Topics

Application of concurrency to speed-up computations.

- Multi-core processors, multi-processor systems, computer clusters, computational grids.
- Shared memory (multi-threaded) and distributed memory (message passing) programming.
- Task parallel and data parallel algorithms.
- Strategies for parallel program design.
- Performance measures and complexity models.
- Performance analysis and debugging.

Various interrelated aspects (many of which we will discuss).
Preliminary Schedule

- March 3 (Schreiner): Parallel Architectures and Performance.
- March 10 (Biere): Parallel Algorithms and Complexity.
- March 17 (Schreiner): Concurrency in Java and OpenMP.
- March 31 (Biere): Shared Mem. Prog., Cilk, Lace, Work Stealing
- April 21 (Schreiner): Presentations of Solutions 1.
- April 28 (Schreiner): Message Passing Programming with MPI.
- May 5 (Biere): Shared Memory Programming with PThreads.
- May 12 (Biere): Presentations of Solutions 2.
- May 19 (Schreiner): Designing Parallel Programs.
- June 9 (Biere): Presentations of Solutions 3.
- June 23 (Schreiner): Presentation of Solutions 4.

Individual meetings for discussing the assignments.
Organization and Grades

■ Moodle Course
 □ Materials and links.
 □ Forums for announcements and Q&A.
 □ Submission of assignments.

■ Assignments
 □ 4 programming assignments will be handed out.
 □ At least 3 have to be turned in and graded positively.
 □ Elaboration individually or in groups of twos.
 □ Selected submissions will be invited for presentation.

No exam, grade will be entirely based on assignments/presentations.
Literature

Literature

Literature

Peter Pacheco, *An Introduction to Parallel Programming*, Morgan Kaufmann, 2011.
Literature

Literature

Literature

Ian Foster, *Designing and Building Parallel Programs*, Addison-Wesley, 1995.