
Journal of Symbolic Computation 84 (2018) 25–56
Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Improving root separation bounds

Aaron Herman a, Hoon Hong a, Elias Tsigaridas b

a Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
b INRIA, Paris-Rocquencourt Center, Polsys Project, Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA,
LIP6 UMR 7606, Paris, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 October 2015
Accepted 1 October 2016
Available online 23 March 2017

Keywords:
Root separation bounds
Polynomial roots
Polynomial systems

Let f be a polynomial (or polynomial system) with all simple roots.
The root separation of f is the minimum of the pair-wise distances
between the complex roots. A root separation bound is a lower
bound on the root separation. Finding a root separation bound is a
fundamental problem, arising in numerous disciplines. We present
two new root separation bounds: one univariate bound, and one
multivariate bound. The new bounds improve on the old bounds in
two ways:

(1) The new bounds are usually significantly bigger (hence better)
than the previous bounds.

(2) The new bounds scale correctly, unlike the previous bounds.

Crucially, the new bounds are not harder to compute than the
previous bounds.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we present improved root separation bounds. A root separation bound is a lower
bound on the distances between the roots of a polynomial (or polynomial system). First, we introduce
the notion of the root separation by an example.

E-mail addresses: aherman@ncsu.edu (A. Herman), hong@ncsu.edu (H. Hong), elias.tsigaridas@inria.fr (E. Tsigaridas).
http://dx.doi.org/10.1016/j.jsc.2017.03.001
0747-7171/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jsc.2017.03.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
mailto:aherman@ncsu.edu
mailto:hong@ncsu.edu
mailto:elias.tsigaridas@inria.fr
http://dx.doi.org/10.1016/j.jsc.2017.03.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2017.03.001&domain=pdf

26 A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56
Fig. 1. Roots of f (x) (top left), distances between roots (top right), minimum separation highlighted (bottom center).

Example 1. Let us consider the case of a single polynomial in a single variable. Let f (x) = x4 − 60x3 +
1000x2 − 8000x. The roots of f (x) are plotted in Fig. 1. The lengths of the red line segments are the
distances between the roots of f (x). The root separation is the smallest of these distances. The root
separation of f (x) is

√
200, so any number less than or equal to

√
200 is a root separation bound. �

Root separation bounds are fundamental tools in algorithmic mathematics, with numerous ap-
plications (Li et al., 2004; Emiris and Tsigaridas, 2004; Burnikel et al., 2001; Schultz and Moller,
2005; Tsigaridas and Emiris, 2008; Strzebonksi and Tsigaridas, 2011). As a consequence, there has
been intensive effort in finding such bounds (Mahler, 1964; Mignotte, 1974, 1995; Rump, 1979;
Tsigaridas and Emiris, 2008; Emiris et al., 2010; Collins and Horowitz, 1974; Bugeaud and Mignotte,
2004), resulting in many important bounds. Unfortunately, it is well known that current bounds
are very pessimistic. Furthermore, we have found another issue with current bounds. If the roots
of a polynomial are doubled, the root separation is obviously doubled. Hence we naturally ex-
pect that a root separation bound would double if the roots are doubled. This does not happen:
for the polynomial in the above example, the well known Mahler–Mignotte bound (Mahler, 1964;
Mignotte, 1974) becomes smaller when the roots are doubled. If the roots are tripled, the Mahler–
Mignotte bound is even smaller. In other words, the Mahler–Mignotte bound does not scale correctly;
the bound is not compatible with the geometry of the roots. To the best of the authors’ knowledge,
the same observation holds for all efficiently computable root separation bounds.1 We elaborate further
on this phenomena in the next section.

This discussion leads us to the following challenge: find new root separation bounds such that

(1) the new bounds are (almost always) less pessimistic than previous bounds,
(2) the new bounds scale correctly, and
(3) the new bounds can be computed as efficiently as previous bounds.

1 There do exist many bounds in the literature which scale correctly but are not efficiently computable. For example, the root
separation bound which simply returns the exact root separation scales correctly with the roots. Other examples include the
Mahler bound with the Mahler measure in the denominator (Theorem 2 of Mahler, 1964) and several bounds due to Mignotte
(1995), all of which depend on the magnitudes of the roots.

A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56 27
The main contribution of this paper is to provide two new bounds which meet the challenge:
one univariate root separation bound, and one multivariate root separation bound. We found the new
bounds by transforming known bounds into new bounds which meet the challenge. In the univariate
case, we transform the celebrated bound of Mahler and Mignotte (Mahler, 1964; Mignotte, 1974). In
the multivariate case, we transform the DMM bound due to Emiris, Mourrain, and Tsigaridas (Emiris
et al., 2010). Experimental evidence indicates that the improvement is usually very large, especially
when the magnitudes of the roots are different from 1.

The structure of this paper is as follows. In Section 2 we elaborate on the challenge discussed
above. In Section 3 we present the main contributions of this paper: one univariate root separation
bound and one multivariate root separation bound, both of which meet the challenge. In Section 4
we derive the two new bounds. In Section 5 we discuss the experimental performance of the new
bounds.

2. Challenge

In order to motivate our search for new root separation bounds, we recall the celebrated Mahler–
Mignotte root separation bound (Mahler, 1964; Mignotte, 1974).

B MM(f) =
√

3|discr(f)|
dd/2+1 || f ||d−1

2

where discr(f) is the discriminant2 of f and d is the degree of f . Let us apply the Mahler–Mignotte
bound to an example.

Example 2. Let f (x) = x4 − 60x3 + 1000x2 − 8000x. As we saw in Example 1, the root separation of f
is

√
200 (≈ 14.14). How does the Mahler–Mignotte bound perform on this polynomial? We have

|discr(f)| = 2.56 × 1016, || f ||2 = 8.06 × 103

and the degree of f is 4. Combining these pieces, we have

B MM(f (x)) = 8.26 × 10−6.

This bound is significantly smaller than the root separation of f . Actually it is smaller by several orders
of magnitude!

Now we consider the polynomial f (x/2). Obviously, the root separation of f (x/2) is twice the root
separation of f . Hence we naturally expect that the Mahler–Mignotte bound of f (x/2) is twice the
Mahler–Mignotte bound of f . Let us see what happens:

B MM(f (x/2)) = 1.05 × 10−6

It is not twice the Mahler–Mignotte bound of f . In fact, it is even smaller than the Mahler–Mignotte
bound of f ! This is very surprising. Maybe this is a peculiarity of our choice of 2. We will try scaling
by a different number.

B MM(f (x/3)) = 3.12 × 10−7

What happened? The Mahler–Mignotte bound of f (x/3) is even smaller than the Mahler–Mignotte
bound of f (x/2). It appears that the Mahler–Mignotte bound is decreasing as we increase the distance
between the roots. Can this be true? Lets calculate B MM (f (x/s)) for many different values of s and
see. In Fig. 2 we plot B MM(f (x/s)).

Unfortunately, our suspicions are correct. Look at s = 1, where B MM(f (x/1)) is simply the
Mahler–Mignotte bound of f . To the right of s = 1, the function B MM(f (x/s)) is decreasing. In fact,

2 Recall that the discriminant can be calculated via the resultant: discr(f) = (−1)
d(d−1)

2 1
ad

res(f , f ′), where ad is the leading
coefficient of f .

28 A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56
Fig. 2. B MM (f (x/s)).

the Mahler–Mignotte bound is approaching zero as the root separation increases. The situation is
equally strange to the left of the Mahler–Mignotte bound of f . When we decrease s, we see that until
s reaches a value around .18, the Mahler–Mignotte bound is increasing. In other words, the Mahler–
Mignotte bound is increasing when the root separation is decreasing. This is very surprising and also
undesirable. �

Let us summarize the observations from the above example.

