Slow-Down in Parallel SAT

- paper is inconclusive about the reason for slow-down
- probably more threads work on useless sub-tasks
- sharing clauses caching sub-computation increases pressure on memory system
- maybe search space splitting was not a good idea (guiding path)
Low Speedup in Parallel SAT

- sequential SAT algorithms produce proofs of large depth (\(span\))
- so need new algorithms which produce low depth proofs
Memory System is Good Enough

Martin Aigner, Armin Biere, Christoph Kirsch, Aina Niemetz, Mathias Preiner.
Analysis of Portfolio-Style Parallel SAT Solving on Current Multi-Core Architectures.
In Proc. Intl. Workshop on Pragmatics of SAT (POS’13),

- largest speed-up obtained by portfolio approach
 - run different search strategies in parallel
 - if one terminates stop all
 - in practice share some important learned clauses caching sub-computations

- slow-down due to memory system?
 - since memory system (memory / caches / bus) are shared in multi-core systems
 - slow-down not too bad (particularly for solvers with small working set)
 - even though considered memory-bound (but random access)
 - waiting time for memory to arrive overlaps
Clever Splitting

Marijn Heule, Oliver Kullmann, Siert Wieringa, Armin Biere.
Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads.
http://dx.doi.org/10.1007/978-3-642-34188-5_8

Marijn J.H. Heule, Oliver Kullmann, and Victor Marek
Solving and Verifying the boolean Pythagorean Triples problem via Cube-and-Conquer.
SAT 2016, 196-211, Springer 2016
http://dx.doi.org/10.1007/978-3-319-40970-2_15

Everything is Bigger in Texas
https://www.cs.utexas.edu/~marijn/ptn/
JKU CS Colloquium 22. June 2016
Amdahl’s Law with Work and Span

\[T = work = \text{sequential time} \quad T_p = \text{wall-clock time} \tilde{p} \text{ CPUs} \quad T_\infty = \text{wall-clock time} \infty \text{ CPUs} \]

Speedup \[S_p = \frac{T}{T_p} \]

span critical path (also called “makespan” in the context of scheduling)

\[f = \text{fraction of sequential work, thus} \quad f = \frac{\text{span}}{\text{work}} \]

simplified Amdahl’s law in terms of \textit{work} and \textit{span}: \[S_p \leq \frac{1}{f} = \frac{\text{work}}{\text{span}} \]

Reduce \textit{span} as much as possible:

- keep sequential blocks short! \[\Rightarrow \text{coarse grained locking is evil} \]
- keep sequential dependencies short! \[\Rightarrow \text{(non-logarithmic) loops are evil} \]
Pebble Games

Given a directed acyclic graph with one sink.

Nodes of the graph have a pebble or not.

One step can either . . .

. . . remove a pebble from a node . . .
. . . or add a new pebble to a node without one, . . .
. . . but only if all its predecessor have a pebble.

Goal is to only have a pebble on the sink node.

What is the smallest maximum number of pebbles needed?

common concept in complexity theory
assuming intermediate results have to be stored
relates to smallest p needed to reach maximum speed-up
this version (black pebble game) actually only gives space bounds
Sum

compute sum \(\sum_{1}^{n} x_i \) for \(n \) numbers \(x_i \) in parallel

- sequential
 - \(y_0 = 0, \quad y_{i+1} = y_i + x_i \) for \(i = 1 \ldots n - 1 \)
 - \textit{work} = \(T = \mathcal{O}(n) \) (\(n - 1 \) additions)
 - \textit{span} = \(\mathcal{O}(n) \) too
 - since \(y_{i+1} \) depends on all previous \(y_j \) with \(j \leq i \)
 - thus no speed-up \(S_p = \mathcal{O}(1) \)

