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In this paper, we consider the class of first-order algebraic ordinary 
differential equations (AODEs), and study their rational general 
solutions. A rational general solution contains an arbitrary constant. 
We give a decision algorithm for finding a rational general solution, 
in which the arbitrary constant appears rationally, of the whole 
class of first-order AODEs. As a byproduct, this leads to an 
algorithm for determining a rational general solution of a class 
of first-order AODE which covers almost all first-order AODEs 
from Kamke’s collection. The method is based intrinsically on the 
consideration of the AODE from a geometric point of view. In 
particular, parametrizations of algebraic curves play an important 
role for a transformation of a parametrizable first-order AODE to a 
quasi-linear differential equation.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

A first-order algebraic differential equation (AODE) is a differential equation of the form 
F (x, y, y′) = 0 for some irreducible trivariate polynomial F with coefficients in an algebraically closed 
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field K. First-order AODEs have been studied a lot and there is a variety of solution methods for 
special classes. The study of such ODEs can be dated back to the work of Fuchs (1884) and Poincaré 
(1885). Malmquist studied the class of first-order AODEs having transcendental meromorphic solu-
tions in Malmquist (1913), and later Eremenko (1982) revisited this problem. By using the result 
of Matsuda (1980) on classification of differential algebraic function fields without movable critical 
points, Eremenko (1998) presented a theoretical consideration on a degree bound of rational solutions.

The problem of finding closed form solutions of first-order AODEs has been considered in several 
papers. Kovacic (1986) solved completely the problem of computing Liouvilian solutions of a second-
order linear ODEs with rational function coefficients. He also proposed an algorithm for determining 
all rational solutions of a Riccati equation. For the class of first-order first-degree AODEs, Carnicer 
(1994) studied a degree bound for algebraic solutions in the non-dicritical case. Hubert (1996) found 
implicit solutions by computing Gröbner bases.

We are mainly interested in rational general solutions, i.e. rational solutions which are also general 
solutions in the sense of Ritt (1950). Such general solutions must contain a transcendental constant. 
We take an algebro-geometric approach to this problem. First we neglect the differential aspect and 
associate to the AODE an algebraic hypersurface. In the case of an autonomous AODE of order one 
a rational solution of the AODE is a rational parametrization of this hypersurface. In case the hyper-
surface admits a rational parametrization, we have to look for a reparametrization, which would also 
satisfy the differential constraint; namely, that the second component of this parametrization should 
be the derivative of the first one. A similar reasoning is applied in the more complicated situation 
of non-autonomous AODEs. The algebro-geometric approach has received much attention in the last 
decade. Algorithms for the class of first-order autonomous AODEs have been proposed in Aroca et 
al. (2005); Feng and Gao (2004, 2006). The algorithm is based on the fact that if the given AODE 
has a rational solution, then the algebraic hypersurface obtained from the differential equation by 
considering the derivative as a new indeterminate is a rational curve. Applying this idea to the gen-
eral class of first-order AODEs, and combining it with Fuch’s theorem on first-order AODEs without 
movable critical points, Chen and Ma (2005) presented an algorithm for determining a special class 
of rational general solutions. However, their algorithm is incomplete due to two reasons: the neces-
sary condition for the existence of the solution is not proved to be algorithmically checkable, and a 
good rational parametrization is required in advance. Ngô and Winkler (2010, 2011b,a) applied the 
algebro-geometric approach to general non-autonomous first-order AODEs. Using parametrization of 
algebraic surfaces, they associate to the given parametrizable AODE an associated system of algebraic 
equations in the parameters. This associated system is a planar rational system. In order to complete 
the algorithm, a degree bound for irreducible invariant algebraic curves of the planar rational system 
is required. The problem of finding a uniform bound for the degree of invariant algebraic curves for 
planar rational systems is known as the Poincaré problem. This difficult problem has been solved by 
Carnicer (1994), but only generically for the non-dicritical case. So the algorithm of Ngô and Winkler, 
although producing general rational solutions in almost all situations where such a solution exists, is 
still no complete decision algorithm.

So far no general algorithm for deciding the existence and, in the positive case, computing a ra-
tional general solution of first-order AODEs exists. Such a rational general solution must contain a 
transcendental constant. If this constant appears rationally, we speak of a strong rational solution. In 
this paper, we propose a full decision algorithm for taking an arbitrary first-order AODE, deciding the 
existence of a strong rational general solution, and in the positive case computing such a strong ra-
tional general solution. This generalizes the work of Feng and Gao (2004, 2006); Chen and Ma (2005), 
and Ngô and Winkler (2010, 2011b,a). More specifically, we take an algebro-geometric approach and 
proceed as follows: we consider the AODE F (x, y, y′) = 0 as defining a curve over K(x), the field of 
rational functions in x over K. I.e., we consider y′ = z as a new indeterminate and we view the AODE 
as an algebraic equation F (x, y, z) = 0 defining an algebraic curve in the affine plane A2(K(x)). We 
prove that in order for the AODE to have a strong rational general solution, in which the transcen-
dental constant appears rationally, the algebraic curve must be of genus 0. We also prove that over 
K(x) every rational curve has an optimal parametrization with coefficients in K(x), i.e., without alge-
braically extending the coefficient field. Such an optimal parametrization allows us to transform the 
given AODE to an associated AODE which is easier to solve. Consequently, we derive a full decision 
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algorithm for deciding the existence of a strong rational general solution; in the positive case, we 
compute a strong rational general solution.