(1) The Mahler–Mignotte bound is very pessimistic (several magnitudes smaller than the root sepa-
ration).

(2) The Mahler–Mignotte bound does not scale correctly (“covariantly”) with the roots of f .

We have also observed similar phenomena for other efficiently computable root separation bounds.
Thus we have a challenge.

Challenge. Find a function B : (C [x1, . . . , xn])n →R+ such that

(1) B(F) is a root separation bound.
(2) B(F) is almost always larger (hence less pessimistic) than known root separation bounds.
(3) B(F) scales covariantly.
(4) B(F) can be computed as efficiently as previous bounds.

3. Main results

The main results of this paper are two new root separation bounds: one univariate root separation
bound and one multivariate root separation bound. The two new bounds meet the challenge posed in
the previous section. In this section we will precisely state the main results of the paper. We use the
following notation.

Notation 1.

f =∑d
i=0 ai xi = ad

∏d
i=1(x − αi) ∈C[x]

Fn = {F ∈ (C [x1, . . . , xn])n : F has finitely many (at least two) solutions, and all solutions are simple
}

F = (f1, . . . , fn) ∈ Fn

�(F) = min β1 �=β2∈Cn

F (β1)=F (β2)=0
||β1 − β2||2

discr(f) = a2d−2
d

∏
i �= j(αi − α j)

E(f) = Support(f)
di = deg(f i)

D = d1 · · ·dn

Mi =∏ j �=i d j

A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56 29
Definition 1. A function B : Fn → R+ is a root separation bound if B(F) ≤ �(F) for all F ∈ Fn .

We begin by recalling two root separation bounds: a univariate bound due to Mahler and
Mignotte (Mahler, 1964; Mignotte, 1974)3

B MM,k(f) =
√|discr(f)|

|| f ||d−1
k

Pk(d)

where

Pk(d) =
√

3

dd/2+1(d + 1)(
1
2 − 1

k)(d−1)

and a multivariate bound due to Emiris, Mourrain, and Tsigaridas known as the Davenport–Mahler–
Mignotte bound (or DMM bound) (Emiris et al., 2010)4

B DMM(F) =
√|discr(T f0)|(∏n
i=1 || f i ||Mi∞

)D−1
P (d1, . . . ,dn,n)

where

P (d1, . . . ,dn,n) =
√

3

D D/2+1 · n1/2W ·
(√

D + 1(n + 1)D W D
∏n

i=1

(di+n
di

)Mi
)D−1

T f0 = the resultant of (f0, f1, . . . , fn) which eliminates {x1, . . . , xn}
f0 = a separating element in the set

{
u − x1 − ix2 − · · · − in−1xn : 0 ≤ i ≤ (n − 1)

(
D

2

)}
W =

(
(n − 1)

(
D

2

))n−1

.

We are now ready to present the main contributions of this paper: a new univariate root separa-
tion bound, and a new multivariate root separation bound.

Definition 2 (New univariate bound). Let k ≥ 2. Define

B New,k(f) =
√|discr(f)|

Hd−1
k

Pk(d)

where

Hk =
∥∥∥∑d

i=0 s̃d−i
k ai · xi

∥∥∥
k

s̃k
d
2 − 1

d−1

s̃k = max
q

h(q)<0

min
p

h(p)>0

((|h(q)|
|h(p)|

) 1
k
∣∣aq
∣∣∣∣ap
∣∣
) 1

(q−p)

h(i) = d

2
− i + 1

d − 1
.

3 The Mahler–Mignotte bound is usually presented with the 2-norm (as in the previous section) or the ∞-norm. It can easily
be extended to arbitrary k-norm (k ≥ 2).

4 We present a slight modification of the bound from Emiris et al. (2010). See Lemma 8 for details.

30 A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56
Fig. 3. Scaling covariance of BNew,∞ .

Theorem 1 (New Univariate Bound). Let k ≥ 2. Then

(1) B New,k is a root separation bound.
(2) If k = ∞, then B New,k ≥ B MM,k (when k < ∞, see the discussion in the following remark).
(3) B New,k scales covariantly.
(4) s̃k can be computed in O(d) algebraic operations5 and comparisons using Algorithm 4.

Example 3. Let f = x4 − 60x3 + 1000x2 − 8000x. Recall that the root separation of f is approximately
14.14. We have

B MM,∞ = 7.56 × 10−7

s̃∞ = max
q∈{3,4} min

p∈{1,2}

((|h(q)|
|h(p)|

) 1
k
∣∣aq
∣∣∣∣ap
∣∣
) 1

(q−p)

= max

{
min

{(|60|
|8000|

) 1
3−1

,

(|60|
|1000|

) 1
3−2
}

,min

{(|1|
|8000|

) 1
4−1

,

(|1|
|1000|

) 1
4−2
}}

= max
{

6.00 × 10−2,3.16 × 10−2
}

= 6.00 × 10−2

H∞ = ||x4 − 3.60x3 + 3.60x2 − 1.73x||∞
(6.00 × 10−2)

4
2 − 1

4−1

= 3.60

(6.00 × 10−2)
5
3

= 3.91 × 102

B New,∞ = 6.45 × 10−3.

Note that B New,∞ is a root separation bound for f , and is significantly larger than B MM,∞ . To demon-
strate the covariance, we plot the function B New,∞(f (x/s)) in Fig. 3. �
Remark 1. Experimental evidence (presented in Section 5) indicates that B New,k is almost always
larger than B MM,k for finite k. For example, with the same polynomial as in the preceding examples,
we have

B New,2(f) = 2.02 × 10−2 � B MM,2(f) = 8.26 × 10−6.

5 Arithmetic and radicals.

A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56 31
Furthermore, B New,k is almost always larger for smaller k, as the same example illustrates:

B New,2(f) = 2.02 × 10−2 > B New,∞(f) = 6.45 × 10−3.

In Section 5 we will provide theoretical justification for this observation.
However, it is not true that for finite k the new bound B New,k is always larger than B MM,k (unlike

the case when k = ∞). As we will see later in the derivation of the bound, this is because the bound
includes a certain approximation which becomes tighter as k increases. We can construct examples
with B New,k(g) < B MM,k(g). For example, let k = 2 and

g = x4 − 3.844x3 + 4.105x2 − 2.104x.

Then6

B New,2(f) = 1.29 × 10−3

B MM,2(f) = 1.32 × 10−3.

Remark 2. For square-free integer polynomials, the discriminant has a lower bound of 1. Hence in
practice the discriminant is almost always replaced by 1. In this case, part (4) of Theorem 1 implies
that B New,k can be computed in O(d) algebraic operations and comparisons. Note that removing the
discriminant sacrifices the scaling covariance. When the coefficients are not rational it is difficult to
obtain a lower bound on the discriminant.

Remark 3. It is possible to replace s̃k by a number which is computed without using radicals if we
allow ourselves to compute to arbitrary accuracy the real root of a polynomial. 7

Definition 3 (New multivariate bound). Define

B New(F) =
√|discr(T f0)|

H D−1
P (d1, . . . ,dn,n)

where P , T f0 and f0 are from the definition of B DMM and

H = min
s>0

R(s)

R(s) =
∏n

i=1 || ∑e∈E(f i)
sdi−|e||ae| ||Mi∞

s
D
2 − 1

D−1

.

Theorem 2 (New multivariate bound). We have

(1) B New is a root separation bound.
(2) B New ≥ B DMM .
(3) B New scales covariantly.
(4) The minimizer of R(s) can be computed in O (n · m + n · d) algebraic operations and comparisons using

F indMinimizer

(
F , (M1, . . . , Mn),

D

2
− 1

D − 1

)
(Algorithm 6)

where

6 A curious reader may wonder how this example was constructed. In the notation of Section 4.2, g ≈ f [s∗2] , where f is the
same polynomial we considered in the previous examples.