- parallel
 - \textit{associativity} allows to regroup computation
 - \textit{work} = \(\mathcal{O}(n) \) remains the same
 - \textit{span} = \(\mathcal{O}(\log n) \) reduces exponentially
 - speed-up not ideal but \(S_n = \mathcal{O}(n/\log n) \)
 - note \(p > n \) does not make sense
compute all sums \(s_j = \sum_{1}^{j} x_i \) for all \(j = 1 \ldots n \) and again \(n \) numbers \(x_i \) in parallel

sequential version as in previous slide

parallel version needs a second depth \(\mathcal{O}(\log n) \) pass

works even “in place” (first pass overwrites original \(x_i \))

but actual “wiring” complicated

still \(\text{span} = \mathcal{O}(\log n) \)

basic algorithmic idea for many “parallel” algorithms

propagate and generate adders with prefix trees instead of ripple carry adders
Ripple-Carry-Adder

\[s_i = x_i \oplus y_i \oplus c_i \quad \text{sum} \]

\[c_{i+1} = x_i y_i + x_i c_i + y_i c_i \quad \text{carry} \]

\[s_0 = x_0 \oplus y_0 \quad c_0 = 0 \]
\[s_1 = x_1 \oplus y_1 \oplus c_1 \quad c_1 = x_0 y_0 \]
\[s_2 = x_2 \oplus y_2 \oplus c_2 \quad c_2 = x_1 y_1 + x_1 c_1 + y_1 c_1 \]
\[s_3 = x_3 \oplus y_3 \oplus c_3 \quad c_3 = x_2 y_2 + x_2 c_2 + y_2 c_2 \]
\[s_4 = x_4 \oplus y_4 \oplus c_4 \quad c_4 = x_3 y_3 + x_3 c_3 + y_3 c_3 \]
\[s_5 = x_5 \oplus y_5 \oplus c_5 \quad c_5 = x_4 y_4 + x_4 c_4 + y_4 c_4 \]
\[s_6 = x_6 \oplus y_6 \oplus c_6 \quad c_6 = x_5 y_5 + x_5 c_5 + y_5 c_5 \]
\[s_7 = x_7 \oplus y_7 \oplus c_7 \quad c_7 = x_6 y_6 + x_6 c_6 + y_6 c_6 \]

\[c_8 = x_7 y_7 + x_7 c_7 + y_7 c_7 \]

\[\text{work} = \mathcal{O}(n) \quad \text{span} = \mathcal{O}(n) \]
Propagate-and-Generate Adder / Lookahead Adder

\[p_i = x_i + y_i \quad \text{propagate} \]
\[g_i = x_i y_i \quad \text{generate} \]
\[c_{i+1} = g_i + p_i c_i \quad \text{new carry computation formula} \]

\[
\begin{align*}
 c_0 &= 0 \\
 c_1 &= g_0 \\
 c_2 &= g_1 + p_1 g_0 \\
 c_3 &= g_2 + p_2 g_1 + p_2 p_1 g_0 \\
 c_4 &= g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 \\
 c_5 &= g_4 + p_4 g_3 + p_4 p_3 g_2 + p_4 p_3 p_2 g_1 + p_4 p_3 p_2 p_1 g_0 \\
 c_6 &= g_5 + p_5 g_4 + p_5 p_4 g_3 + p_5 p_4 p_3 g_2 + p_5 p_4 p_3 p_2 g_1 + p_5 p_4 p_3 p_2 p_1 g_0 \\
 c_7 &= g_6 + \ldots + \ldots + p_6 p_5 p_4 p_3 p_2 p_1 g_0 \\
 c_8 &= g_7 + \ldots + \ldots + \ldots + p_7 p_6 p_5 p_4 p_3 p_2 p_1 g_0 \\
\end{align*}
\]

work = \(\mathcal{O}(n^2) \) \quad span = \(\mathcal{O}(\log n) \) \quad assuming \(n \)-ary gates otherwise \quad work = \(\mathcal{O}(n^3) \)
$$work = \mathcal{O}(n^2) \quad span = \mathcal{O}(\log n)$$

using prefix / scan computation otherwise work remains $\mathcal{O}(n^3)$ for binary AND gates
Array Multiplier with final stage Ripple-Carry-Adder

\[\text{work} = \mathcal{O}(n^2) \quad \text{span} = \mathcal{O}(n) \]
Wallace-Tree Multiplier with final stage Carry-Lookahead-Adder

\[work = \mathcal{O}(n^2) \quad span = \mathcal{O}(\log n) \]
List Ranking / Pointer Jumping