In Section 2 we present the necessary notations and definitions. In Section 3 the notion of strong 
solutions is discussed. In Section 4 we prove that rational curves over K(x) are always parametrizable 
by rational functions with coefficients in K(x). The associated equation is derived in Section 5. This 
leads to the final algorithm for rational general solutions of parametrizable AODEs in Section 6.

2. Preliminaries and notations

By K we denote an algebraically closed field of characteristic zero. We equip K[x] with a derivation 
where K is the field of constants and x′ = 1. A first-order algebraic ordinary differential equation 
(AODE) is a differential equation of the form:

F (x, y, y′) = 0 , (1)

where F ∈ K[x, y, z] \K[x, y]. W.l.o.g., we assume that F is irreducible. Then F (x, y, y′) is irreducible 
as an element of K(x){y}, the ring of differential polynomials with coefficients in K(x). By Ritt (1950), 
the radical differential ideal generated by F , say {F }, can be decomposed as

{F } =
(

{F } : ∂ F

∂ y′

)
∩

{
F ,

∂ F

∂ y′

}
.

The first component on the right hand side, the quotient of {F } by the separant of F , is a prime 
differential ideal. Thus, it has a generic zero. The following definition is due to Ritt (1950).

Definition 2.1. A generic zero of the differential prime ideal 
(
{F } : ∂ F

∂ y′
)

is called a general solution of 
the differential equation (1).

The following lemma is useful for checking whether a solution is general; cf. Ritt (1950, Chap. II.5 
and 6).

Lemma 2.2. A solution y(x) of the differential equation (1) is a general solution if and only if

∀ H ∈K(x){y} : H(y(x)) = 0 =⇒ prem(H, F ) = 0 ,

where prem is the differential pseudo remainder.

Definition 2.3. A general solution y(x) of the differential equation (1) is called a rational general solu-
tion if it has the form

y(x) = a0 + a1x + . . . + anxn

b0 + b1x + . . . + bmxm

for some m, n ∈N and ai, b j constants in a differential field extension of K.

Our approach towards solving first-order AODEs is an algebro-geometric one. Consider a first-order 
AODE, F (x, y, y′) = 0, for an irreducible polynomial F . We first neglect the differential aspect of the 
equation by replacing the derivative by an independent variable, thus arriving at the algebraic equa-
tion F (x, y, z) = 0. By considering F in K(x)[y, z], we let it define a curve in the affine plane over the 
algebraic closure of the field of rational functions K(x).

Definition 2.4. The algebraic curve CF in A2(K(x)) defined by F (x, y, z) = 0 is called the corresponding 
curve of the differential equation F (x, y, y′) = 0.
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Typically, given a field of characteristic zero F, we consider a polynomial G ∈ F[y, z] as implicitly 
defining an algebraic curve in the affine plane over the algebraic closure of F, A2(F), by the equa-
tion G(y, z) = 0. We say that this curve is defined over F. Often it is useful to have a parametric 
representation of the points on the curve.

Definition 2.5. Let C ⊂ A2(F) be an algebraic curve defined over F.
A rational parametrization, or briefly, a parametrization of C is a rational map P : A1(F) → C such 

that the image of P is dense in C (w.r.t. the Zariski topology).
If, furthermore, P is a birational equivalence, P is called a proper parametrization.
If C admits a parametrization, we say C is a rational curve.

Only irreducible curves can have a rational parametrization. Some of the results in this paper work 
also for the more general radical parametrizations. For details we refer to Sendra and Sevilla (2011). 
In this paper we stick to the rational case.

It is well-known that if an algebraic curve admits a rational parametrization, then it admits a 
proper parametrization. The following theorem gives a necessary and sufficient condition for an alge-
braic curve to have a rational parametrization.

Theorem 2.6 (Rationality criterion). An algebraic curve is rational if and only if its genus is equal to zero.

In case the curve C is rational, it has infinitely many proper parametrizations. We are interested in 
the extension field of F of least extension degree, which contains the coefficients of a parametrization 
of C .

Definition 2.7. Let P(t) = (p1(t), p2(t)) ∈ F(t)2 be a parametrization of the curve C . Let L be the 
extension field of F by the coefficients in P . We call L the field of coefficients of P . We say that C is 
parametrizable over a field K , if K contains the field of coefficients of a parametrization of C .

Definition 2.8. Let L be an algebraic extension of F. A point (y0, z0) ∈ C is called an L-rational point 
iff (y0, z0) ∈ A2(L).

