
Parallel Computing
Exercise 1 (April 19, 2022)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface.
The submitted result is as a .zip or .tgz file which contains

• a single PDF (.pdf) file with
– a cover page with the title of the course, your name(s), Matrikelnummer(s), and
email-address(es),

– the source code of the sequential program,
– the demonstration of a sample solution of the program,
– the source code of the parallel program,
– the demonstration of a sample solution of the program,
– a benchmark of the sequential and of the parallel program.

• the source (.c/.java) files of the sequential and of the parallel program.

1

Shared Memory Programming in C/C++ with OpenMP or in Java

Develop a sequential and a parallel solution to one of the subsequently stated problems, either in
C/C++ with OpenMP or in Java using the Java basic thread/high-level concurrency API.
Instrument the source code of your program tomeasure the real (“wall clock”) time spent (only)

in that part of your program that you are interested in (the core function without initialization
of input data and output of results) and print this time to the standard output. In C/C++ with
OpenMP, you can determine wall clock times by the function omp_get_wtime(), in Java you
can determine it by System.currentTimeMillis().
When running the parallel programs, make sure that threads are pinned to freely available

cores; use top to verify the applied thread/core mapping and the thread’s share of CPU time
(which should be close to 100%). In a C/C++ solution with OpenMP, make sure that both your
sequential and parallel program are compiled with all optimizations switched on (option -O3).
When benchmarking the parallel program, make sure that you run the parallel program with

the same actual inputs (not only the same input sizes) as the sequential one by using the same
random number generator seeds in the generation of inputs (if applicable).
Repeat each benchmark (at least) five times, collect all results, drop the smallest and the highest

value and take the average of the remaining three values. For automating this process, the use of
a shell script is recommended. For instance, a shell script loop.sh with content

#!/bin/sh
for P in 1 2 4 8 16 32 ; do
echo $P

done

can be run as sh loop.sh >log.txt to print a sequence of values into file log.txt.
Present all timings in an adequate form in the report by

• a numerical table with the (average) execution times of sequential and parallel programs for
varying input sizes and processor numbers, (absolute) speedups and (absolute) efficiencies;

• diagrams that illustrate execution times, speedups, and efficiencies with both linear and
algorithmic axes, as shown in class (multiple runs should be shown in the same diagram
by different curves, if the scales are comparable);

• ample verbal explanations that explain your compilation/execution settings, how you in-
terpret the results, how you judge the performance/scalability of your programs.

Tip If you program in C/C++, the tool valgrind1 is useful to debug invalid memory accesses;
this package is included in many Linux distributions (Debian: apt-get install valgrind).

Presentation Please be prepared to give a short (10 min) presentation of your results on April
26; you will be notified by April 20 whether such a presentation is requested from you.

1http://valgrind.org/

2

http://valgrind.org/

Alternative A: Gaussian Elimination

Gaussian Elimination is a well-known algorithm for solving a linear system 𝐴𝑥 = 𝑏 of dimen-
sion 𝑁: given a matrix 𝐴 of size 𝑁 × 𝑁 and a vector 𝑏 of length 𝑛, we want to find that vector 𝑥
of length 𝑁 that makes the equation true.
The algorithm consists of two steps:

1. The system is converted to an upper-triangular system
𝐴𝑥 = 𝑒 (i.e. all coefficients below the main diagonal
of 𝐴 are zero) which has the same solution(s) as the
original system.

2. The new system 𝐴𝑥 = 𝑒 is solved by backward sub-
stitution (we determine the solution 𝑥𝑁−1 = 𝑒𝑁−1,
and substitute the solution in 𝐴 which produces a new
upper-triangular system of dimension 𝑁 −1which can
be solved in the same way).

