Parallel Computing Exercise 1 (April 25)

Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface. If the assignment has been elaborated in a collaboration of two students, only one of them shall upload the assignment (indicating of course on the cover page the collaboration partner).

The submitted result is as a .zip or .tgz file which contains

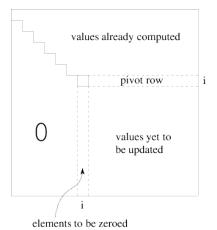
- a PDF file with
 - a cover page with the title of the course, your name(s), Matrikelnummer(s), and email-address(es),
 - the source code of the sequential program,
 - the demonstration of a sample solution of the program,
 - the source code of the parallel program,
 - the demonstration of a sample solution of the program,
 - a benchmark of the sequential and of the parallel program.
- the source (.c/.java) files of the sequential and of the parallel program.

Alternative A: Gaussian Elimination

Gaussian Elimination is a well-known algorithm for solving a linear system Ax = b of dimension *n*: given a matrix *A* of size $n \times n$ and a vector *b* of length *n*, we want to find that vector *x* of length *n* that makes the equation true.

The algorithm consists of two steps:

- 1. The system is converted to an upper-triangular system $\hat{A}x = e$ (i.e. all coefficients below the main diagonal of \hat{A} are zero) which has the same solution(s) as the original system.
- 2. The new system $\hat{A}x = e$ is solved by backward substitution (we determine the solution $x_{n-1} = e_{n-1}$, and substitute the solution in \hat{A} which produces a new upper-triangular system of dimension n-1 which can be solved in the same way).



Descriptions of the algorithm can be found in many sources, e.g. Wikipedia; the core idea is that in iteration i

of the triangulation the element A(i,i) serves as the pivot element: from every row j > i we subtract the multiple A(j,i)/A(i,i) of row *i*. While Gaussian Elimination is typically not used when the coefficients in *A* and *b* are floating point numbers (here mainly iterative methods are used for determining approximate solutions), it plays an important role if the coefficients are integer or rational numbers and the equation is to be solved *exactly* (as in computer algebra systems).

You may solve the exercise explained below either in C/C++ with OpenMP or in Java where

- in the C/C++ solution, you use for the matrix element type both
 - the 80 bit floating point numbers provided by the standard type long double,
 - the arbitrary precision rational number type mpq_t provided by the GNU multiprecision library¹ (compile with option -lgmp).
- in the Java solution, you use for the matrix element type both
 - the 64 bit floating point numbers provided by the standard type double,
 - the arbitrary precision rational number type provided by the class Rational of the JScience library² (compile and run with option -cp jscience.jar).

Sequential Program

Your first task is to implement (for both coefficient types given above) a sequential program solving the problem for randomly generated equation systems of dimension n.

¹See https://gmplib.org

²See http://jscience.org, sections "API" and "Download".

You may construct a "straight-forward" version of the algorithm that aborts with a corresponding message, if there is no solution or there exist multiple solutions. Furthermore, any non-zero coefficient may serve as a pivot element in the triangulization step (i.e. is not necessary to take the element with the maximum absolute value).

Demonstrate the correctness of your program by solving a random 4×4 system and giving the output of the program (system and solution). Benchmark the execution time of your solution for randomly initialized matrices with (at least) *two* different dimensions, one of which lets the program run at least one minute.

Parallel Program

The much more time-consuming part of Gaussian Elimination is the conversion of the system into upper-triangular form where in n iterations one row of the system after the other is converted into the right form. In iteration i of the outermost loop of the triangulization, all coefficients of A below and to the right of position (i, i) have to be processed; since this can be done independently for each coefficient, we can apply parallelism.