The following proposition is a criterion for a rational curve to be parametrizable over a given field; 
see for instance Sendra et al. (2008).

Proposition 2.9. Given an algebraic extension field L of F, the rational curve C is parametrizable over L if and 
only if C contains a simple L-rational point.

A parametrization whose field of coefficients is as small as possible is called an optimal 
parametrization. Several algorithms for determining an optimal parametrization of a rational curve 
have been given. For further details on parametrization of algebraic curves we refer to Sendra et al. 
(2008).

3. Strong rational general solutions

In this section, we give a necessary condition for a first-order AODE to admit a rational general 
solution in which the transcendental constant c appears rationally; i.e., which is of the form y(x, c) ∈
K(x, c) \ K(x). The following theorem is a slightly different version of Theorem 2.4 in Chen and Ma 
(2005). We carefully distinguish rational general solutions in the sense of Ritt (1950) and those used 
in Chen and Ma (2005). The latter ones will be called strong rational general solutions. Together with 
new investigations about parametrization of algebraic curves over rational function fields in the next 
section, the discussion in this section shows how to extend the method of Chen and Ma (2005) to a 
full algorithm. Note, that we assume irreducibility in K[x, y, z].



N.T. Vo et al. / Journal of Symbolic Computation 87 (2018) 127–139 131
Theorem 3.1. Let F be an irreducible polynomial in K[x, y, z] \ K[x, y]. If the differential equation 
F (x, y, y′) = 0 has a rational solution of the form y(x, c) ∈K(x, c) \K(x) for an arbitrary constant c, then its 
corresponding curve CF in A2(K(x)) is rational, and admits a parametrization with coefficients in K(x).

Proof. First, we need to prove that F is still irreducible as a polynomial in K(x)[y, z]. In order to do 
that, let us consider the ideal

I := {H ∈K(x)[y, z] | H(x, y(x, c), y′(x, c)) = 0}
in the polynomial ring K(x)[y, z]. We claim that I is a principle prime ideal. Consider the ring homo-
morphism φ : K(x)[y, z] → K(x)(c), defined by φ(H) := H(x, y(x, c), y′(x, c)) for H ∈ K(x)[y, z]. The 
kernel of φ is exactly I . Therefore φ induces an embedding from the quotient ring K(x)[y, z]/I to 
K(x)(c). Thus K(x)[y, z]/I is a domain, and then I is a prime ideal. Since K(x)[y, z] is a noetherian 
unique factorization domain, we know from Hartshorne (1977, Prop. 1.12A, p. 7) that every prime 
ideal of height one is principle. Hence, I is principle.

Next we prove that I can be generated by an irreducible polynomial G in K[x, y, z]. We construct 
such a generator by the method of Gröbner bases. Let y(x, c) = P1(x,c)

P2(x,c) and y′(x, c) = Q 1(x,c)
Q 2(x,c) be in re-

duced form, i.e. P1, P2, Q 1, Q 2 ∈K[x, c] such that gcd(P1, P2) = gcd(Q 1, Q 2) = 1. From the definition 
of the ideal I , we know by implizitation that

I = 〈y P2 − P1, zQ 2 − Q 1,1 − P2t1,1 − Q 2t2〉 ∩K(x)[y, z] .
The first component on the right hand side is an ideal in K(x)[c, t1, t2, y, z] generated by the 
polynomials y P2 − P1, zQ 2 − Q 1, 1 − P2t2 and 1 − Q 2t2. We fix the lexicographic ordering on 
K(x)[c, t1, t2, y, z] with c > t1 > t2 > y > z. Using this ordering we compute a reduced Gröbner ba-
sis of I by first computing a reduced Gröbner basis for the first component of the right hand side, 
and then eliminating all elements containing c, t1, t2. Buchberger’s algorithm and reduction of the 
obtained basis yields a list of polynomials in the variables c, t1, t2, y, z with coefficients in K(x). 
Therefore, after eliminating polynomials containing c, t1, t2, we obtain a reduced Gröbner basis of I
which contains only polynomials in K(x)[y, z]. Since I is principle, the reduced Gröbner basis of I
contains only one element, say G1 ∈ K(x)[y, z]. Moreover, since I is a prime ideal, G1 must be irre-
ducible over K(x)[y, z] and hence also in K(x)[y, z]. Let G ∈ K[x, y, z] such that G1 = a(x)

b(x) G for some 
a(x), b(x) ∈ K[x] and G is primitive over K[x]. Hence, G is irreducible over K(x)[y, z] (since G1 is 
irreducible). Then we have I = 〈G1〉 = 〈G〉 over K(x)[y, z]. Therefore, G is irreducible over K(x)[y, z].

Since F is an irreducible element in the ideal I , F differs from G only by a non-zero constant 
factor in K. Therefore, F is also irreducible over K(x)[y, z], and consequently the corresponding curve 
CF is irreducible. Since F (x, y(x, c), y′(x, c)) = 0, the curve CF can be parametrized by a pair of ra-
tional functions P(t) := (y(x, t), ∂

∂x y(x, t)). Hence CF is rational and admits a parametrization with 
coefficients in K(x). �

Theorem 3.1 motivates the following definitions.

