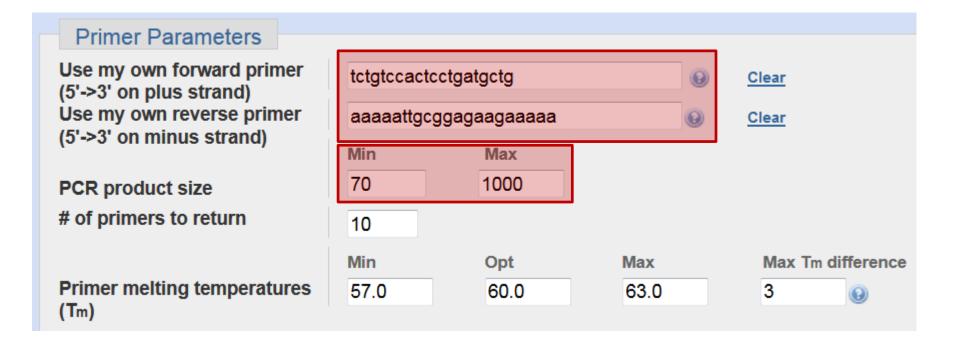
With **Primer-BLAST** you can check your primers that you designed to use them in a PCR

- do they amplify the desired product
- do they also bind to other regions in the given template

Go to BLAST (NCBI)


https://blast.ncbi.nlm.nih.gov/Blast.cgi

Under **'Specialized searches**' you can find **Primer-BLAST**


Basic Local Alignment Search Tool

BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance. Learn more October 26th NCBI Minute

NCBI staff will introduce two new BLAST databases: the RefSeq Representative Genomes database and the Model Organisms or Landmark protein database. Fri, 07 Oct 2016 18:00:00 EST

- Primers designed to amplify hemoglobin subunit beta of 401bp
- Enter the primer sequences (You can download the sequences from MOODLE)
- You can select a **minimum** and **maximum product size** ...

Primer Pair Specificity Checking Parameters

Specificity check	Enable search for primer pairs specific to the intended PCR template is
Search mode	Automatic -
Database	Genome (reference assembly from selected organisms) 🔹 💿
Exclusion	Exclude predicted Refseg transcripts (accession with XM. XR prefix) Exclude un
Organism	Homo sapiens
	Enter an organism name (or organism group name such as enterobacteriaceae, rodents), tax Add more organisms
Entrez query (optional)	
Primer specificity stringency	Primer must have at least 2 - total mismatches to unintended targets, including
	at least 2 • mismatches within the last 5 • bps at the 3' end. ()
	Ignore targets that have 6 - or more mismatches to the primer.
Max target size	4000
Splice variant handling	Allow primer to amplify mRNA splice variants (requires refseq mRNA sequence as PCR te
Get Primers	bhow results in a new window 🗹 Use new graphic view 🤢

- As template I planned to use **human gDNA**
- Select the **database** and **organism** you want to check
- Get Primers

Output

Primer pair 1

General information about your primers

	Sequence (5'->3')	Length	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	TCTGTCCACTCCTGATGCTG	20	59.10	55.00	2.00	1.00
Reverse primer	AAAAATTGCGGAGAAGAAAAA	21	53.08	28.57	4.00	0.00

Products on target templates

><u>NC 000011.10</u> Homo sapiens chromosome 11, GRCh38.p7 Primary Assembly

<pre>product length = 401 Features associated with this product: <u>hemoglobin subunit beta</u></pre>								
Forward primer	1	TCTGTCCACTCCTGATGCTG	20					
Template	5226748		5226729					
Reverse primer	1	AAAAATTGCGGAGAAGAAAAA	21					
Template	5226348		5226368					

product length = 868 Features associated with this product:							
protocadherir	n Fat 3 iso	oform X1					
protocadherin Fat 3 isoform X5							
Forward primer	1	TCTGTCCACTCCTGATGCTG	20				
Template	92718795	.G.AGT	92718814				
Reverse primer	1	AAAAATTGCGGAGAAGAAAAA	21				
Template	92719662	TA.TT	92719642				

Product length of the amplicon = **401bp** The product is **hemoglobin subunit beta** Is this the region we expected? → **YES**

Do we want to amplify this region? \rightarrow **NO** The primers can also anneal to a different region in our genome. However, there are some mismatches in the annealing sequence.

Is this now a problem for our PCR? Do we have to design new primers?

5'-ATCGGGGCCCAC-3' ||||||||| 3'-TAGCCCCGGGTATATTTAAACGGGCCCAAATTTTCTAGGTACCTAGGGTAAATTCG-5'

 In most cases, a mismatch at the 3'-end of the primer (where the polymerase attaches the next nucleotide) impairs the elongation. (Because the primer-template complex is destabilized at a crucial position)

 In most cases, one or more mismatches in the middle or the 5'-end of the primer do not affect the binding of the polymerase and the DNA can be amplified.

What kind of **mismatches** do we have in our second BLAST-result?

<pre>product length = 868 Features associated with this product: protocadherin Fat 3 precursor protocadherin Fat 3 isoform X1</pre>							
Forward primer Template			20 92718814				
Reverse primer Template	1 92719662	AAAAATTGCGGAGAAGAAAAA TA.TT	21 92719642				

- In most cases, a mismatch at the 3'-end of the primer impairs the elongation.
- In most cases, one or more mismatches in the middle or the 5'-end of the primer do NOT affect PCR.

→ It is unlikely that the primers will amplify the WRONG product, therefore we don't have to design new ones.
Theresa Schwarz

• QUESTIONS?

 Please, download Exercises #3 from MOODLE and upload until next Monday 8:00 a.m.

GOOD LUCK!