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Abstract
Consider an algebraic ordinary differential equation (AODE), i.e. a
polynomial relation between the unknown function and its
derivatives. This polynomial defines an algebraic hypersurface. By
considering rational parametrizations of this hypersurface, we can
decide the rational solvability of the given AODE, and in fact
compute the general rational solution. This method depends
crucially on curve and surface parametrization and the
determination of rational invariant algebraic curves.

Transforming the ambient space by some group of transformations,
we get a classification of AODEs, such that equivalent equations
share the property of rational solvability. In particular we discuss
affine and birational transformation groups.

We also discuss the extension of this method to non-rational
parametrizations and solutions.

This research has been carried out jointly with
L.X.Châu Ngô, J.Rafael Sendra, and Georg Grasegger.
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The problem
An algebraic ordinary differential equation (AODE) is given by

F (x , y , y ′, . . . , y (n)) = 0 ,

where F is a differential polynomial in K [x ]{y} with K being a
differential field and the derivation ′ being d

dx
.

Such an AODE is autonomous iff F ∈ K{y}.

The radical differential ideal {F} can be decomposed

{F} = ({F} : S)
︸ ︷︷ ︸

general component

∩ {F ,S}
︸ ︷︷ ︸

singular component

,

where S is the separant of F (derivative of F w.r.t. y (n)).
If F is irreducible, {F} : S is a prime differential ideal; its generic
zero is called a general solution of the AODE
F (x , y , y ′, . . . , y (n)) = 0.

J.F. Ritt, Differential Algebra (1950)

E. Hubert, The general solution of an ODE, Proc. ISSAC 1996



Problem: Rational general solution of AODE of order 1

given: an AODE F (x , y , y ′) = 0, F irreducible in Q[x , y , y ′]

decide: does this AODE have a rational general solution

find: if so, find it

Example: F ≡ y ′2 + 3y ′ − 2y − 3x = 0.
general solution: y = 1

2((x + c)2 + 3c), where c is an arbitrary
constant.
The separant of F is S = 2y ′ + 3. So the singular solution of F is
y = −3

2x − 9
8 .



Rational parametrizations

An algebraic variety V is the zero locus of a (finite) set of
polynomials F , or of the ideal I = 〈F 〉.
A rational parametrization of V is a rational map P from a full
(affine, projective) space covering V; i.e. V = im(P) (Zariski
closure).
A variety having a rational parametrization is called unirational;
and rational if P has a rational inverse.



◮ a parametrization of a variety is a generic point or generic
zero of the variety; i.e. a polynomial vanishes on the variety if
and only if it vanishes on this generic point

◮ so only irreducible varieties can be rational

◮ a rationally invertible parametrization P is called a proper
parametrization;
every rational curve or surface has a proper parametrization
(Lüroth, Castelnuovo); but not so in higher dimensions

For details on parametrizations of algebraic curves we refer to
J.R. Sendra, F. Winkler, S. Pérez-D́ıaz,
Rational Algebraic Curves – A Computer Algebra Approach,

Springer-Verlag Heidelberg (2008)



The autonomous case F (y , y ′) = 0

First we concentrate on algebraic and geometric questions:

◮ A rational solution of F (y , y ′) = 0 corresponds to a proper
(because of the degree bounds) rational parametrization of
the algebraic curve F (y , z) = 0.

◮ Conversely, from a proper rational parametrization
(f (x), g(x)) of the curve F (y , z) = 0 we get a rational
solution of F (y , y ′) = 0 if and only if there is a linear rational
function T (x) such that f (T (x))′ = g(T (x)).
If T (x) exists, then a rational solution of F (y , y ′) = 0 is:
y = f (T (x)).
The rational general solution of F (y , y ′) = 0 is (for an
arbitrary constant C ): y = f (T (x + C ))



Feng and Gao described a complete algorithm along these lines
R. Feng, X-S. Gao, “Rational general solutions of algebraic ordinary
differential equations”, Proc. ISSAC2004. ACM Press, New York,
155-162, 2004.