Definition 3.2. The first-order AODE F (x, y, y′) = 0 is called parametrizable if its corresponding curve 
is rational.

All differential equations of the form y′ F1(x, y) = F0(x, y), where F0, F1 ∈ K[x, y], are parametriz-
able. As a consequence, we might also say that all quasi-linear differential equations of the form 
y′ = F0(x,y)

F1(x,y)
are parametrizable.

Note, that 89 percent of the first-order AODEs listed in the collection of Kamke (1983) are 
parametrizable. The remaining ones consist of two classes. One part contains the reducible AODEs, 
hence, parametrizability of the factors can be considered. Around one half of the reducible AODEs 
have parametrizable factors. The other part consists of AODEs for which the corresponding curve has 
genus greater than 0.

The class of first-order AODEs covers around 64 percent of the entire collection of first-order ODEs 
in Kamke. Some of the remaining first-order ODEs contain arbitrary functions. For certain choices 



132 N.T. Vo et al. / Journal of Symbolic Computation 87 (2018) 127–139
of these functions, the ODEs might be algebraic. For further details on statistical investigations of 
Kamke’s list we refer to Grasegger et al. (2015).

The classical definition of a general solution is that of a solution containing some arbitrary con-
stant. In fact it is easy to show that a rational general solution in the sense of Ritt (Definition 2.1) 
needs to contain a coefficient, which is not in K. Assume to the contrary that ȳ(x) = P (x)

Q (x) , with 
P , Q ∈ K[x] is a rational general solution. Then ȳ is a zero of the polynomial Q (x)y − P (x). The dif-
ferential pseudo remainder of this polynomial with F is the polynomial itself, which is a contradiction 
to Lemma 2.2.

A rational general solution of the differential equation (1) is not necessarily of the form y(x, c) ∈
K(x, c) \ K(x) for some transcendental constant c. However, if y(x, c) is a solution of the differential 
equation (1), then it is a general solution in the sense of Ritt. In fact, let us assume that H ∈ K (x){y}
is an arbitrary differential polynomial such that H(y(x, c)) = 0, and that G := prem(H, F ). Then G ∈
K(x)[y, y′]. From the definition of pseudo differential remainder, we know that there are natural 
numbers m, n such that Sm

F In
F G − H is a linear combination of F and its derivatives with coefficients 

in K(x){y}, where S F and I F are separant and initial of F , respectively. S F and I F do not vanish at 
y = y(x, c). Otherwise, as we have seen in the proof of Theorem 3.1, S F and I F differ from F only by 
a factor in K(x), which is not possible. Therefore G vanishes at y = y(x, c). So G differs from F only 
by a factor in K (x). This implies G = 0. Finally, Lemma 2.2 asserts that y(x, c) is a general solution.

Definition 3.3. A solution y of the differential equation (1) is called a strong rational general solution if 
y = y(x, c) ∈K(x, c) \K(x), where c is a transcendental constant over K(x).

Theorem 3.1 is not true if the given rational general solution is not strong. For instance, the differ-
ential equation

x3 y′ 3 − (3x2 y − 1)y′ 2 + 3xy2 y′ − y3 + 1 = 0

has a rational general solution

y(x) = cx + (c2 + 1)
1
3 ,

which is not strong. The corresponding curve has genus 1. Therefore, the differential equation has no 
strong rational general solution. However, as we will see later, if a parametrizable first-order AODE 
has a rational general solution, then it has a strong rational general solution.

4. Optimal parametrizations of rational curves over KKK(x)

We have seen that the corresponding curve of a first-order AODE having a strong rational general 
solution is rational. Moreover, by Theorem 3.1 the corresponding curve admits a parametrization with 
coefficients in K(x). In case we have a parametrization with coefficients in K(x) we can decide the 
existence of a strong rational general solution and compute it. Indeed, as we show in this section, 
such a parametrization always exists.

Optimal parametrization is a key notion for answering the question. Several algorithms for deter-
mining an optimal parametrization of a rational curve are available. Sendra et al. (2008) proposed an 
algorithm for computing an optimal parametrization of a rational curve over the field Q of rational 
numbers. A similar result for the class of rational curves over the field Q(x) of rational functions is 
presented in Hillgarter and Winkler (1997). By different methods, Beck and Schicho (2008) studied the 
optimal parametrization problem for rational curves over perfect fields. Since K(x) is a perfect field, 
the algorithm of Beck and Schicho is applicable over K(x). Below, we follow the idea by Hillgarter 
and Winkler (1997) to determine an optimal parametrization of a rational curve over K(x).

