
Formal Modeling (SS 2020)
Assignment 1 (May 20)

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Johannes Kepler University, Linz, Austria
Wolfgang.Schreiner@risc.jku.at

The result is to be submitted by the deadline stated above ia the Moodle interface of the course as
a single archive file in .zip or .tgz format which contains the following files:

1. A single PDF file with the following contents:
• a cover page identifying the course, the assignment, and the submitter;
• a section for each part of the assignment, which contains
• the deliverables requested for this section with a snapshot of the listing of the correspond-
ing RISCAL file that contains all additions/changes to the skeleton file handed out (nicely
formatted and typeset in a fixed-width font of readable size with no line overflows), and

• optionally any explanations or comments you would like to make.

2. All RISCAL files developed in the assignment.

All assignments only ask to complete the definitions of predicates by formulas in first order logic
(operations ¬, ∧, ∨,⇒,⇔, ∀, ∃). You may also use if-then-else and let-in expressions to make the
formulas more readable.
Hint: you may annotate arbitrary formulas and terms by the print expression (see the RISCAL

manual section B.5.15) to understand the derived results. For instance:

// result is p(e), prints first e and then p(e) in separate lines
print p(print e)

// result is f(x,y), prints x and y in one line, then f(x,y) in another
print "x:{1}, y:{2}", x, y in print f(x,y)

1

mailto:Wolfgang.Schreiner@risc.jku.at

Assignment 1a (30 Points): Array Replacement

We consider the problem of replacing elements in an array. The attached RISCAL file Replace.txt
gives an algorithm replace that returns a duplicate b of array awhere every occurrence of an element
in from has been replaced by the corresponding element in to (frommust not have duplicate elements).

1. Complete the definition of the predicates input and output that define the precondition and
the postcondition of the algorithm, respectively.

2. Define in the pop-up window “Other Values” suitable values for the model parameters N and
M (e.g., N = 4, M = 2, R = 3). Press in the “Operation” panel the button “Show/Hide Tasks”
to open the “Tasks” menu.

3. Validate your specification by running (with option “Nondeterminism” switched on and op-
tion “Silent” switched off) the task “Execute specification”. Analyze the printed output to
investigate which input/output pairs are allowed by your definition. Are those (and only those)
pairs printed that you expect?

4. Further validate your specification by running (with option “Nondeterminism” switched off
and option “Silent” switched on) the tasks “Is precondition satisfiable?”, “Is precondition not
trivial?”, “Is postcondition always satisfiable?”, “Is postcondition always not trivial?”, “Is
postcondition sometimes not trivial?”, “Is result uniquely determined?”. Are the results as
you have expected?

5. Run task “Execute Operation” to check whether the algorithm indeed satisfies your specifica-
tion (respectively, whether your specification matches the algorithm; the algorithm most likely
is correct).

Demonstrate by (a reasonable selection of) the RISCAL output that you indeed have performed
above tasks. Interpret the results and judge whether your specification is adequate.

Assignment 1b (35 Points): Ultimate Tic-Tac-Toe

We consider the game “Ultimate-Tic-Tac Toe”1. The RISCAL file UltimateTicTacToe.txt
contains a procedure play (together with accompanying auxiliary definitions) that plays (depending
on the execution option “Non-determinism”) some/all possible instances of this game.

1. Complete the definition of the predicate wins that determines whether a particular player has
won the game.

2. Complete the definition of the predicate legal that determines whether a particular move (a
choice of a local board and a position in that board) is legal.

Validate your specification by running (with option “Nondeterminism” switched on and option
“Silent” switched on) all possible games; the procedure prints out all games which was won by some
players (the games resulting in a draw are not printed).

1https://en.wikipedia.org/wiki/Ultimate_tic-tac-toe

2

https://en.wikipedia.org/wiki/Ultimate_tic-tac-toe

The procedure may have to execute some 105 non-deterministic execution branches (which may
take a minute or so) to find a game that was won by some player. Once some such games have
been found, you may interrupt the execution (press the “Stop Execution” button) and investigate
some game(s) to determine whether it was indeed correctly played and the winner was correctly
determined.
Explain in your submission one played game in detail and why it was correctly played.