R. Feng, X-S. Gao, “A polynomial time algorithm for finding rational

general solutions of first order autonomous ODEs”, J. Symb. Comp., 41,

739-762, 2006.

based on degree bounds derived in
J.R. Sendra, F. Winkler, “Tracing index of rational curve

parametrizations”, Comp.Aided Geom.Design, 18:771–795, 2001.



The general (non-autonomous) case F (x , y , y ′) = 0
◮ When we consider the autonomous algebraic differential

equation F (y , y ′) = 0, it is necessary that F (y , z) = 0 is a
rational curve. Otherwise, the differential equation
F (y , y ′) = 0 has no non-trivial rational solution.

◮ It is now natural to assume that the solution surface
F (x , y , z) = 0 is a rational algebraic surface, i.e. rationally
parametrized by

P(s, t) = (χ1(s, t), χ2(s, t), χ3(s, t)).

The differential condition on y can now be turned into
differential conditions on the parameters s and t. We get the
associated system:

s ′ =
f1(s, t)

g(s, t)
, t ′ =

f2(s, t)

g(s, t)
. (1)

L.X.C. Ngô, F. Winkler, “Rational general solutions of first order

non-autonomous parametrizable ODEs”, J. Symb. Comp., 45(12),

1426–1441, 2010.



Properties of the associated system:

The associated system of F (x , y , y ′) = 0 w.r.t. P has the form

s ′ =
N1(s, t)

M1(s, t)
, t ′ =

N2(s, t)

M2(s, t)
(2)

The corresponding polynomial system of (2) is

s ′ = N1M2, t ′ = N2M1. (3)

Theorem
There is a one-to-one correspondence between rational general

solutions of the algebraic differential equation F (x , y , y ′) = 0,
which is parametrized by P(s, t), and rational general solutions of

its associated system with respect to P(s, t).

The associated system is

◮ autonomous

◮ of order 1

◮ of degree 1 in the derivatives of the parameters



Solving the associated system

Lemma
Every non-trivial rational solution of the associated system (2)
corresponds to a rational algebraic curve G (s, t) = 0 satisfying

Gs · N1M2 + Gt · N2M1 ∈ 〈G 〉 . (4)

Definition
A rational algebraic curve G (s, t) = 0 satisfying (4) is called a
rational invariant algebraic curve of the system (2).

In case the system (2), (3) has no dicritical singularities, i.e., in the
generic case, there is an upper bound for irreducible invariant
algebraic curves:
M.M. Carnicer, “The Poincaré problem in the nondicritical case”, Annals

of Mathematics, 140(2):289–294, 1994.



Reparametrization:

Theorem
Let G (s, t) = 0 be a rational invariant algebraic curve of the

associated system (2) such that G ∤ M1 and G ∤ M2. Let

(s(x), t(x)) be a proper rational parametrization of G (s, t) = 0.
W.l.o.g. assume s ′(x) 6= 0.
Then (s(x), t(x)) creates a rational solution of the associated

system if and only if there is a linear rational function T (x) such

that

T ′ =
1

s ′(T )
· N1(s(T ), t(T ))

M1(s(T ), t(T ))
. (5)

In this case, (s(T (x)), t(T (x))) is a rational solution of the

associated system.

L.X.C. Ngô, F. Winkler, “Rational general solutions of planar rational

systems of autonomous ODEs”, J. Symb. Comp. 46(10), 1173–1186,

2011.



Rational general solutions

Invariant algebraic curves come in families depending on
parameters. Such families give rise to rational general solutions.

Theorem
Let R(x) = (s(x), t(x)) be a non-trivial rational solution of the

system (2). Let H(s, t) be the monic defining polynomial of the

curve parametrized by R(x).
Then R(x) is a rational general solution of the system (2)
if and only if

the coefficients of H(s, t) contain a transcendental constant.