Descriptions of the algorithm can be found in many
sources, e.g., Wikipedia; the core idea is that in iteration 𝑖
of the triangulation the element 𝐴(𝑖, 𝑖) serves as the pivot element: from every row 𝑗 > 𝑖 we
subtract the multiple 𝐴(𝑗 , 𝑖)/𝐴(𝑖, 𝑖) of row 𝑖. While Gaussian Elimination is typically not used
when the coefficients in 𝐴 and 𝑏 are floating point numbers (here mainly iterative methods are
used for determining approximate solutions), it plays an important role if the coefficients are
from a domain where the equation is to be solved exactly (as in computer algebra systems). In
this assignment we will consider the domainℤ/𝑝 = {0, 1, . . . , 𝑝−1} where 𝑝 is a prime number
and arithmetic is integer arithmetic modulo 𝑝 as implemented by the following C functions:

static long mAdd(long a, long b) { return (a+b)%p; }
static long mSub(long a, long b) { return (a+p-b)%p; }
static long mMul(long a, long b) { return (a*b)%p; }
static long mDiv(long a, long b) { return mMul(a, mInv(b)); }

Here mInv(𝑎) computes the modular inverse of 𝑎 (i.e., the value 𝑎′ for which 𝑎 · 𝑎′ ≡ 1
(mod 𝑝) holds) by applying the extended Euclidean algorithm:

static long mInv(long a)
{
long r = p; long old_r = a;
long s = 0; long old_s = 1;
while (r != 0)
{
long q = old_r/r;
long r0 = r; r = old_r-q*r; old_r = r0;
long s0 = s; s = old_s-q*s; old_s = s0;

}
return old_s >= 0 ? old_s : old_s+p;

}

3

Sequential Program

Your first task is to implement a sequential program solving the problem for randomly generated
equation systems of dimension 𝑁 and 𝑝 = 982451653 (≈ 230).
You may construct a “straight-forward” version of the algorithm that aborts with a correspond-

ing message, if there is no solution or there exist multiple solutions. Since arithmetic is exact, any
non-zero coefficient may serve as a pivot element in the triangulization step (i.e. is not necessary
to take the element with the maximum absolute value).
Demonstrate the correctness of your program by solving a random 4 × 4 system for, e.g.,

𝑝 = 11, and giving the output of the program (system and solution). Benchmark the execution
time of your solution (the time for solving the system not including the initialization time) for
randomly initialized matrices with at least two different dimensions that let the program run at
least 1min and at least 3min, respectively.

Parallel Program (Basic Version)

The much more time-consuming part of Gaussian Elimination is the conversion of the system
into upper-triangular formwhere in 𝑁 iterations one row of the system after the other is converted
into the right form. In iteration 𝑖 of the outermost loop of the triangulization, all coefficients of 𝐴
below and to the right of position (𝑖, 𝑖) have to be processed; since this can be done independently
for each coefficient, we can apply parallelism.
Based on this idea, modify the sequential program (if necessary) such that the iterations of the

loop that processes different matrix rows can be performed independently of each other:

• C/C++: use OpenMP pragmas to ensure that the loop gets executed in parallel; do not
forget to mark “private” variables appropriately. Compile the program with options -O3
-openmp -openmp-report 1. Experiment with different scheduling strategies respec-
tively chunk sizes to determine the one that gives best performance.

• Java: use the high-level Java concurrency API for creating a thread pool among which
tasks are scheduled each of which processes 𝐵 rows of the matrix; experiment with suitable
values for the block size 𝐵. Please note that the pool is created only once and reused in
every iteration of the triangulation (you may use the method invokeAll2 which blocks
until all tasks have been processed).

Benchmark your program for 𝑃 = 1, 2, 4, 8, 16, 32 cores (and potentially more).