Assignment 1c (35 Points): Elevator Control

Consider a building with F floors that are served by E elevators. On each floor, there are two “call”
buttons “up” and “down” that the user may press to announce the intention of going up or down (for
simplicity, we also let the bottom and the top floor have two buttons). Inside each elevator there
are F “floor” buttons that the user may press to request to go to that particular floor (of course, this
request need not match the originally announced intention). For serving floors, elevators apply the
“elevator algorithm”2 which is also applied in disk scheduling3: the basic idea is that an elevator
continues to travel in its current direction (up or down) while there are remaining requests in that
same direction; if there are no further requests in that direction, then it stops and becomes idle, or
changes direction if there are requests in the opposite direction.
The RISCAL file Elevator.txt contains the skeleton for the simulation an elevator system

whose state s consists of the following components:

• s.call(d) denotes, for direction d ∈ {up,down}, the set of floors in which a call button for
direction d has been pressed.

• s.button(e) denotes the set of floor buttons that have been pressed in elevator e.

• s.door(e) indicates whether the door of elevator e is open (true) or not (false).

• s.floor(e) denotes the floor in which the elevator currently is.

• s.direction(e) denotes the direction d for which the elevator is currently serving requests
(d = none indicates that the elevator is currently not serving any requests).

The goal is to define the core of an elevator controller by a predicate admissible(a, s) (apart from
this definition, you need not change anything in the RISCAL file) that states whether in a state s of
the system an action a of the following kind is admissible:

• Call(f , d): on floor f the not yet pressed (i.e., unlit) button for direction d ∈ {up,down} is
pressed (and thus becomes lit).

• Button(e, f): in elevator e the not yet pressed (i.e, unlit) button for floor f is pressed (and thus
becomes lit).

• Door(e,door): the door of elevator e opens (door=true) or closes (door=false). If the door
opens, in the elevator the button for the current floor is unlit and on the current floor the button

2https://www.popularmechanics.com/technology/infrastructure/a20986/
the-hidden-science-of-elevators/

3https://en.wikipedia.org/wiki/Elevator_algorithm

3

https://www.popularmechanics.com/technology/infrastructure/a20986/the-hidden-science-of-elevators/
https://www.popularmechanics.com/technology/infrastructure/a20986/the-hidden-science-of-elevators/
https://en.wikipedia.org/wiki/Elevator_algorithm

for the direction in which the elevator is heading is unlit; if the elevator is not heading any more
in a particular direction (because all requests in that direction have been served), an arbitrary
lit button may be unlit.

• Move(e, d): elevator e moves into direction d to serve a request (d ∈ {up,down}) (thus
changing the floor) or it stops serving requests (d = none); in any case the direction d is
recorded as the “current” direction of the elevator.

Please see in the RISCAL file the definition of function execute(a, s) that describes these actions by
computing the state that results from state s by performing action a.
The execution of the system is described by a sequence of admissible actions as allowed by the

predicate admissible(a, s). For instance, for a building with F = 3 floors and E = 1 elevator, such as
sequence might be

Call(1,up) → Move(0,up) → Door(0, true) → Button(0,2) → Door(0, false)
→ Move(0,up) → Call(1,down) → Door(0, true) → Door(0, false) → Move(0,down)
→ Door(0, true) → Door(0, false) → Button(0,0) → Move(0,down)
→ Door(0, true) → Door(0, false) → Move(0,none) → Call(2,down) → · · ·

Please apply above description and your common understanding of how elevators typically work
to define the predicate admissible(a, s).
As a minimum requirement, your predicate shall ensure:

• safety: an elevator never moves with an open door.

• progress: an elevator only moves to serve some request.

Validate your model by choosing appropriate (small) values for F, E , and N and executing (with
options “Nondeterminism” and “Silent” switched on) the function run() that non-deterministically
chooses and executes all action sequences of length N . For this, first uncomment the line that displays
the chosen action sequence and demonstrate that some of the computed action sequences contain
Move actions and generally look as “as expected”. Then comment this line out again and have all
execution sequences generated; this automatically checks that the sequences satisfy the safety and
progress property indicated above.

4