Example: L.X.C. Ngô, F. Winkler, “Rational general solutions of

parametrizable AODEs”, Publ.Math.Debrecen, 79(3–4), 573–587, 2011.

Consider the differential equation

F (x , y , y ′) ≡ y ′2 + 3y ′ − 2y − 3x = 0 .

The solution surface z2 + 3z − 2y − 3x = 0 has the
parametrization

P(s, t) =

(
t

s
+

2s + t2

s2
,−1

s
− 2s + t2

s2
,
t

s

)

.

This is a proper parametrization and its associated system is

s ′ = st, t ′ = s + t2 .

Irreducible invariant algebraic curves of the system are:

G (s, t) = s, G (s, t) = t2 + 2s, G (s, t) = s2 + ct2 + 2cs



The third algebraic curve s2 + ct2 + 2cs = 0 depends on a
transcendental parameter c . It can be parametrized by

Q(x) =

(

− 2c

1 + cx2
,− 2cx

1 + cx2

)

.

Running Step 5 in RATSOLVE, the differential equation defining
the reparametrization is T ′ = 1. Hence T (x) = x . So the rational
solution in this case is

s(x) = − 2c

1 + cx2
, t(x) = − 2cx

1 + cx2
.

Since G (s, t) contains a transcendental constant, the above
solution is a rational general solution of the associated system.
Therefore, the rational general solution of F (x , y , y ′) = 0 is

y =
1

2
x2 +

1

c
x +

1

2c2
+

3

2c
,

which, after a change of parameter, can be written as

y =
1

2
(x2 + 2cx + c2 + 3c).



Classification of AODEs / differential orbits

◮ consider a group of transformations leaving the associated
system of an AODE invariant; orbits w.r.t. such a
transformation group contain AODEs of equal complexity in
terms of determining rational solutions

◮ we study some well-known classes of equations and relate
them to this algebro-geometric approach

◮ it turns out that being autonomous is not an intrinsic property
of an AODE; certain classes contain both autonomous and
non-autonomous AODEs



Affine transformations

L.X.C. Ngô, J.R. Sendra, F. Winkler, “Classification of algebraic
ODEs with respect to their rational solvability”, Contemporary
Mathematics 572, 193–210 (2012)

The group G of affine transformations

L : A3(K) −→ A3(K)

v 7→





1 0 0
b a 0
0 0 a



 v +





0
c

b





leaves the associated system of an AODE invariant, and therefore
also the rational solvability.



Theorem
The group G defines a group action on AODEs by

G × AODE → AODE
(L,F ) 7→ L · F = (F ◦ L−1)(x , y , y ′) .

Theorem
Let F be a parametrizable AODE, and L ∈ G. For every proper

rational parametrization P of the surface F (x , y , z) = 0, the

associated system of F (x , y , y ′) = 0 w.r.t. P and the associated

system of (L · F )(x , y , y ′) = 0 w.r.t. L ◦ P are equal.



Example: As in the previous example we consider the differential
equation

F (x , y , y ′) ≡ y ′2 + 3y ′ − 2y − 3x = 0 .

We first check whether in the class of F there exists an
autonomous AODE. For this, we apply a generic L to F to get

(L·F )(x , y , y ′) =
1

a2
y ′2+

3

a
y ′−2b

a2
y ′−2

a
y+

2b

a
x−3x−3b

a
+

b2

a2
+

2c

a
.

Therefore, for every a 6= 0 and b such that 2b − 3a = 0, we get an
autonomous AODE. In particular, for a = 1, b = 3/2, and c = 0
we get

L =











1 0 0
3

2
1 0

0 0 1




 ,






0
0
3

2









 ,

i.e., we obtain

F (L−1(x , y , y ′)) ≡ y ′2 − 2y − 9

4
= 0 .