As long there is i with $\text{next}[i] \neq \bot$:

\[
\text{val}[i] \ += \ \text{val}[\text{next}[i]] \quad \text{next}[i] = \text{next}[\text{next}[i]]
\]
Sorting Networks

- circuits for sorting fixed number \(n \) of inputs
 - basic “gate” compare-and-swap:
 \[
 \text{cmpswap}(x, y) := (\min(x, y), \max(x, y))
 \]
 - interesting challenge to get smallest sorting network for \(n = 11 \) size only known to be between 33 and 35 compare-and-swap operations

- zero-one principle
 - correctness of sorting network (it sorts!) . . .
 - . . . only requires sorting 0 and 1 inputs (bits) . . .
 - . . . as long only compare-and-swap is used.

- asymptotic complexity of algorithms
 - examples: Bitonic Sorting, Batcher Odd-Even Mergesort
 - with \(\text{span} = \mathcal{O}(\log^2 n) \)
 - with \(\text{work} = \mathcal{O}(n \cdot \log^2 n) = T_1 \)
 - but sequential time \(T = \mathcal{O}(n \cdot \log n) \)
 - maximum absolute speed-up \(S_n = \mathcal{O}(n / \log n) \)
Bubble Sort Example

- top-most i sorted after i phases
- lowest value only sorted after $n - 1$ compare-and-swaps
- $work = \mathcal{O}(n^2)$
- $span = \mathcal{O}(n)$
- looks like perfect speedup $S_n = \mathcal{O}(n)$ w.r.t. (bad) sequential algorithm
- however, if we compare against Quicksort $T = O(n \cdot \log n)$
 we only get $S_n = \mathcal{O}\left(\frac{n \cdot \log n}{n}\right) = \mathcal{O}(\log n) < \mathcal{O}(n / \log n)$
Batcher Odd-Even Mergesort

- basically as mergesort
 - split input into two parts . . .
 - . . . sort parts recursively . . .
 - . . . merge sorted sequence.

- example: recursion for \(n = 8 \)
 - outer block takes two sorted sequences of size 4 each
 - each inner block takes two sorted sequences of size 2 each
 - outer input sequences need to be sorted too
Batcher Odd-Even Mergesort
NC – Nick’s Class

$f(n)$ polylogarithmic iff exists constant c such that $f(n) = \mathcal{O}(\log^c n)$

NC is set of decision problems . . .
. . . which can be decided in polylogarithmic time . . .
. . . on a parallel computer with polynomial many processors, i.e., . . .
. . . exists constant c such that $p = \mathcal{O}(n^k)$.

NC^c requires (parallel) computation time (span) in $\mathcal{O}(\log^c n)$

$\text{NC} = \bigcup \text{NC}^c$
L, NL, AC

L is set of decision problems solvable in logarithmic space deterministically

NL is set of decision problems with logarithmic space non-deterministically

NC = AC is the set of decision problems with logarithmic circuit complexity, i.e., . . .

. . . each input of size n can be decided by polynomial circuit with logarithmic depth in n, . . .

. . . made of gates with bounded (NC) or unbounded (AC) number of inputs

as before define NCc and ACc requiring $O(\log^c n)$ depth (layers)
P Completeness

\[\text{NC}^1 \subseteq \text{L} \subseteq \text{NL} \subseteq \text{AC}^1 \subseteq \text{NC}^2 \subseteq \text{AC}^2 \subseteq \text{NC}^3 \subseteq \cdots \subseteq \text{NC} = \text{AC} \subseteq \text{P} \]

using “logarithmic” reductions

it is commonly believed that \(\text{NC} \neq \text{P} \)

accordingly P-hard problems are supposed to be NOT “parallelizable”

similar to the common belief that \(\text{P} \neq \text{NP} \)
Circuit Evaluation Problem

Given a boolean circuit with one output, and an evaluation to its inputs.

Evaluate the circuit and determine its output value for that input assignment.

This problem (deciding whether output yields one) is P-complete . . .
. . . and thus considered not to be parallelizable.

Thus evaluating a function can not be done “effectively” in parallel.

One step of simulation or constraint propagation are not parallelizable! (?)