Let us fix a rational curve C in A2(K(x)) defined by G(x, y, z) = 0, for some irreducible polynomial 
G ∈ K(x)[y, z]. As a consequence of a theorem by Hilbert and Hurwitz (Sendra et al., 2008, Ch. 5, 
p. 152), C can be birationally transformed to a line or a conic over K(x), depending on whether the 
total degree of G is odd or even, respectively. The transformation is described in Sendra et al. (2008)
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by using the notion of adjoint curves. A line is always parametrizable over K(x). To parametrize a 
conic over K(x), it suffices to find a K(x)-rational point on it.

In the following we show, along the lines of Hillgarter and Winkler (1997), that indeed there 
always exists such a K(x)-rational point. Conics are classified in the usual way as parabolas, hyper-
bolas and ellipses. In case the conic is a parabola, a K(x)-rational point can always be constructed 
by a formula similar to the one in Hillgarter and Winkler (1997, p. 195) for the field Q. Note that 
every conic over K(x) can be linearly transformed to a projective conic in P2(K(x)) of the form 
AY 2 + B Z 2 − W 2 = 0 for some square-free polynomials A, B ∈ K[x] (see Vo, 2016, Chp. 4, Sec. 4.2).

Proposition 4.1. For any square-free polynomials A, B ∈ K[x], the projective conic defined by AY 2 + B Z 2 −
W 2 = 0 always has a K(x)-rational point.

Before giving a proof for this proposition, we need the following lemma.

Lemma 4.2. Let A, B be polynomials in K[x] such that A is square-free and deg A ≥ deg B ≥ 1. Then there 
exist a, b, m ∈K[x] such that a is square-free, dega < deg A, and b2 − B = am2 A.

Proof. Denote by n the degree of A and let x1, . . . , xn ∈ K be the roots of A. There exists a polyno-
mial b ∈ K[x] of degree at most n − 1 such that b(xi) = √

B(xi) for every i = 1, . . . , n, where 
√

B(xi)

is a square root of B(xi). We see that B(x) ≡ b(x)2 mod (x − xi) for every i = 1, . . . , n. Since A is 
square-free, we have B(x) ≡ b(x)2 mod A(x).

Now let a, m ∈ K[x] such that a is square-free and b2−B
A = a · m2. Note that such a pair (a, m) is 

always exist. It remains to prove that deg a < deg A. Indeed, we have

deg a = deg(b2 − B) − deg(Am2)

≤ deg(b2 − B) − deg A

≤ max{2(deg A − 1),deg B} − deg A

< deg A . �
From the proof, we see that deg b ≤ deg A − 1. This fact leads us to an algorithmic way to de-

termine the triple (a, b, m) by the method of indeterminate coefficients. In particular, we first set b
a polynomial of degree deg A − 1 in x with indeterminate coefficients. Since A divides b2 − B , the 
remainder must be equal to zero. This yields an algebraic system in the indeterminate coefficients. By 
solving this algebraic system, we can find all possible choices for b, and hence for a and m.

Proof of Proposition 4.1. This proof follows the lines of Hillgarter and Winkler (1997).
Let A, B ∈ K[x] be square-free polynomials, and consider the projective conic E defined by AY 2 +

B Z 2 − W 2 = 0. Denote d(E) := min(deg A, deg B). We prove the existence of a K(x)-rational point on 
E by induction on d(E). In the induction base case, i.e. d(E) = 0, for instance deg A = 0, we see that 
(1 : 0 : √A) ∈ P2(K(x)) is a K(x)-rational point of the conic.

Let m ≥ 1 be an arbitrary natural number, and assume that for every projective conic Ẽ defined 
by ÃY 2 + B̃ Z 2 − W 2 = 0 for some square-free polynomials Ã, B̃ ∈ K[x], if d(Ẽ) < m then Ẽ admits a 
K(x)-rational point. We need to prove that if d(E) = m, then E also admits a K(x)-rational point.

In case d(E) = m, we proceed as follows. We may assume that deg A ≥ deg B = m, otherwise we 
just swap Y and Z . By Lemma 4.2, there exist A1, b, m ∈ K[x] such that A1 is square-free, deg A1 <

deg A, and b2 − B = A1m2 A. We transform the coordinate system (Y , Z , W ) to the new one (Y , Z , W )

by the linear transformation⎡
⎣ Y

Z
W

⎤
⎦ =

⎡
⎣ Am 0 0

0 b 1
0 B b

⎤
⎦

⎡
⎣ Y

Z
W

⎤
⎦ .
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Algorithm 1 OptimalParametrization (Optimal Parametrization)
Require: A rational curve C defined over K(x)
Ensure: An optimal proper parametrization for C

1: Determine a birational transformation, say T , to transform the curve C to a birationally equivalent curve E , which is 
either a line or a conic. This is achieved by an algorithm derived from the proof of the theorem of Hilbert and Hurwitz 
(see Theorem 5.8 and Algorithm Hilbert–Hurwitz in Sendra et al., 2008).