Based on this idea, modify the sequential program (if necessary) such that the iterations of the loop that processes different matrix rows can be performed independently of each other:

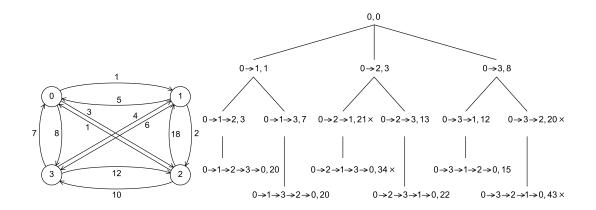
- C/C++: use OpenMP pragmas to ensure that the loop gets executed in parallel; do not forget to mark "private" variables appropriately. Compile the program with options -03 -openmp -openmp-report2. Experiment with different scheduling strategies respectively chunk sizes to determine the one that gives best performance.
- Java: use the Java concurrency API for creating a thread pool among which tasks are scheduled that process one row of the matrix; the pool is created only once and reused in every iteration of the triangulation (use the method invokeAll which blocks until all tasks have been processed).

Benchmark your program for P = 1, 2, 4, 8, 16, 32 cores.

Alternative B: Traveling Salesman

The "traveling salesman" problem is as follows: given a directed graph with *n* nodes whose edges are labeled with positive lengths, find a cyclic path that contains all nodes and has minimum length. The nodes are identified with the numbers $0, \ldots, n - 1$, the edges are represented by a distance matrix *d* such that, if $d(v_i, v_j) = w > 0$, then node v_i is connected to node v_j by an edge of length *w* (if w = 0, there is no edge connecting these nodes).

Since the problem is NP-complete, in practice algorithms are applied that determine heuristically "good" but not necessarily optimal solutions. We will, however, investigate an algorithm that indeed finds the optimal solution: the core idea is to traverse a search tree where every node is labeled by a path starting at node 0 and by the length of that path. The root of the tree is labeled with the singleton path 0 with length 0; every inner node of the tree with path $0 \rightarrow \ldots \rightarrow v_k$ and length w has as its children all those nodes whose path $0 \rightarrow \ldots \rightarrow v_k \rightarrow v_{k+1}$ extends



the parent path by a node v_{k+1} that does not occur in $0 \rightarrow \ldots \rightarrow v_k$; the length of this path is $w + d(v_k, v_{k+1})$. The leaves of the tree are labeled with all cyclic paths $0 \rightarrow \ldots \rightarrow 0$ that contain every non-0 node only once and the length of that path. The shortest path is represented by the leaf with the shortest length.

The tree is constructed with the help of the set of all non-leaf nodes (i.e, paths and associated lengths); initially this set contains only the root. The algorithm proceeds by repeatedly removing one path/weight from the set; if this path consists of n nodes, the root 0 is added, and it is determined whether the resulting cyclic path is shorter than any previously found one; if yes, this path and its length are remembered. If the path has less than n nodes, it is extended in all possible ways by nodes that do not yet occur on the path; if the resulting path is at least as long as the length of a previously encountered cyclic path, it cannot lead to a shorter cyclic path any more and is dropped; otherwise, it is added to the set. The process repeats until the set becomes empty; the remembered cyclic path is then the shortest one. The core of a corresponding sequential C program can be thus as shown on the next page.

This algorithm belongs to the class of "branch and bound" algorithms: it keeps track of an upper bound on the quality of a solution (the length of the shortest cyclic path encountered so far); parts of the search tree that cannot lead to a better solution will be subsequently not investigated. A sequential algorithm processes this tree typically in depth-first order (by organizing the set of path as a stack to which new paths are pushed and from which paths are popped). However, the tree can be also be investigated in parallel by multiple concurrent threads that independently remove paths from the set and investigate the corresponding subtrees in parallel. The only points of interaction between the threads are the set of partial paths (from which to remove and to which to add elements), the best solution found so far (which may have to be updated) and the length of the solution (a better bound established by one thread also reduces the subsequent search space of any other thread).

