
Parallel Computing
Exercise 3 (May 30, 2023)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface.
The submitted result is as a .zip or .tgz file which contains

• a single PDF (.pdf) file with
– a cover page with the title of the course, your name(s), Matrikelnummer(s), and
email-address(es),

– the source code of the sequential program,
– the demonstration of a sample solution of the program,
– the source code of the parallel program,
– the demonstration of a sample solution of the program,
– a benchmark of the sequential and of the parallel program.

• the source (.c/.cpp/.java) files of the sequential and of the parallel program.

1

Distributed Memory Programming in MPI

The goal of this exercise to develop in MPI a distributed memory solution to one of the problems
specified in Exercise 1. As the base of your parallel programming effort, you may use the
sequential program you have developed in Exercise 1; you may also write a new sequential
program or ask one of your colleagues for one. Our default assumption is that the programs for
this assignment are written in C/C++, using the official MPI binding for the parallel solution.
Having said this, you may also write your sequential program in Java and use for the paral-

lelization one of the MPI bindings for Java provided by

• OpenMPI: https://www.open-mpi.org/faq/?category=java

• FastMPJ: http://gac.udc.es/~rreye/fastmpj/

• MPJ Express: http://mpjexpress.org

OpenMPI is available at the course machine (see module avail), without guarantee of a
functional Java interface; newer versions of this package respectively the other packages are to
be installed on your own.
However, neither do we recommend to solve this assignment in Java nor will we be able or

willing to give any support for the use of Java with MPI.

Benchmarking Benchmark the programs (both the sequential and the parallel one) as in
Exercise 1; you may also use the MPI function double MPI_Wtime()which returns the current
wall clock time in seconds. Report the results as in Exercise 1.

Contiguous Matrices If a matrix 𝐴 of dimension 𝑀 × 𝑁 with values of type 𝑇 is to be passed
(respectively broadcast/scattered/gathered) among processes, make sure that 𝐴 is represented by
a contiguous block in memory. This can be achieved either by a global declaration T A[M][N]
(which allocates the matrix in the data segment of the process, 𝑀 and 𝑁 have then to be compile-
time constants) or by a declaration and initialization T* A = malloc(M*N*sizeof(T)) (which
allocates the matrix on the heap, 𝑁 may then be variable; however, the element 𝐴[𝑖] [𝑗] is now
denoted by the reference A[i*M+j]).

Presentation Please be prepared to give a short (10 min) presentation of your results on June
6; you will be notified by June 1 whether such a presentation is requested from you.

2

https://www.open-mpi.org/faq/?category=java
http://gac.udc.es/~rreye/fastmpj/
http://mpjexpress.org

Alternative A: Matrix Inversion by Gauss-Jordan Elimination

In the MPI solution to this problem, you you may assume that the number 𝑃 of processes divides
the matrix dimension 𝑁 exactly.

• The program starts by distributing matrix 𝐴 row-wise among the 𝑃 processes in a round-
robin fashion (i.e. process 0 receives rows 0, 𝑃, 2𝑃, . . ., process 1 receives rows 1, 𝑃 +
1, 2𝑃+1, . . ., and so on). In such a way we generally ensure that the work load of a process
is not influenced by a particular distribution of data in the matrix.
To distribute 𝐴, process 0 constructs a correspondingly permuted version 𝐴′ of the matrix
and scatters its values among all processes (by a single call of MPI_Scatter).

• For performing the diagonalization, the program runs in 𝑁 iterations, where in iteration 𝑖
process 𝑝 = 𝑖%𝑃 broadcasts row 𝑖 to all other processes (MPI_Bcast). Each process then
uses this row to update all the rows of the matrix for which it is responsible.
To simplify the program, you may assume that 𝐴(𝑖, 𝑖) is different from 0 (if this should not
be the case, you may abort the computation by MPI_Abort).

• Finally, process 0 gathers the permuted inverse matrix 𝐵′ from all processes (by a single
call of MPI_Gather) and constructs from this the actual inverse matrix 𝐵.

3

Alternative B: Counting the Satisfying Assignments of a Formula

In the MPI solution to this problem, process 0 serves as a manager of a pool of tasks which
it distributes among 𝑃 additional worker processes (the speedup/efficiency values are to be
computed with respect to the number 𝑃 of workers):

• The manager holds a pool of partial assignments still to be processed (initially only the
empty assignment 𝑎 = []), the number of satisfying assignments reported by the workers
so far (initially 0), and, for each worker, the information whether the worker is currently
working or waiting for a new assignment to be processed (initially all workers are waiting).

• To each worker that is waiting the manager attempts to send a partial assignment from its
pool. However, before the manager gives a worker the last assignment in its pool (such
that the pool would become empty), the manager attempts to extend this assignment to 2𝑡
partial assignments of which it forwards one to the worker and keeps the other ones.

• When a worker has processed the partial assignment(s) on its local stack such that this
stack becomes empty, it returns the number of satisfying assignments to the server as a
result and waits for a new assignment to be processed.

• Whenever a worker returns as a result a number of satisfying assignments, the manager
records this information and attempts to send the worker a new assignment. If this is not
possible, the manager records the worker as waiting.

• From time to time (e.g., when it has popped a certain number of assignments from its local
stack), every worker sends some of its oldest assignments (those with the most variables
not yet assigned) from the top of its local stack to the server. Alternatively (or in addition),
the manager may send (when its pool gets empty or close to being empty) requests to all
workers for new assignments; theworkersmay regularly (e.g., when popping an assignment
from the local stack) poll for such requests and answer them.

• If a server receives from a worker some assignments (rather than a result), it puts them
into its pool and attempts (as described above) to send assignments to all waiting workers.

• If the manager detects that all clients are waiting and its pool is empty, it reports the total
number of satisfying assignments and informs all workers. The manager and the workers
may then terminate.

Please note that in this solution, since each worker may send without request additional
assignments to the server, the number of assignments that the manager keeps in its pool is not
bounded by 2𝑡 − 1; thus the pool may have to be dynamically expanded.

4