Parallel Program (Advanced Version)

Most likely the basic program will not scale well beyond 16 cores (1 blade on the UV 1000)
due to the higher latency of memory access across blades. In particular, in every outermost
iteration of the algorithm, each matrix row may be accessed by a thread running on another node
leading to a transfer of the row to another blade in every iteration step. Therefore write another

2https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/
ExecutorService.html#invokeAll(java.util.Collection)

4

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.html#invokeAll(java.util.Collection)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.html#invokeAll(java.util.Collection)

version of the program that addresses this problem: every row is assigned to the same thread
(pinned to a node blade) across multiple iterations: if we have 𝑃 threads, thread 0 processes
rows 0, 𝑃, 2𝑃, . . ., thread 1 processes rows 1, 𝑃 + 1, 2𝑃 + 1, . . . and so on (rows are distributed to
threads in a “round-robin” fashion).
In Java, this may be achieved by explicitly creating 𝑃 threads that stay alive during the whole

computation. Each thread allocates (in the heap of the node on which it runs) the matrix rows
which it subsequently processes; after the allocation phase, the original main thread initializes the
matrix with the coefficients. Then the program runs in 𝑛 iterations where in every iteration each
thread processes the rows it is in charge of. For synchronizing all threads after every iteration,
you may use class CyclicBarrier3.
In OpenMP this may be achieved by using (like in Java) a matrix representation that stores in

an array the start addresses of each row and using repeated execution of omp parallel to let
each thread process a part of a matrix: in the first execution each thread allocates the memory of
the rows for which it is in charge, in every subsequent execution, it processes theses rows.
Benchmark the program in the same way as the original version.
Note: there is no guarantee that the advanced version of the program will indeed scale better

than the basic version. However, the effort to achieve such an improvement and its evaluation
will be judged.

3https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/
CyclicBarrier.html

5

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/CyclicBarrier.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/CyclicBarrier.html

Alternative B: Traveling Salesman

The “traveling salesman” problem is as follows: given a directed graph with 𝑛 nodes whose edges
are labeled with positive lengths, find a cyclic path that contains all nodes and has minimum
length. The nodes are identified with the numbers 0, . . . , 𝑛 − 1,the edges are represented by a
distance matrix 𝑑 such that, if 𝑑 (𝑣𝑖 , 𝑣 𝑗) = 𝑤 > 0, then node 𝑣𝑖 is connected to node 𝑣 𝑗 by an
edge of length 𝑤 (if 𝑤 = 0, there is no edge connecting these nodes).

Since the problem is NP-complete, in practice algorithms are applied that determine heuristi-
cally “good” but not necessarily optimal solutions. We will, however, investigate an algorithm
that indeed finds the optimal solution: the core idea is to traverse a search tree where every node
is labeled by a path starting at node 0 and by the length of that path. The root of the tree is labeled
with the singleton path 0 with length 0; every inner node of the tree with path 0 → . . . → 𝑣𝑘
and length 𝑤 has as its children all those nodes whose path 0 → . . . → 𝑣𝑘 → 𝑣𝑘+1 extends
the parent path by a node 𝑣𝑘+1 that does not occur in 0 → . . . → 𝑣𝑘 ; the length of this path is
𝑤 + 𝑑 (𝑣𝑘 , 𝑣𝑘+1). The leaves of the tree are labeled with all cyclic paths 0→ . . . → 0 that contain
every non-0 node only once and the length of that path. The shortest path is represented by the
leaf with the shortest length.
The tree is constructed with the help of the set of all non-leaf nodes (i.e, paths and associated

lengths); initially this set contains only the root. The algorithm proceeds by repeatedly removing
one path/weight from the set; if this path consists of 𝑛 nodes, the root 0 is added, and it is
determined whether the resulting cyclic path is shorter than any previously found one; if yes, this
path and its length are remembered. If the path has less than 𝑛 nodes, it is extended in all possible
ways by nodes that do not yet occur on the path; if the resulting path is at least as long as the
length of a previously encountered cyclic path, it cannot lead to a shorter cyclic path any more
and is dropped; otherwise, it is added to the set. The process repeats until the set becomes empty;
the remembered cyclic path is then the shortest one. The core of a corresponding sequential C
program can be thus as shown on the next page.
This algorithm belongs to the class of “branch and bound” algorithms: it keeps track of an

upper bound on the quality of a solution (the length of the shortest cyclic path encountered so far);
parts of the search tree that cannot lead to a better solution will be subsequently not investigated.
A sequential algorithm processes this tree typically in depth-first order (by organizing the set of
path as a stack to which new paths are pushed and from which paths are popped). However,