Sequential Program

Implement *either* in C/C++ *or* in Java a sequential program that solves the problem for randomly generated graphs of dimension *n* (it should be configurable which fraction of the distance matrix *d* is not zero); the edge lengths may be represented as integer numbers. The set of paths can be organized as a stack; a little investigation reveals that there cannot be more than $n \cdot (n - 1)/2$

```
// initialize first path
init_path(&path);
                                 // add path to set
add_path(path);
                               // set is not empty
while (pool_number > 0) {
                                // remove path from set
 remove_path(&path);
 if (path.number == N) {
                                // path contains all nodes
                               // possibly update result
   update_result(path);
   continue:
 }
 for (int i=1; i<N; i++) {
                              // extend partial path in all ways
   weight_t w = add_node(&path, i); // attempt to add node to a better path
   if (w < 0) continue; // attempt failed
                                // add new path to pool
   add_path(path);
                            // remove node for next attempt
   remove_node(&path, w);
 }
}
```

(partial) paths on the stack; thus the stack can be represented by a preallocated array of this size. Since also paths have a limited length n, it is recommended to allocate all data structures in advance (rather than continuously allocating and freeing/garbage-collecting these).

Demonstrate the correctness of your implementation by the graph shown above.

The structure of a graph may significantly influence the runtime of the algorithm; thus benchmark the program for (at least) two input sizes n, and, for each input size, with 3 different graphs. At least for one graph the runtime of the algorithm should be at least one minute.

Parallel Program

Implement a parallel version of your program considering the following points:

- There shall be one shared set of paths from which each thread may remove an element for further processing; apparently access to this set must be synchronized. To ensure that threads receive *big tasks* (i.e., short paths) this shared set shall be maintained as a *queue* rather than as a stack, i.e., new elements are added at the back rather than at the front.
- Each thread maintains an own local set of paths in the usual way as a stack; the thread has exclusive access to this stack (which thus needs not to be synchronized); the thread adds new paths only to its local stack (not to the shared queue).
- A thread processes paths primarily from its local stack; only when this stack becomes empty, the thread removes a path from the shared queue for further processing. However, if this is the last path in the queue, the thread extends the path in the usual way and leaves all but one of the extended paths in the shared queue for processing by other threads.
- Access to the best solution found so far and its length have to be synchronized. To allow independent processing, however, each thread maintains a local copy of the best length which it uses for bounding its local computation. Only when it thinks it may have found a better solution than the previous one (and thus attempts to update the solution), it also updates its local length by the (potentially better) shared length.

• If all threads find their local queues and the shared queue empty, the algorithm terminates.

In OpenMP, the parallel program can be implemented by parallel blocks and critical sections. In Java, the parallel program can be implemented either by explicitly created threads and synchronization on objects or by using the concurrency API and the Fork/Join framework.

Benchmark your program for P = 1, 2, 4, 8, 16, 32 cores.

Both Alternatives: Benchmarking

Instrument the source code of your program to measure the real ("wall clock") time spent (only) in that part of your program that you are interested in (the core function without initialization of input data and output of results) and print this time to the standard output. In C/C++ with OpenMP, you can determine wall clock times by the function omp_get_wtime(), in Java you can determine it by System.currentTimeMillis().

Make sure that both your sequential and parallel C/C++ program are compiled with all optimizations switched on (command line option -03). When running the parallel programs, make sure that threads are pinned to freely available cores; use top to verify the applied thread/core mapping and the thread's share of CPU time (which should be close to 100%).

Benchmark your sequential program and your parallel program for different inputs, as indicated by the assignment. For each input, benchmark your parallel program for a varying number of cores, as indicated by the assignment. Make sure that you run the parallel program with the same actual inputs (not only the same input sizes) as the sequential one!

Repeat each benchmark (at least) five times, collect all results, drop the smallest and the highest value and take the average of the remaining three values. For automating this process, the use of a shell script is recommended. For instance, a shell script loop.sh with content

```
#!/bin/sh
for p in 1 2 4 8 16 32 ; do
    echo $p
done
```

can be run as sh loop.sh >log.txt to print a sequence of values into file log.txt. Present all timings in an adequate form in the report by

- a numerical table with the (average) execution times of sequential and parallel programs for varying input sizes and processor numbers, (absolute) speedups and (absolute) efficiencies;
- diagrams that illustrate execution times, speedups, and efficiencies; for execution times use logarithmic axes, for speedup and efficiencies use both linear and algorithmic axes. Multiple runs may be shown in the same diagram by different curves, if appropriate;
- ample verbal explanations that explain your compilation/execution settings, how you interpret the results, how you judge the performance/scalability of your programs.