7 The polynomial is obtained by replacing t with sk in the definition of Q k(t) in Lemma 3.

32 A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56
m = # monomials of F

d =
n∑

i=1

di .

Example 4. Let F = (f1, f2), where

f1 = x2
1 + x2

2 − 100

f2 = x2
2 − x2

1 − 25.

It is simple to verify that the root separation of F is
√

150 (≈ 12.2). It is also simple to verify that

f0 = u − x1 − x2

is a separating element in the set

{u − x1 − ix2 : 0 ≤ i ≤ 6} .

We compute

T f0 = 4u2 − 800u2 + 2500√
|discr(T f0)| = 2.40 × 108

P = √
30/48348866242924385372681011200

|| f1||∞ = 100

|| f2||∞ = 25

|| f1||2∞|| f2||2∞ = 6.25 × 106.

Hence

B DMM(F) = 2.40 × 108(
6.25 × 106

)4
·

√
3

48348866242924385372681011200
≈ 1.11 × 10−40.

Now we compute H . We compute

s∗ = F indMinimizer(F , (2,2),
4

2
− 1

4 − 1
)

= 1.00 × 10−1.

Hence

H = R(s∗)
= 4.64 × 101.

Hence

B New(F) = 2.40 × 108(
4.64 × 101

)4
·

√
3

48348866242924385372681011200
≈ 2.71 × 10−25.

Note that this number is still quite pessimistic; however, the new bound is significantly larger than
B DMM(F). To demonstrate the covariance, we plot the function B New (F (x1/s, x2/s)) in Fig. 4. �
Remark 4. Note that B New is only defined for the ∞−norm. It turns out that generalizing the result
to arbitrary norms is more difficult than in the univariate case.

A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56 33
Fig. 4. Scaling covariance of BNew .

Remark 5. For F ∈ Fn with integer coefficients, T f0 is a square-free integer polynomial; in this case
discr(T f0) has a lower bound of 1. Hence in practice the discriminant is almost always replaced by 1.
In this case, part (4) of Theorem 2 implies that B New can be computed in O (n · m + n · d) algebraic
operations and comparisons. As with the new univariate bound, removing the discriminant sacrifices
the scaling covariance. When the coefficients are not rational it is difficult to obtain a lower bound on
the discriminant.

4. Derivation

4.1. Overall framework

In this section, we present the framework we use to derive the two new bounds. To make the
presentation as general as possible, the framework will be derived for square polynomial systems.
Of course, the univariate case is included by considering a square polynomial system which contains
only one polynomial. We use the following notation.

Notation 2.

• F [s] = (f [s]
1 , . . . , f [s]

n) where f [s]
i = sdi f i(x1/s, . . . , xn/s).

Note that in the above notation we scale the roots of F using a slight modification of the scal-
ing operation in the introduction. Since the only difference between the two scaling operations are
the leading coefficients, the two operations are equivalent. We use this scaling operation for later
convenience.

In Propositions 1–3 we will incrementally develop the framework used to meet the challenge
stated at the beginning of this paper.

Proposition 1 (Scaled bound). Let B : Fn → R+ be a root separation bound and s ∈R+ . Let

B∗ : F → B(F [s])
s

.

Then

(1) B∗ is a root separation bound.

We will illustrate the result by a simple example, since the proof is simple.

Example 5. Let f (x) = x4 − 60x3 + 1000x2 − 8000x. We have

B MM,2(f [2]) = B MM,2(24 f (x/2)) = 1.05 × 10−6. (1)

Since B MM,2 is a root separation bound, it follows that

34 A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56
Fig. 5. Scaled bound for BMM,2 and f .

B MM,2(f [2]) ≤ �(f [2]) = 2�(f).

Rearranging yields

B MM,2(f [2])
2

≤ �(f). (2)

Combining (1) and (2) we have

1.05 × 10−6

2
= 5.25 × 10−7 ≤ �(f).

Note that 5.25 × 10−7 ≤ B MM,2(f). So 2 was not a good choice for s.
How should we choose s? In Fig. 5 we plot the function B MM,2(f [s])/s. Clearly, we should choose

s so that the function is maximized. We see that for s ≈ .06, the new bound is approximately 2.00 ×
10−2. This new bound is significantly larger than B MM,2(f) = 8.26 × 10−6. �
Proposition 2 (Covariant bound). Let B : Fn → R+ be a root separation bound and σ : Fn →R+ . Let

B∗ : F → B(F [σ (F)])
σ (F)

.

If ∀F ∈ Fn and ∀γ > 0 we have

σ(F [γ]) = 1

γ
σ (F)

then

(1) B∗ is a root separation bound.
(2) B∗ scales covariantly.

Proof. The first property follows from Proposition 1.
We will now prove the second property. Let F ∈ Fn and γ > 0. By definition

B∗(F [γ)]) =
B

((
F [γ])[σ (F [γ)])]

)
σ(F [γ)])

.

Since σ(F [γ]) = 1
γ σ (F), we have(

F [γ])[σ (F [γ])] = F [γ σ (F [γ])] = F [γ · 1
γ ·σ (F)] = F [σ (F)]. (3)

Hence

A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56 35
B∗(F [γ]) =
B

((
F [γ])[σ (F [γ)])]

)
σ(F [γ)])

= B(F [σ (F)])
σ (F [γ)])

from (3)

= B(F [σ (F)])
1
γ σ (F)

= γ
B(F [σ (F)])

σ (F)
= γ B∗(F).

We have proved that B∗ scales covariantly. �
Proposition 3 (Optimal bound from known bound). Let B : Fn →R+ be a root separation bound. Let

B∗ : F → max
s>0

B(F [s])
s

.

Then

(1) B∗ is a root separation bound.
(2) B∗ scales covariantly.
(3) B∗(F) ≥ B(F).

Proof. The first property follows from Proposition 1.
To prove the second property, we will perform a rewrite and then make use of Proposition 2. Let

σ(f) = arg max
s>0

B(F [s])
s

.

Clearly

B∗ : F → B(F [σ (F)])
σ (F)

.

Let F ∈ Fn and γ > 0. We will show that σ(F [γ]) = 1
γ σ (F). We have

σ(F [γ]) = arg max
s>0

B
((

F [γ])[s])
s

= arg max
s>0

B
(

F [γ s])
s

= arg max
s>0

1

γ

B
(

F [γ s])
s

since γ > 0

= arg max
s>0

B
(

F [γ s])
sγ

= 1

γ
arg max

s>0

B
(

F [s])
s

= 1

γ
σ (F).

Hence by Proposition 2, B∗ scales covariantly.
We will now prove the third property. We have

B∗(F) = max
s>0

B(F [s])
s

≥ B(F [1])
1

= B(F)

1
= B(F).

We have proved the Proposition. �

36 A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56
Let us summarize the framework built up in this section. We have seen that for a given root
separation bound B

max
s>0

B(F [s])
s

meets the challenge if the maximum can be computed efficiently. If the maximum cannot be computed
efficiently, we can approximate the maximum. We can then use Proposition 2 to guarantee that the
new bound is scaling covariant.

4.2. Derivation of new univariate bound

In this section we derive the new univariate bound. We will find a tight approximation s̃k of

s∗
k = arg max

s>0

B MM,k(f [s])
s

.