Birational transformations

The group G of birational transformations from K3 to K3 of the
form

Φ(u1, u2, u3) =
(

u1,
au2 + b

cu2 + d
,

∂

∂u1

(
au2 + b

cu2 + d

)

+
∂

∂u2

(
au2 + b

cu2 + d

)

· u3

)

,

where a, b, c , d ∈ K[u1] such that ad − bc 6= 0,
defines a group action on AODE by

Φ · F = (F ◦ Φ−1)(x , y , y ′).

These birational transformations leave the associated system of an
AODE invariant, and therefore also the rational solvability.

We call such a transformation solution preserving.



Problem:

given: F (x , y , y ′) ∈ AODE,

decice: does there exist a solution preserving transformation Φ s.t.
G = Φ · F is autonomous?
And, if so, can we compute such a Φ (and therefore G ) ?



Example: Consider the first order AODE

F (x , y , y ′) = 25x2y ′2 − 50xyy ′ + 25y2 + 12y4 − 76xy3+
168x2y2 − 144x3y + 32x4 = 0.

Using the transformation

Φ(u, v ,w) =

(

u,
u − 3v

−2u + v
,

−5v

(2u − v)2
+

5u

(2u − v)2
w

)

we get the autonomous equation

G (y , y ′) = F (Φ−1(x , y , y ′)) = y ′2 − 4y = 0.

Observe that F cannot be transformed into an autonomous AODE
by affine transformations.
The rational general solution y = (x + c)2 of G (y , y ′) = 0 is
transformed into the rational general solution of F (x , y , y ′) = 0:

y =
x(2(x + c)2 + 1)

(x + c)2 + 3
.



Extension to non-rational solutions

results by G. Grasegger (my PhD student)

Suppose y is a solution of the autonomous AODE F (y , y ′) = 0.
Then Py = (y(t), y ′(t)) is a parametrization of the solution
surface F (y , z) = 0.
For any parametrization P = (r(t), s(t)) of the solution surface we
consider AP = s(t)/r ′(t).
Assume the parametrization is of the form
Pg = (r(t), s(t)) = (y(g(t)), y ′(g(t))), for unknown y and g .
If we could find g , and its inverse g−1, we also could find y :

APg
= · · · =

1

g ′(t)

So g ′(t) =
1

APg

, g(t) =

∫

g ′(t)dt, y(x) = r(g−1(x))

we might determine a solution if we can compute the integral and
the inverse



Examples:

(a) y8y ′ − y5 − y ′ = 0:

parametrization: (1
t
, t3

1−t8 ), g(t) = 1+t8

4t4 ,

radical solution: y(x) = −
(

2(x + c)−
√

−1 + 4(x + c)2
)−1/4

(b) 4y7 − 4y5 − y3 − 2y ′ − 8y2y ′ + 8y4y ′ + 8yy ′2 = 0: (genus 1)

parametrization:
(

1
t
, −4+4t2+t4

t(4t2−4t4−t6−
√

t12+8t10+16t8−16t4)

)

radical solution: y(x) = −
√

1+c+x√
1+(c+x)2

(c) y3 + y2 + y ′2 = 0:
parametrization: (−1 − t2, t(−1 − t2)), g(t) = 2arctan(t),

trigonometric solution: y(x) = −1 − tan
(

x+c
2

)2

(d) y2 + y ′2 + 2yy ′ + y = 0:

parametrization:
(

− 1
(1+t)2

,− t
(1+t)2

)

g(t) = −2log(t) + 2log(1 + t)
exponential solution: y(x) = −e−x(−1 + ex/2)2



Conclusion

◮ we can decide whether an AODE has rational solutions;
and if it has, we can determine the general rational solution

◮ we have a characterization of the affine and birational
transformations of the ambient space leaving the rational
solvability of AODEs invariant;
this leads (sometimes) to a simplification of the equation

◮ we have a general method for determining whether an
autonomous AODE has a solution in a given class of functions
(rational, radical, transcendental); the method depends on the
solvability of the problems of integration and inversion in the
class of functions;
however, this is not a complete method



Thank you for your attention!
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