2: if E is a line then
3: Determine an optimal parametrization P(t) for the line.
4: else if E is a conic then
5: Linearly transform the conic E to a projective conic E ′ of the form AY 2 + B Z 2 − W 2 = 0 for some square-free

polynomials A, B ∈K[x].
6: Construct a K(x)-rational point Q ′ on E ′ by the method described in the proof of Proposition 4.1.
7: Determine the corresponding K(x)-rational point Q on E .
8: Determine a proper parametrization P(t) for E by using the point Q .

See Algorithm Conic-Parametrization in Sendra et al. (2008, p. 115).
9: end if

10: return T −1(P(t))

Then we see that

A1Y
2 + B Z

2 − W
2 = (b2 − B)(AY 2 + B Z 2 − W 2) .

Since B is square-free, b2 − B �= 0. Thus the conic E has a K(x)-rational point if and only if the 
projective conic E1 defined by A1Y

2 + B Z
2 − W

2 = 0 has a K(x)-rational point.
If deg A1 < deg B , then d(E1) = deg A1 < deg B = m. Therefore E1 satisfies the induction hypothesis. 

So E1 admits a K(x)-rational point, and consequently so does E .
In case deg A1 ≥ deg B , we can repeat the above process recursively until we get a projective conic 

Ek defined by AkY 2 + B Z 2 − W 2 = 0, where Ak is square-free and deg Ak < deg B . Note, that the 
polynomial B remains unchanged by these transformations. At this point we have d(Ek) = deg Ak <

deg B = m. Therefore Ek satisfies the induction hypothesis. So Ek admits a K(x)-rational point, and 
consequently so does E . �

The proof is constructive. We now conclude the above discussion by the following theorem.

Theorem 4.3. A rational curve defined over K(x), i.e. a curve which can be parametrized over K(x), can ac-
tually be parametrized over K(x). So optimal parametrizations of a rational curve over K(x) always have 
coefficients in K(x).

Furthermore, an algorithm for determining such an optimal parametrization can be described in 
analogy to the process of Hillgarter and Winkler (1997). Algorithm 1 (OptimalParametrization) sum-
marizes the above discussion on computing an optimal parametrization over K.

5. Associated differential equations

In this section, we only work with the class of parametrizable first-order AODEs. Based on optimal 
parametrizations of the corresponding curves, we construct for each parametrizable first-order AODE 
an associated differential equation, which is a quasi-linear ordinary differential equation. Several facts 
about connections between rational general solutions of a parametrizable first-order AODE and its 
associated differential equation will be presented. The problem which remains is looking for rational 
general solutions of quasi-linear differential equations. This problem is discussed at the end of this 
section.

Consider a parametrizable first-order AODE (1), F (x, y, y′) = 0, and assume that an optimal 
parametrization P = (p1, p2) ∈ (K(x)(t))2 of the corresponding curve is given, where we write 
pi(t) = pi(x, t) to indicate the dependence on x. Let y(x) ∈ K(x) be an algebraic solution. Then the 
pair of two algebraic functions (y(x), y′(x)) can be seen as an algebraic solution point on the corre-
sponding curve C . Two cases arise.
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(i) (y(x), y′(x)) /∈ im(P), where im(P) is the image of P . Then (y(x), y′(x)) is contained in the finite 
set C \ im(P).

(ii) (y(x), y′(x)) =P(ω(x)) for some ω(x) ∈ K(x). In this case we identify the algebraic function ω(x)
with a point on the affine line A1(K(x)).

Let us take a look at the algebraic function ω(x). It satisfies the system{
p1(x,ω(x)) = y(x) ,

p2(x,ω(x)) = y′(x) .

Therefore,

d

dx
p1(x,ω(x)) = p2(x,ω(x)) .

By expanding the left hand side, we get

ω′(x) · ∂ p1

∂t
(x,ω(x)) + ∂ p1

∂x
(x,ω(x)) = p2(x,ω(x)) .

Thus ω(x) either satisfies the algebraic relations⎧⎪⎨
⎪⎩

∂ p1

∂t
(x,ω(x)) = 0 ,

∂ p1

∂x
(x,ω(x)) = p2(x,ω(x)) ,

or it is an algebraic solution of the quasi-linear differential equation

ω′ = p2(x,ω) − ∂ p1
∂x (x,ω)

∂ p1
∂t (x,ω)

. (2)

The ODE (2) will be of further importance. Note, that this ODE has been already discussed in Fuchs 
(1884) and the idea was also used in Chen and Ma (2005). Since it is an essential part of the method 
we nevertheless elaborate details in our notation and setting.

Definition 5.1. Let F (x, y, y′) = 0 be a first-order AODE and consider a proper rational parametrization 
P(t) = (p1(x, t), p2(x, t)) of the corresponding curve CF . Then the ODE (2) is called the associated 
differential equation to F .

By the reasoning above, we have proven the following lemma.

Lemma 5.2. With notations as above, if y = y(x) ∈ K(x) is an algebraic solution of the differential equa-
tion (1), then one of the following holds:

(i) The algebraic solution point (y(x), y′(x)) is contained in the finite set C \ im(P).
(ii) y(x) = p1(x, ω(x)) for some algebraic solution ω(x) of the algebraic system⎧⎪⎨

⎪⎩
∂ p1

∂t
(x,ω) = 0 ,

∂ p1

∂x
(x,ω) = p2(x,ω) .