We will then use Proposition 2 and a result due to Melhorn and Ray (2010) to show that the bound

B New,k = B MM,k(f [s̃k])
s̃k

meets the challenge.
We will use our first few Lemmas to find a simplified expression for s∗

k . Our eventual goal is to
find an expression for s∗

k that we can use to tightly approximate s∗
k . We will take advantage of the

following easily verifiable identities:

Lemma 1. Let g : R+ →R+ , and c > 0. Then

(1) arg maxs>0 g(s) = arg maxs>0 c · g(s)
(2) arg maxs>0 g(s) = arg maxs>0 (g(s))c

(3) arg maxs>0 g(s) = (arg mins>0 g(s))−1 .

As our first simplification step, we will find an expression for s∗
k which does not include the

discriminant or Pk(d).

Lemma 2. Let f ∈C[x]. Then

s∗
k = arg min

s>0
Rk(s)

where

Rk(s) = || f [s]||k
s

d
2 − 1

d−1

.

Proof. To prove the claim, we will expand the expression for

B MM,k(f [s])

s

then simplify this expression with the identities of Lemma 1. We have

B MM,k(f [s]) =
√|discr(f [s])|

|| f [s]||d−1
k

Pk(d). (4)

Since

A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56 37
f [s] = sd f (x/s) = sd ad

d∏
i=1

(x/s − αi) = ad

d∏
i=1

(x − sαi)

we have

discr(f [s]) = a2d−2
d

∏
i �= j

(sαi − sα j)

= a2d−2
d sd(d−1)

∏
i �= j

(αi − α j)

= sd(d−1)discr(f). (5)

Hence

B MM,k(f [s])
s

= 1

s

√|discr(f [s])|
|| f [s]||d−1

k

Pk(d)

= 1

s

√|sd(d−1)discr(f)|
|| f [s]||d−1

k

Pk(d) from (5)

= s
d(d−1)

2
√|discr(f)|

s|| f [s]||d−1
k

Pk(d)

= s
d(d−1)

2 −1

|| f [s]||d−1
k

√|discr(f)|Pk(d)

=
(

s
d
2 − 1

d−1

|| f [s]||k

)d−1√|discr(f)|Pk(d)

=
(

1

Rk(s)

)d−1√|discr(f)|Pk(d). (6)

Now we apply the identities from Lemma 1 to the expression in (6):

arg max
s>0

B MM,k(f [s])

s
= arg max

s>0

(
1

Rk(s)

)d−1√|discr(f)|Pk(d)

= arg max
s>0

(
1

Rk(s)

)d−1

(Identity 1)

= arg max
s>0

(
1

Rk(s)

)
(Identity 2)

= arg min
s>0

Rk(s). (Identity 3)

We have proved the Lemma. �
We will now find an even simpler expression for s̃∗

k which depends only on the unique positive
root of a polynomial with a particularly nice structure.

Lemma 3. Let k ≥ 2. Then

s∗
k = (t∗)

1
k

where t∗ is the unique positive root of

38 A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56
Q k(t) =
d∑

i=0

h(i) |ai |k · td−i

and h(i) = d
2 − i + 1

d−1 .

Proof. For later convenience, we first rewrite Rk(s). We will show that

Rk(s) = R̃k(s)
1
k

where

R̃k(s)
1
k =

d∑
i=0

(sk)h(i) |ai|k

Consider the following repeated rewriting:

Rk(s) = || f [s] ||k
s

d
2 − 1

d−1

=
(∑d

i=0

∣∣sd−iai
∣∣k) 1

k

s
d
2 − 1

d−1

=
(∑d

i=0 skd−ki |ai|k
) 1

k

s
d
2 − 1

d−1

=
(∑d

i=0 skd−ki |ai |k
s

kd
2 − k

d−1

) 1
k

=
(

d∑
i=0

s
kd−ki−

(
kd
2 − k

d−1

)
|ai|k

) 1
k

=
(

d∑
i=0

s
kd
2 −ki+ k

d−1 |ai |k
) 1

k

=
(

d∑
i=0

(sk)
d
2 −i+ 1

d−1 |ai|k
) 1

k

=
(

d∑
i=0

(sk)h(i) |ai |k
) 1

k

since h(i) = d

2
− i + 1

d − 1

= R̃k(s)
1
k (7)

Combining Lemma 1 and (7), we have

s∗
k = arg min

s>0
Rk(s) = arg min

s>0
R̃k(s). (8)

Hence from Calculus, we have

R̃ ′
k(s∗

k) = 0. (9)

Note that

A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56 39
R̃ ′
k(s) =

d∑
i=0

skh(i)−1 · kh(i) |ai |k .

Define the polynomial

Q k(t) =
d∑

i=0

h(i) |ai |k · td−i .

We have

ks
−kd

2 − k
d−1 −1 Q k(sk) = s− kd

2 − k
d−1 −1

d∑
i=0

kh(i) |ai |k · (sk)d−i

= s− kd
2 − k

d−1 −1
d∑

i=0

kh(i) |ai |k · (sk)d−i

=
d∑

i=0

skd−ki− kd
2 − k

d−1 −1 · kh(i) |ai |k

=
d∑

i=0

s
kd
2 −ki− k

d−1 −1 · kh(i) |ai |k

=
d∑

i=0

sk(d
2 −i− 1

d−1)−1 · kh(i) |ai |k

=
d∑

i=0

skh(i)−1 · kh(i) |ai |k

= R̃ ′
k(s).

Hence

R̃ ′
k(s) = 0 ⇐⇒ Q k(sk) = 0 ∀s > 0. (10)

Note that Q k(t) has a single sign change,8 since h(i) is strictly decreasing with i. By Descartes Rule of
Signs, Q k(t) has a single positive root t∗ . Combining (8), (9), and (10), we have

s∗
k = (t∗)

1
k .

We have proved the Lemma. �
Since Q k is a polynomial with a single sign change, we can derive a tight approximation of its

single positive root with the following result.

Theorem 3 (Herman and Hong, 2015). Let f =∑m
i=0 ci xei have a single sign change, and x∗ be the unique

positive root of f . Then

L ≤ x∗ ≤ U

8 The number of sign changes of a real polynomial is the number of times the signs of the coefficients change from positive
to negative, when the coefficients are ordered by degree.

40 A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56
where

L = 1

2
H(f)

U = 2 H(f)

H(f) = max
q

cq<0

min
p

cp>0
ep>eq

(|cq|
|cp|

) 1
ep−eq

.

We will now combine Theorem 3 and the definition of Q k to approximate s∗
k .

Lemma 4. Let k ≥ 2. Then(
1

2

) 1
k

(H(Q k))
1
k ≤ s∗

k ≤ 2
1
k (H(Q k))

1
k .

Proof. From Lemma 3, we have

s∗
k = (t∗)

1
k (11)

where t∗ is the unique positive root of Q k(t). Since Q k(t) has single sign change, we can apply
Theorem 3. We have

L ≤ t∗ ≤ U (12)

where

L = 1

2
H(Q k)

U = 2H(Q k).

Combining (11) and (12), we have

(L)
1
k ≤ s∗

k ≤ (U)
1
k .

Equivalently(
1

2

) 1
k

(H(Q k))
1
k ≤ s∗

k ≤ 2
1
k (H(Q k))

1
k .

We have proved the Lemma. �
Recall the definition of s̃k from Section 3:

s̃k = max
q

h(q)<0

min
p

h(p)>0

((|h(q)|
|h(p)|

) 1
k
∣∣aq
∣∣∣∣ap
∣∣
) 1

(q−p)

We will use the next two Lemmas to show that s̃k tightly approximates s∗
k . We split the Lemmas up

for the sake of clarity.

Lemma 5. Let k ≥ 2. We have

s̃k = (H(Q k))
1
k

A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56 41
and

lim
k→∞

s̃k = H(G)

where

G =
∑

p
h(p)>0

1

|ap| sd−p −
∑

q
h(q)<0

1

|aq| sd−q.