6

init_path(&path); // initialize first path
add_path(path); // add path to set
while (pool_number > 0) { // set is not empty
remove_path(&path); // remove path from set
if (path.number == N) { // path contains all nodes
update_result(path); // possibly update result
continue;

}
for (int i=1; i<N; i++) { // extend partial path in all ways
weight_t w = add_node(&path, i); // attempt to add node to a better path
if (w < 0) continue; // attempt failed
add_path(path); // add new path to pool
remove_node(&path, w); // remove node for next attempt

}
}

the tree can be also be investigated in parallel by multiple concurrent threads that independently
remove paths from the set and investigate the corresponding subtrees in parallel. The only points
of interaction between the threads are the set of partial paths (from which to remove and to which
to add elements), the best solution found so far (which may have to be updated) and the length of
the solution (a better bound established by one thread also reduces the subsequent search space
of any other thread).

Sequential Program

First, implement either in C/C++ or in Java (choose here the same language that you use in the
parallel solution) a sequential program that solves the problem for randomly generated graphs
of dimension 𝑛 (it should be configurable which fraction of the distance matrix 𝑑 is not zero);
the edge lengths may be represented as integer numbers. The set of paths can be organized as a
stack; a little investigation reveals that there cannot be more than 𝑛 · (𝑛 − 1)/2 (partial) paths on
the stack; thus the stack can be represented by a preallocated array of this size. Since also paths
have a limited length 𝑛, it is recommended to allocate all data structures in advance (rather than
continuously allocating and freeing/garbage-collecting these).
Demonstrate the correctness of your implementation by the graph shown above.
The structure of a graph may significantly influence the runtime of the algorithm; thus bench-

mark the program for (at least) two inputs of different sizes that let the program run at least 1min
and at least 3min, respectively.

Parallel Program in Java or OpenMP

Implement a shared memory version of the parallel program in Java or in OpenMP; here consider
the following points:

• There shall be one shared set of paths from which each thread may remove an element
for further processing; apparently access to this set must be synchronized. To ensure that

7

threads receive big tasks (i.e., short paths) this shared set shall be maintained as a queue
rather than as a stack, i.e., new elements are added at the back rather than at the front.

• Each thread maintains an own local set of paths in the usual way as a stack; the thread has
exclusive access to this stack (which thus needs not to be synchronized); the thread adds
new paths only to its local stack (not to the shared queue). The memory for the stack shall
be allocated by the thread itself to ensure that it resides on the same node as the thread.

• A thread processes paths primarily from its local stack; only when this stack becomes
empty, the thread removes a path from the shared queue for further processing. However,
if this is the last path in the queue, the thread extends the path in the usual way and leaves
all but one of the extended paths in the shared queue for processing by other threads.

• Access to the best solution found so far and its length have to be synchronized. To allow
independent processing, however, each thread maintains a local copy of the best length
which it uses for bounding its local computation. Only when it thinks it may have found
a better solution than the previous one (and thus attempts to update the solution), it also
updates its local length by the (potentially better) shared length.

• If all threads find their local queues and the shared queue empty, the algorithm terminates.

OMP Solution The program may create 𝑇 worker threads that simultaneously process the
search tree:

#pragma omp parallel ... num_threads(T)

Access to shared variables has to be protected by critical sections or lock variables.

Java Solution You may create (as in the OMP-based solution) a fixed set of worker threads
that operate on shared synchronized variables. Alternatively, the program may be based on the
Java concurrency framework and create tasks for all non-leaf nodes of the search tree, potentially
using the classes ForkJoinTask and ForkJoinPool4.

Benchmarks Benchmark your program for 𝑃 = 1, 2, 4, 8, 16, 32 cores (and potentially more).

4See https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html and the
documentation of these classes

8

https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