(iii) y(x) = p1(x, ω(x)) for some algebraic solution ω(x) of the associated differential equation (2).

Note that a rational general solution can be seen as a one-parameter family of rational solutions. 
Therefore, in the above lemma, if y(x) is a rational general solution, then (i) and (ii) cannot happen. 
So we focus on (iii).
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Theorem 5.3. We use the notation from above and assume that the parametrization P is proper. Then there 
is a one-to-one correspondence between rational general solutions of the differential equation (1) and rational 
general solutions of its associated differential equation (2).

In particular, if ω(x) is a rational general solution of the associated equation (2), then y(x) = p1(x, ω(x))
is a rational general solution of (1).

Conversely, if y(x) is a rational general solution of (1), then ω(x) = P−1(y(x), y′(x)) is a rational general 
solution of the associated equation (2).

Proof. Assume that ω(x) is a rational general solution of the associated differential equation (2), and 
denote y(x) := p1(x, ω(x)). From the construction above, it is clear that y(x) is a rational solution of 
the differential equation (1).

It remains to show that y(x) is a general solution. Let G ∈ K(x){y} be a differential polynomial 
such that G(y(x)) = 0, and let H := prem(G, F ). We need to show that H = 0. Since y′ is the highest 
derivative occurring in F , we know that H ∈ K(x)[y, y′]. Both G and F vanish at y(x), hence so does 
H regarded as a differential polynomial. Therefore, H(P(ω(x))) = H(y(x), y′(x)) = 0 regarding H as a 
polynomial. Note, that (H ◦ P)(ω) = H( f1(x, ω), f2(x, ω)) ∈ K(x, ω). Since ω(x) is a general solution 
of the associated differential equation, it contains an arbitrary constant. Thus ω(x) cannot be a root 
of a non-zero rational function in K(x, ω). In particular, since (H ◦P)(ω(x)) = 0, we obtain H ◦P = 0. 
Then H vanishes on CF . This implies that F divides H . But H is a pseudo remainder (of G) with 
respect to F , so H = 0.

On the other hand, if y(x) is a rational general solution of (1), then, by the construction of the 
associated equation, ω(x) := P−1(y(x), y′(x)) is a rational solution of (2). By a similar argument as 
above ω is a rational general solution of the associated differential equation (2). �

Lemma 5.2 tells us that for finding rational solutions of a parametrizable first-order AODE, working 
with the class of quasi-linear first-order ODEs is essentially enough. If we look for rational general 
solutions, the situation is even much stricter. Fuchs (1884) gave a necessary and sufficient condition 
for a first-order AODE to have no movable branch point (see also Ince, 1956, Chp. 13). Note that if 
a first-order AODE admits a rational general solution, it has no movable branch point. Thus, as an 
application of Fuchs’ theorem, a quasi-linear first-order AODE has a rational general solution only if 
it is a linear differential equation or a Riccati equation. By a different approach, Behloul and Cheng 
(2011) also proved that a quasi-linear first-order AODE which is neither linear nor Riccati can have 
at most finitely many rational solutions. The following theorem is a combination of Theorem 5.3 and 
the above discussion.

Theorem 5.4. Let F (x, y, y′) = 0 be a first-order AODE.

(i) If F = 0 has a strong rational general solution, then it is parametrizable and its associated differential 
equation is of the form

ω′ = a0(x) + a1(x)ω + a2(x)ω2 , (3)

for some a0, a1, a2 ∈ K(x).
(ii) If F = 0 is parametrizable and has a rational general solution, then its associated quasi-linear differential 

equation is of the form (3).

Proof. If a parametrizable first-order AODE has a rational general solution, then so does its associ-
ated differential equation. In this case the associated differential equation has infinitely many rational 
solutions. Then (ii) follows from the results of Fuchs (1884) or Behloul and Cheng (2011). Finally, 
(i) follows immediately from Theorem 3.1 and (ii). �

In the requirement of the results by Fuchs (1884) and Behloul and Cheng (2011), the coefficients 
of the quasi-linear differential equation must be rational functions. Algorithm 1 always produces an 
optimal parametrization with rational function coefficients (if there is any). This guarantees that the 
associated differential equations meet the requirement.
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Algorithm 2 Srgs (Strong rational general solutions of first-order AODEs)
Require: A first-order AODE, F (x, y, y′) = 0, where F ∈K[x, y, z] \K[x, y] is irreducible.
Ensure: A strong rational general solution y(x), or “No strong rational general solution exists”.

1: if F is irreducible over K(x) and the genus of the corresponding curve is zero then
2: Use Algorithm 1 OptimalParametrization to compute an optimal proper parametrization of the corresponding curve,

say (p1(x, t), p2(x, t)) ∈ (K(x)(t))2.
3: Compute

f (x, t) := p2(x, t) − ∂
∂x p1(x, t)

∂
∂t p1(x, t)

.