Proof. We have

(H(Q k))
1
k =

⎛⎜⎝ max
q

h(q)<0

min
p

h(p)>0

(
|h(q)| ∣∣aq

∣∣k
|h(p)| ∣∣ap

∣∣k
) 1

(d−p)−(d−q)

⎞⎟⎠
1
k

=
⎛⎜⎝ max

q
h(q)<0

min
p

h(p)>0

(
|h(q)| ∣∣aq

∣∣k
|h(p)| ∣∣ap

∣∣k
) 1

q−p

⎞⎟⎠
1
k

= max
q

h(q)<0

min
p

h(p)>0

(
|h(q)| ∣∣aq

∣∣k
|h(p)| ∣∣ap

∣∣k
) 1

k(q−p)

= max
q

h(q)<0

min
p

h(p)>0

((|h(q)|
|h(p)|

) 1
k
∣∣aq
∣∣∣∣ap
∣∣
) 1

(q−p)

= s̃k.

We now consider the limit. We have

lim
k→∞

s̃k = lim
k→∞

max
q

h(q)<0

min
p

h(p)>0

((|h(q)|
|h(p)|

) 1
k
∣∣aq
∣∣∣∣ap
∣∣
) 1

(q−p)

= max
q

h(q)<0

min
p

h(p)>0

(∣∣aq
∣∣∣∣ap
∣∣
) 1

(q−p)

.

We also have

H(G) = max
q

h(q)<0

min
p

h(p)>0
(d−p)>(d−q)

(1
|aq |

1
|ap |

) 1
(d−p)−(d−q)

= max
q

h(q)<0

min
p

h(p)>0
(d−p)>(d−q)

(1
|aq |

1
|ap |

) 1
q−p

= max
q

h(q)<0

min
p

h(p)>0
(d−p)>(d−q)

(|ap|
|aq|

) 1
q−p

42 A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56
= max
q

h(q)<0

min
p

h(p)>0
p<q

(|ap|
|aq|

) 1
q−p

= max
q

h(q)<0

min
p

h(p)>0

(|ap|
|aq|

) 1
q−p

since h(i) is strictly decreasing with i

= lim
k→∞

s̃k. �
Lemma 6. Let k ≥ 2 and

s∗
k = arg max

s>0

B MM,k(f [s])

s
.

Then (
1

2

) 1
k

s̃k ≤ s∗
k ≤ 2

1
k s̃k

where

s̃k = max
q

h(q)<0

min
p

h(p)>0

((|h(q)|
|h(p)|

) 1
k
∣∣aq
∣∣∣∣ap
∣∣
) 1

(q−p)

h(i) = d

2
− i + 1

d − 1
.

Proof. Let k ≥ 2 and

s∗
k = arg max

s>0

B MM,k(f [s])

s
.

Combining Lemmas 2, 4 and 5, we have(
1

2

) 1
k

s̃k ≤ s∗
k ≤ 2

1
k s̃k.

We have proved the Lemma. �
We are now ready to define the new bound. In Lemma 6, we showed that s̃k is a tight approxi-

mation of s∗
k . As k increases, the approximation becomes tighter. Thus we choose to approximate the

bound

max
s>0

B MM,k(f [s])
s

with the bound

B New,k(f) = B MM,k(f [s̃k])
s̃k

=
√|discr(f)|

Hd−1
k

Pk(d). (13)

Before proving Theorem 1, we present an algorithm for computing s̃k . We combine Lemma 5
and an ingenious algorithm due to Melhorn and Ray (2010) to compute H(Q) in O(d) algebraic
operations and comparisons. We formally state their complexity results in the Lemma below.

Lemma 7 (Melhorn and Ray, 2010). Let g ∈ R[x] with m non-zero coefficients. Then H(g) can be computed in
O(m) algebraic operations and comparisons with the algorithm ComputeH (Algorithm 3).

A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56 43
We slightly modify their algorithm to avoid logarithm computations:

• We represent points (i, − log(|ai |)) with the pair (i, |ai |).
• For points P1 and P2 represented by (p1, |ap1 |) and (p2, |ap2 |) respectively, let

SP1,P2 =
(|ap2 |

|ap1 |
) 1

p1−p2
.

• For points P1 and P2 represented by (p1, |ap1 |) and (p2, |ap2 |) respectively, the line from P1 to
P2 is represented by(

(p1, |ap1 |), (p2, |ap2 |)
)
.

Remark 6. In Melhorn and Ray (2010), the point T and line l are not reset when T is removed
from L (as we do in Algorithm 1). This appears to be a minor oversight which we correct here.

44 A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56
Proof of Theorem 1. We prove the claims of the Theorem one by one.

(1) Combine (13) and Proposition 1.
(2) From Lemma 6, we have

s̃∞ = s∗∞.

Hence

B New,∞(f) = B MM,∞(f [s̃∞])

s̃∞

= B MM,∞(f [s∗∞])

s∗∞

= arg max
s>0

B MM,∞(f [s])

s
.

Hence by Proposition 3, B New,∞(f) ≥ B MM,∞(f) for all f .
(3) Let γ > 0. We have

s̃k(f [γ)]) = max
q

h(q)<0

min
p

h(p)>0

((|h(q)|
|h(p)|

) 1
k γ d−q

∣∣aq
∣∣

γ d−p
∣∣ap
∣∣
) 1

(q−p)

= max
q

h(q)<0

min
p

h(p)>0

((|h(q)|
|h(p)|

) 1
k
∣∣aq
∣∣∣∣ap
∣∣ 1

γ q−p

) 1
(q−p)

= 1

γ
max

q
h(q)<0

min
p

h(p)>0

((|h(q)|
|h(p)|

) 1
k
∣∣aq
∣∣∣∣ap
∣∣
) 1

(q−p)

= 1

γ
s̃k.

A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56 45
Hence by Proposition 2, B New,k scales covariantly.
(4) Combine Lemma 5, Lemma 7, and Algorithm 4.

We have completed the proof of Theorem 1. �
4.3. Derivation of new multivariate bound

In this section, we derive the new multivariate bound. We first briefly discuss the bound B DMM

presented in Section 3.

Lemma 8. Let F ∈ Fn. Then �(F) ≥ B DMM(F).

Proof. To prove the result, we follow a proof almost identical to that in Emiris et al. (2010). Instead
of using the sparse resultant, we will use the multivariate resultant. Let f0 be a separating element
and T f0 be the resultant of F and f0 which eliminates x1, . . . , xn . We use the same coefficient bounds
as in Emiris et al. (2010) to show that

||T f0 ||∞ ≤
n∏

i=1

|| f i||Mi∞ C D(n + 1)D
n∏

i=1

(
n + di

di

)Mi

(14)

From Equation (16) in Emiris et al. (2010) we have

�(F) ≥ �(T f0)

n1/2 · C

Hence

�(F) ≥ B MM,∞(T f0)

n1/2 · C
(15)

Combining (14) and (15), we have

�(F) ≥ B DMM(F) �
For the remainder of this section, let F ∈ Fn be fixed, and f0 a fixed separating element of F .

Similar to the previous section, we will begin by deriving a simplified expression for

s∗ = arg max
s>0

B DMM(F [s])
s

.

Note that s∗ is does not depend on different choices of norm (unlike the univariate case) since B DMM
is only derived with the infinity norm.

46 A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56
We first need to understand the effect that root scaling has on the discriminant of T f0 . We make
use of the following result from the proof of Proposition 5.8 of Cox et al. (2005).

Lemma 9. Let F be zero-dimensional, have no solutions at infinity, and have no singular solutions. Let

f0 = u + r1x1 + · · · + rnxn

and T f0 be the resultant of (F , f0) which eliminates (x1, . . . , xn). Then

T f0 = C
∏

α∈V (F)

f0(α)

where

C = Res(F̂)

F̂ = (f̂1, . . . , f̂n)

f̂ i =
∑

e∈E(f i)|e|=di

aexe.

Lemma 10. Let s > 0. Let T [s]
f0

be the resultant of F [s] and f0 . Then

discr(T [s]
f0

) = sD(D−1)discr(T f0).

Proof. To prove the claim, we will first show that the leading coefficients of T f0 and T [s]
f0

are the
same. Then we will use the definition of the discriminant to complete the proof.

Let C be the leading coefficient of T f0 and C [s]
f0

the leading coefficient of T [s] . From Lemma 9, we
have

C = Res(F̂) and C [s] = Res(F̂ [s]) (16)

Note that

f̂ [s]
i = ̂sdi f i(x1/s, . . . , xn/s)

= sdi
∑

|e|=di

ae

(
x[s])e

= sdi
∑

|e|=di

ae

(x1

s

)e1
. . .
(xn

s

)en

= sdi
∑

|e|=di

(
1

s

)e1+···+en

aexe1
1 · · · xen

n

= sdi
∑

|e|=di

(
1

s

)e1+···+en

aexe

= sdi
∑

|e|=di

(
1

s

)di

aexe

= sdi

(
1

s

)di ∑
|e|=d

aexe
i

A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56 47
=
∑

|e|=di

aexe

= f̂ i .

Hence

F̂ = F̂ [s]. (17)

Combining (16) and (17), we have

C = C [s]. (18)

Note that the roots T f0 are

{r1γi,1 + · · · + rnγi,n}D
i=1

and the roots of T [s]
f0

are

{s · (r1γi,1 + · · · + rnγi,n)}D
i=1.

We will now expand the discriminant of T [s]
f0

. We have

discr(T [s]
f0

) =
(

C [s])D(D−1)∏
i �= j

(
s · (r1γi,1 + · · · + rnγi,n) − s · (r1γ j,1 + · · · + rnγ j,n)

)
= C D(D−1)

∏
i �= j

(s · (r1γi,1 + · · · + rnγi,n) − s · (r1γ j,1 + · · · + rnγ j,n)) from (18)

= sD(D−1)C D(D−1)
∏
i �= j

((r1γi,1 + · · · + rnγi,n) − (r1γ j,1 + · · · + rnγ j,n))

= sD(D−1)discr(T f0). �
Now that we know the effect root scaling has on the discriminant of T f0 , we can study the effect

of root scaling on B DMM . We will follow a similar procedure to the derivation of the univariate bound.
First we will find an expression for the scaled bound which does not depend on the discriminant of
T f0 or P (d1, . . . , dn, n).

Lemma 11. Let s > 0. Then

B DMM(F [s])
s

=
√|discr(T f0)|

R(s)D−1
P (d1, . . . ,dn,n)

where

R(s) =
∏n

i=1 || f [s]
i ||Mi∞

s
D
2 − 1

D−1

.

Proof. We have

B DMM(F [s])
s

= 1

s

√
|discr(T [s]

f0
)|∏n

i=1 || f [s]
i ||Mi(D−1)∞

P (d1, . . . ,dn,n)

= 1

s

s
D(D−1)

2
√|discr(T f0)|(∏n

i=1 || f [s]
i ||Mi∞

)D−1
P (d1, . . . ,dn,n) from Lemma 10

48 A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56
=
√|discr(T f0)|(∏n

i=1 || f [s]
i ||Mi∞

s
D
2 − 1

D−1

)D−1
P (d1, . . . ,dn,n)

=
√|discr(T f0)|

R(s)D−1
P (d1, . . . ,dn,n). �

Next, we find a simplified expression for s∗ . As in the univariate case, our eventual goal is to find
an expression for s∗ which leads to an efficient computation of s∗ .

Lemma 12. We have

s∗ = arg min
s>0

R(s).

Proof. To prove the claim, we will again make use of the identities in Lemma 1. We have

arg max
s>0

B DMM(F [s])
s

= arg max
s>0

√|discr(T)|
R(s)D−1

P (d1, . . . ,dn,n) from Lemma 11

= arg max
s>0

1

R(s)D−1
(Identity 1)

= arg max
s>0

1

R(s)
(Identity 2)

= arg min
s>0

R(s) (Identity 3) �
We will now consider the computation of arg mins>0 R(s). For the sake of generality, we will study

all functions of the form

R(s) =
∏n

i=1 || f [s]
i ||Ui∞

sV

where U1, . . . , Un, V ∈ R>0. Let s∗ = arg mins>0 R(s). We will show that s∗ can be computed in
O (n · m + n · d) algebraic operations and comparisons.9 Our overall strategy will be to transform
the problem into a new problem which is stated in terms of linear functions. More precisely, we will
show that log(R(s)) can be viewed as the upper envelope of a set of linear functions. We will make use
of a technique for efficiently computing upper envelopes known as the Convex Hull Trick to compute
s∗ efficiently.

Lemma 13. Let t = log(s). We have

log(R(s)) =
n∑

i=1

Ui · max
e∈E(f i)

((di − |e|) · t + log(|ae|)) − V · t.

Proof. We have

log(R(s)) = log

(∏n
i=1 || f [s]

i ||Ui∞
sV

)

=
n∑

i=1

Ui · log(|| f [s]
i ||∞) − V · log(s). (19)

9 Recall that m = # monomials of F and d =∑n
i=1 di .

A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56 49
Note that

log(|| f [s]
i ||) = log

(
max

e∈E(f i)
sdi−|e||ae|

)
= max

e∈E(f i)

(
log
(

sdi−|e||ae|
))

= max
e∈E(f i)

((di − |e|) · log(s) + log(|ae|))

= max
e∈E(f i)

((di − |e|) · t + log(|ae|)) . (20)

Combining (19) and (20), we have

log(R(s)) =
n∑

i=1

Ui · max
e∈E(f i)

((di − |e|) · t + log(|ae|)) − V · t. �

Since the sum of upper envelopes is an upper envelope, log(R(s)) is an upper envelope. The upper
envelope of a set of linear functions li(t) = βi · t + ξi on t > 0 is represented by an ordered sequence
(li1 , 0), (li2 , ti1,i2), . . . , (lir , tir−1,ir) such that

max
i

li(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
li1(t) −∞ ≤ t ≤ ti1,i2

li2(t) ti1,i2 ≤ t ≤ ti2,i3

...

lir (t) tir−1,ir ≤ t ≤ ∞
Given such a representation, finding the t which minimizes the upper envelope is trivial: we simply
find the corner point t where the slopes of the lines in the upper envelope switch from negative to
positive. In fact, this representation contains more information than is necessary to find the minimizer.
We need only store the slopes of functions which lie on the upper envelope, as well as the corner
points.

Hence we have the following initial strategy. For i = 1, . . . , n, we compute the upper envelope
representation of

max
e∈E(f i)

((di − |e|) · t + log(|ae|)) . (21)

The most efficient algorithm for computing upper envelope representations of linear functions is
known as the Convex Hull Trick. It is not clear who deserves credit for this trick; it appears to be
folklore, not published in the literature. See Convex hull trick (2017) for a concise summary. We can
combine the upper envelope representations to find the representation of

log(R(s)) =
n∑

i=1

Ui · max
e∈E(f i)

((di − |e|) · t + log(|ae|)) − V · t.

We then read off the minimizer t∗ of log(R(s)) and return

s∗ = et∗ .