4: if f (x, t) has the form a0(x) + a1(x)t + a2(x)t2 for some a0, a1, a2 ∈ K(x) then
5: consider the linear or Riccati equation ω′ = f (x, ω)

6: if it has a rational general solution, say ω(x) then
7: return y(x) = p1(x, ω(x))
8: end if
9: end if

10: end if
11: return “No strong rational general solution exists”.

Corollary 5.5. If a parametrizable first-order AODE has a rational general solution, then it has a strong rational 
general solution.

Proof. This is a consequence of the previous theorem and Schwarz (2008, Cor. 2.1, p. 18). �
Remark 5.6. Ngô and Winkler (2010) proved that if a first-order AODE is parametrizable as an al-
gebraic surface over K, and that if it has a rational general solution, then it has a strong rational 
general solution. Due to Theorem 3.1, the AODE must be parametrizable as an algebraic curve over 
K(x). Note that a parametrizable first-order AODE is always parametrizable as an algebraic surface 
over K. Thus, if a first-order AODE admits a rational general solution, then it is parametrizable as an 
algebraic surface over K if and only if it is parametrizable as an algebraic curve over K(x).

We are looking for rational general solutions of first-order AODEs. The problem has been reduced 
to computing a rational general solution of the differential equation (3). In the case a2 = 0, (3) is a 
linear differential equation of degree 1 which can be easily solved by integration. In the case a2 �= 0, 
it is a classical Riccati equation.

For the problem of computing a rational general solution, or even all rational solutions, of a Riccati 
equation, we refer the reader to Kovacic (1986) for a complete algorithm. Kovacic (1986) proposes 
an algorithm for computing Liouvilian solutions of a linear second-order AODE. As a special case, 
Section 3.1 in that paper leads to a full algorithm for determining all rational solutions of a Riccati 
equation. Note that for a Riccati equation, the notion of rational general solutions and strong rational 
general solutions coincide. Chen and Ma (2005) slightly modify the algorithm by Kovacic to look only 
for strong rational general solution.

6. The decision algorithm

This section is devoted to an algorithm for finding strong rational general solutions of first-order 
AODEs. As we have seen before, if a first-order AODE has a strong rational general solution, then it is 
parametrizable, i.e. its corresponding curve is rational. Whenever a first-order AODE is parametrizable, 
the notions of rational general solution and strong rational general solution coincide. Moreover, in the 
case of having a strong rational general solution, the associated ODE is either a linear differential 
equation or a Riccati equation.

In Algorithm 2 Srgs we present a full algorithm which computes for a given first-order AODE a 
strong rational general solution, if it exists. Otherwise it decides that such a solution cannot exist.
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Theorem 6.1. Algorithm 2 Srgs returns a strong rational general solution of the given first-order AODE, 
F (x, y, y′) = 0, if there is any; and it returns “No strong rational general solution exists” if the differential 
equation has no strong rational general solution.

Hence, Algorithm 2 Srgs decides the existence of strong rational general solutions of the whole 
class of first-order AODEs. Furthermore, due to Corollary 5.5, Algorithm 2 Srgs can also be used for 
determining the existence of rational general solutions of parametrizable first-order AODEs. In the 
affirmative case it always computes such a solution.

Example 6.2 (Example 1.537 in Kamke, 1983). Consider the differential equation

F (x, y, y′) = x3 y′ 3 − 3x2 yy′ 2 + (x6 + 3xy2)y′ − y3 − 2x5 y

= (xy′ − y)3 + x6 y′ − 2x5 y = 0 .

The associated curve defined by F (x, y, z) = 0 has the rational parametrization

P(t) =
(

− t3x5 − t2x6 + (t − x)3

t3x5
,−2t3x5 − 2t2x6 + (t − x)3

t3x6

)
.

Therefore, the associated differential equation with respect to P is

ω′ = 1

x2
· ω · (2ω − x) ,

which is a Riccati equation. By applying the algorithm of Kovacic, we can determine a rational general 
solution of this Riccati equation, namely ω(x) = x

1+cx2 . Hence, the differential equation F (x, y, y′) = 0

has the rational general solution y(x) = cx(x + c2).

Observe, that this is just an arbitrary example from the collection of Kamke (1983). In total around 
64 percent of the listed ODEs there are AODEs and almost all of them are parametrizable and hence 
suitable for Algorithm 2 Srgs. As we have seen in Section 3, the remaining ODEs without strong 
parametrization are either reducible or the corresponding curve has higher genus. For further details 
see Grasegger et al. (2015).

7. Conclusion

We have presented an algorithm for deciding whether a strong rational general solution of a first-
order AODE exists. In the affirmative case the algorithm also computes such a solution. The algorithm 
in this paper is based on curve parametrizations over the field of rational functions. For parametriz-
able first-order AODEs even the existence of rational general solutions can be decided. However a full 
algorithm for determining a rational general solution of the whole class of first-order AODEs is still 
under investigation.
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