We will now discuss improvements to the above strategy. Note that in the above strategy we must
take logarithms. Recall that the current goal is to present an algorithm which produces the minimizer
in

O(n · m + n · d)

50 A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56
algebraic operations and comparisons. It turns out that it is a relatively trivial matter to modify the
Convex Hull Trick algorithm to avoid logarithm computations for the current application. In the Con-
vex Hull Trick algorithm, we compare corner points ti1,i2 and ti3,i4 . In our case, the corner points for
the upper envelope of (21) are the points where

(di − |e1|) · t + log(|ae1 |) = (di − |e2|) · t + log(|ae2 |).
The above equality holds if and only if

t = log(|ae1 |) − log(|ae2 |)
|e1| − |e2| = log

((|ae1 |
|ae2 |

) 1
|e1 |−|e2 |

)
.

Clearly,

log

((|ae1 |
|ae2 |

) 1
|e1 |−|e2 |

)
≤ log

((|ae3 |
|ae4 |

) 1
|e3 |−|e4 |

)
⇐⇒

(|ae1 |
|ae2 |

) 1
|e1 |−|e2 | ≤

(|ae3 |
|ae4 |

) 1
|e3 |−|e4 |

.

We can use this equivalence to perform all of the necessary comparisons in the Convex Hull Trick
algorithm without computing any logarithms.

It is also possible to speed up the computation of the upper envelope representations by making
use of the following Lemma.

Lemma 14. Let s > 0. Then

|| f [s]||∞ = max
0≤k≤deg(f)

sd−k · bk

where

d = deg(f)

bk = max
e∈E(f)
|e|=k

|ae|.

Proof. Note that

f [s] = sd f (x1/s, . . . , xn/s) = sd ·
∑

e∈E(f)

ae

(x1

s

)e1 (x2

s

)e2 · · ·
(x1

s

)en =
∑

e∈E(f)

sd−|e|ae · xe.

Hence

|| f [s]||∞ = max
e∈E(f)

sd−|e||ae|

= max
0≤k≤d

⎧⎪⎨⎪⎩ max
e∈E(f)
|e|=k

sd−|e||ae|

⎫⎪⎬⎪⎭
= max

0≤k≤d

⎧⎪⎨⎪⎩ max
e∈E(f)
|e|=k

sd−k|ae|

⎫⎪⎬⎪⎭
= max

0≤k≤d
sd−k

⎧⎪⎨⎪⎩ max
e∈E(f)
|e|=k

|ae|

⎫⎪⎬⎪⎭
= max

0≤k≤d
sd−k · bk. �

A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56 51
We are now ready to present F indMinimizer (Algorithm 6). For each f i , we first find the coefficient
of largest magnitude for each total degree (motivated by Lemma 14). We then use the sub-algorithm
UpperEnvelopeSlopes (Algorithm 5) to compute the slopes of the lines which lie on the upper en-
velope of log(|| f [s]

i ||∞), as well as the points sei ,e j such that tei ,e j = log(sei ,e j) is a corner point of
the upper envelope. UpperEnvelopeSlopes is a straightforward modification of the Convex Hull Trick
algorithm. Once the upper envelope slopes are computed for each log(|| f [s]

i ||∞), we search for the
smallest s such that the slope of log(R) is positive for t > log(s).

We are now ready to discuss the complexity of F indMinimizer.

Lemma 15. Let U1, . . . , Un, V ∈ R>0 and

R(s) =
∏n

i=1 || f [s]
i ||Ui∞

sV
.

Then

arg min
s>0

R(s)

can be computed in O (n · m + n · d) algebraic operations and comparisons, where

m = # monomials of F

d =
n∑

i=1

di .

52 A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56
Proof. We consider the total time spent on each line of F indMinimizer.
In Line 3, we compute

Li ← [((di − k), 0), k = 0, . . . ,di]
which requires a total of O(

∑n
i=0 di) algebraic operations.

In Lines 5 and 6 we check and potentially update the entry Li[|e|][2]. This is done for every
e ∈ E(f i). Since the computation of |e| requires O(n) algebraic operations, the number of algebraic
operations in lines 5 − 6 is O(n ·∑n

i=1 #E(f i)) =O(n · m).
In Line 7 we compute

Zi ← UpperEnvelopeSlopes(Li).

It is straightforward to see that UpperEnvelopeSlopes requires O(r) algebraic operations and compar-
isons when r linear functions are input. Since Li has O(di) elements, line 7 requires O(di) algebraic
operations and comparisons. Hence the total amount of work performed in Line 9 is O(

∑n
i=1 di).

In Line 8 we compute

M ← the list of triples (β, i, s), sorted in ascending order with respect to s

where (β, s) is an element of Zi .

Note that every list Zi is already sorted in ascending order with respect to s, and Zi has O(di)

elements. Hence constructing M requires O(n ·∑n
i=1 di) algebraic operations and comparisons.

Line 9 can clearly be computed in a constant number of algebraic operations.
In the remainder of the algorithm, we potentially loop over all O(

∑n
i=1 di) elements of M . Lines 11

and 13 both require a constant number of algebraic operations and comparisons. Line 12 requires
O(n) algebraic operations. Hence the total number of algebraic operations and comparisons performed
in lines 10–14 is O(n ·∑n

i=1 di).
Combining all of the above, the total number of algebraic operations and comparisons required to

compute F indMinimizer(F , U , V) is

A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56 53
O
(

n ·
n∑

i=1

#E(f i) + n ·
n∑

i=1

di

)
= O (n · m + n · d) . �

We are now ready to prove Theorem 2.

Proof of Theorem 2. Note that

B New(F) =
√|discr(T f0)|

R(s∗)D−1
P (d1, . . . ,dn,n)

=
√|discr(T f0)|

(arg mins>0 R(s))D−1
P (d1, . . . ,dn,n)

= max
s>0

B DMM(F [s])
s

. from Lemma 11

Hence parts 1, 2 and 3 of the Theorem follow immediately from Proposition 3. The fourth part follows
from Lemmas 11 and 15. �
5. Performance

In this Section, we discuss the experimental performance of the new bounds. We first repeat the
observation of Remark 1: experimental evidence indicates that B New,k is almost always larger for
smaller k. This is unsurprising once we consider the derivation strategy in the previous section. Let
k1 ≤ k2. We have

B New,k1 ≈ max
s>0

B MM,k1

(
f [s])

s
, B New,k2 ≈ max

s>0

B MM,k2

(
f [s])

s

and

max
s>0

B MM,k1

(
f [s])

s
≥

B MM,k1

(
f
[s∗k2

])
s∗

k2

≥
B MM,k2

(
f
[s∗k2

])
s∗

k2

= max
s>0

B MM,k2

(
f [s])

s

where the third inequality holds due to known inequalities on polynomial norms.
We have also observed that the improvement is usually very large for the new bounds, especially

when the magnitudes of the roots are different from 1. To generate data points, we generated 100 ran-
dom monic polynomials (or square Pham polynomial systems) with fixed degree and height (defined
below) and calculated the average value of the improvement:

B New,k(f)

B MM,k(f)
=
(|| fk||

Hk

)d−1

and
B New(F)

B DMM(F)
=
(∏n

i=1 || f i ||Mi

H

)D−1

.

Note that the improvement is independent of the discriminant for both new bounds. This observation
allowed us to avoid many expensive computations when performing experiments (in particular, no
resultants need be computed in the multivariate case).

We will measure the size of the coefficients of a monic univariate polynomial with the following
expression:

|| f ||B = max
0≤i≤d−1

|ai|(d
i

) 1
d−i

We will call this the B-Height (B for “binomial”). We can naturally extend the B-Height to Pham
polynomials (see Gonzalez-Vega and Gonzalez-Campos, 1999 for a precise definition) of degree d
with the following expression

54 A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56
Fig. 6. Improvement and Binomial Height.

|| f ||B = max
e∈Support(trailing polynomial of f)

|ae|(d
e

) 1
d−|e|

.

It is well known that both height definitions above are linearly related to the size of the roots. To
generate a polynomial (or polynomial system) with the height rn/rd , we uniformly generated an inte-
ger c in the range (−rn, rd) for every trailing coefficient. The corresponding integer for one coefficient
was randomly chosen to be fixed at rn . We then set

|ae| =
(

rn

rd

)d−|e|(d

e

)
and defined f i = xd

i + trailing polynomial.
In the top plot of Fig. 6, we plot the log of the average improvement of B New,2 for 100 monic

polynomials of degree 4 and given B-Height. We see similar plots both for other degrees and other
choices of the norm (B New,k with k �= 2). In the bottom plot of Fig. 6, we plot the log of the aver-
age improvement of B New for 100 Pham systems with n = 3 and the degree of every polynomial 3.
We see similar plots both for other degrees and other choices of n. As we can see from Fig. 6, the
improvement increases as the magnitude of the roots becomes much different from 1.

We will also study the experimental performance of the new bounds on a special class of polyno-
mials known as Mignotte polynomials. A Mignotte polynomial is defined as

Mig(d,h) = xd − 2(hx − 1)2.

It is well known that Mignotte polynomials have very small root separation (approximately h−d). In
Fig. 7, we plot the logarithm of the exact root separation, B New,2, and B MM,2 of the improvement of
B New,2 for certain values of h and d. In the top plot, we fix h to be 10 and vary the degree. In the
bottom plot, we fix the degree to be 4 and vary h. We can see from the plots that the new bound is
consistently a tighter lower bound on the root separation. Furthermore, in the top plot we see that as
the degree increases the improvement of the new bound over B MM,2 increases.

6. Conclusion

In this paper we presented two improved root separation bounds. The new bounds improve on the
previous bounds in two ways:

(1) The new bounds are usually significantly bigger (hence better) than the previous bounds.
(2) The new bounds scale correctly, unlike the previous bounds.

A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56 55
Fig. 7. Log plots of exact separation bound (red diamonds), BNew,2 (blue circles) and BMM,2 (green boxes) for Mignotte polyno-
mials. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Crucially, the improved bounds are not harder to compute than the previous bounds. The improved
bounds meet an important challenge facing researchers in our field (Section 2). To the best of the
authors’ knowledge, the new improved bounds are significantly bigger than all known (efficiently
computable) root separation bounds and are the only known (efficiently computable) root separation
bounds which scale correctly.

Of course, there remains plenty of room for improvement in the new bounds. In particular, the
new multivariate bound presented in this paper is still quite pessimistic. One possible strategy for
improving the new bound is to modify the bound to account for sparsity. This strategy does present a
challenge: the derivation in this paper requires an understanding of the scaling behavior of the leading
coefficient of T f0 (see Lemmas 9 and 10). If T f0 is calculated by computing the sparse resultant instead
of the univariate resultant, the formula for the leading coefficient is much more challenging to work
with (see D’Andrea and Sombra, 2015).

Acknowledgements

The authors would like to thank Carlos D’Andrea for his insights regarding the multivariate resul-
tant. Hoon Hong acknowledges the partial support from the grant US NSF 1319632. Elias Tsigaridas is
partially supported by GeoLMI (ANR 2011 BS03 011 06), HPAC (ANR ANR-11-BS02-013), and an FP7
Marie Curie Career Integration Grant.

References

Bugeaud, Y., Mignotte, M., 2004. On the distance between roots of integer polynomials. Proc. Edinb. Math. Soc. 47 (3), 553–556.
Burnikel, C., Funke, S., Melhorn, K., Schirra, S., Schmitt, S., 2001. A separation bound for real algebraic expressions. In: Lecture

Notes in Computer Science, pp. 254–265.
Collins, G., Horowitz, E., 1974. The minimum root separation of a polynomial. Math. Comput. 28 (126), 589–597.
Convex hull trick. http://wcipeg.com/wiki/Convex_hull_trick, 2017.
Cox, D., Little, J., O’Shea, D., 2005. Using Algebraic Geometry, 2nd edition. Springer.
D’Andrea, C., Sombra, M., 2015. A Poisson formula for the sparse resultant. Proc. Lond. Math. Soc. (3) 110, 932–964.
Emiris, I., Mourrain, B., Tsigaridas, E., 2010. The DMM bound: multivariate (aggregate) separation bounds. In: Proceedings of the

2010 International Symposium on Symbolic and Algebraic Computation, pp. 243–250.
Emiris, I., Tsigaridas, E., 2004. Comparing Real Algebraic Numbers of Small Degree. Lecture Notes in Computer Science, vol. 3221.
Gonzalez-Vega, L., Gonzalez-Campos, Neila, 1999. Simultaneous elimination by using several tools from real algebraic geometry.

J. Symb. Comput. 28, 89–103.
Herman, A., Hong, H., 2015. Quality of positive root bounds. J. Symb. Comput. 74, 592–602.
Li, C., Pion, S., Yap, C., 2004. Recent progress in exact geometric computation. J. Log. Algebraic Program. 64, 85–111.
Mahler, K., 1964. An inequality for the discriminant of a polynomial. Mich. Math. J. 11 (3), 257.
Melhorn, K., Ray, S., 2010. Faster algorithms for computing Hong’s bound on absolute positivity. J. Symb. Comput. 45, 677–683.
Mignotte, M., 1974. An inequality about factors of polynomials. Math. Comput. 28 (128), 1153–1157.

http://refhub.elsevier.com/S0747-7171(17)30022-6/bib4275672D4D69672D32303030s1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib4275726E2D32303031s1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib4275726E2D32303031s1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib436F6C2D486F72s1
http://wcipeg.com/wiki/Convex_hull_trick
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib436F782D4C6974746C652D4F73686561s1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib536F6D2D44616E2D32303134s1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib444D4Ds1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib444D4Ds1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib547369672D32303034s1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib5068616D426F6F6Bs1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib5068616D426F6F6Bs1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib706F73726F6F7473s1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib5961702D32303034s1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib4D61686C65722D31393634s1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib4D656C686F726E2D5261792D32303130s1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib4D69672D31393734s1

56 A. Herman et al. / Journal of Symbolic Computation 84 (2018) 25–56
Mignotte, M., 1995. On the distance between the roots of a polynomial. Appl. Algebra Eng. Commun. Comput. 6, 327–332.
Rump, S., 1979. Polynomial minimum root separation. Math. Comput. 33 (145), 327–336.
Schultz, C., Moller, R., 2005. Quantifier elimination over real closed fields in the context of applied description logics. In: Univ.,

Bibl. des Fachbereichs Informatik.
Strzebonksi, A., Tsigaridas, E., 2011. Univariate real root isolation in an extension field and applications. hal-01248390.
Tsigaridas, E., Emiris, I., 2008. On the complexity of real root isolation using continued fractions. Theor. Comput. Sci. 392,

158–173.

http://refhub.elsevier.com/S0747-7171(17)30022-6/bib4D69672D31393935s1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib52756D70s1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib536368756C747As1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib536368756C747As1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib444D4D31s1
http://refhub.elsevier.com/S0747-7171(17)30022-6/bib444D4D31s1

	Improving root separation bounds
	1 Introduction
	2 Challenge
	3 Main results
	4 Derivation
	4.1 Overall framework
	4.2 Derivation of new univariate bound
	4.3 Derivation of new multivariate bound

	5 Performance
	6 Conclusion
	Acknowledgements
	References

