VL Formal Modeling (Summer semester 2024)

Symbolic Summation and the modeling of sequences

Carsten Schneider

Research Institute for Symbolic Computation (RISC) Johannes Kepler University Linz

General picture:

General picture:

Part 1: Symbolic summation (a short introduction)

Part 2: Modeling of sequences with a term algebra (user interface)

Part 3: Modeling of sequences in difference rings (computer algebra)

Part 4: Construction of appropriate difference rings (advanced CA)

Part 5: Applications

We start with the following telescoping problem:
Given an expression $f(k)$ that evaluates to a sequence.
Find an expression $g(k)$ such that the telescoping equation holds:

$$
\begin{equation*}
f(k)=g(k+1)-g(k) \tag{1}
\end{equation*}
$$

Suppose we find such an expression $g(k)$. Then we proceed as follows. Summing (1) over k from a to b (and assuming that no poles arise during the evaluation) yields

$$
\begin{equation*}
\sum_{k=a}^{b} f(k)=g(b+1)-g(a) \tag{2}
\end{equation*}
$$

Note: we could always choose

$$
\begin{equation*}
g(k)=\sum_{i=a}^{k-1} f(i) \tag{3}
\end{equation*}
$$

which would turn (2) to the trivial identity $\sum_{k=a}^{b} f(k)=\sum_{k=a}^{b} f(k)$. Thus we should refine our problem from above:

Find an expression $g(k)$ with (1) where $g(k)$ is simpler than the trivial solution (3).

Indefinite summation of polynomials

We start with one of the most simplest cases: the summand is a polynomial, i.e., $f(x) \in \mathbb{K}[x]$.

The following questions arise:

1. What is the domain of expressions in which we search $g(k)$?
2. How can we calculate a solution $g(k)$ in this solution domain?

As it turns out, the first question can be answered nicely: a solution $g(x)$ exists always in $\mathbb{K}[x]$. For the second question, we will consider two different tactics that are often used in summation packages.

Tactic 1: the classical approach

Note that for indefinite integration of polynomials one can utilize the following well known property: for any $m \in \mathbb{N}$ we have

$$
D_{x} x^{m}=m x^{m-1}
$$

which implies

$$
\int_{a}^{b} x^{m} d x=\left.\frac{x^{m+1}}{m+1}\right|_{a} ^{b}=\frac{b^{m+1}-a^{m+1}}{m+1}
$$

Thus by linearity we can integrate any polynomial by

$$
\int_{a}^{b} \sum_{m=0}^{d} c_{m} x^{m} d x=\sum_{m=0}^{d} c_{m} \int_{a}^{b} x^{m} d x=\sum_{m=0}^{d} \frac{c_{m}\left(b^{m+1}-a^{m+1}\right)}{m+1}
$$

For indefinite summation of polynomials we can follow precisely the same classical strategy.
Definition. For any sequence (expression) $g(k)$ we define

$$
\Delta g(k):=g(k+1)-g(k)
$$

Lemma

For $m \in \mathbb{N}$ we have

$$
\Delta x^{\underline{m}}=m x \underline{m-1}
$$

Proof.

We have

$$
\begin{aligned}
\Delta x^{\underline{m}} & =(x+1)^{\underline{m}}-x^{\underline{m}} \\
& =(x+1) x(x-1) \ldots(x-m+2)-x(x-1) \ldots(x-m+1) \\
& =((x+1)-(x-m+1)) x(x-1) \ldots(x-m+2) \\
& =m x \underline{m-1} .
\end{aligned}
$$

As a consequence we get

$$
\Delta \frac{x \frac{m+1}{m+1}}{m+\underline{m}}, \quad m \in \mathbb{N}
$$

and summing this equation over k from a to b yields

$$
\sum_{x=a}^{b} x^{\underline{m}}=\frac{(b+1) \frac{m+1}{}-a \frac{m+1}{}}{m+1}
$$

Note that this is nothing else than the continuous version for integration. In particular, for given

$$
f(x)=\sum_{m=0}^{d} c_{m} x \underline{\underline{m}} \in \mathbb{K}[x]
$$

with $d \in \mathbb{N}$ it follows that

$$
g(x)=\sum_{m=0}^{d} \frac{c_{m} x \frac{m+1}{}}{m+1}
$$

is a telescoping solution. Furthermore,

$$
\sum_{x=a}^{b} f(x)=\sum_{m=0}^{d} c_{m} \sum_{k=a}^{b} k \underline{m}=\sum_{m=0}^{d} \frac{c_{m}\left((b+1) \frac{m+1}{}-a^{\frac{m+1}{}}\right)}{m+1}
$$

The only problem is that in many cases one does not have a polynomial given in the representation of falling factorials but in the standard form

$$
\sum_{m=0}^{d} \bar{c}_{m} x^{m} \in \mathbb{K}[x]
$$

Luckily one can rewrite a polynomial written in the basis

$$
1, x, x^{2}, \ldots, x^{d}
$$

to the representation written in the basis

$$
x^{\underline{0}}=1, x^{\underline{1}}=x, x^{\underline{2}}=x(x-1), \ldots, x^{\underline{d}}=x(x-1) \ldots(x-d+1)
$$

by using the formula

$$
x^{m}=\sum_{k=0}^{m} S(m, k) x^{\underline{k}}
$$

where $S(n, k)$ denotes the Stirling numbers of second kind. They can be computed by

$$
S(n, k)=\frac{1}{k!} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{n}
$$

Example. Consider the polynomial

$$
f(x)=x^{4} .
$$

Using the formulas from above, we get

$$
f(x)=x^{4}=\sum_{k=0}^{4} S(4, k) x^{\underline{k}}=0 x^{\underline{0}}+1 x^{\underline{1}}+7 x^{\underline{2}}+6 x^{\underline{3}}+1 x^{\underline{4}} .
$$

Thus we get

$$
\begin{aligned}
g(x) & =\frac{1}{2} x^{\underline{2}}+\frac{7}{3} x^{\underline{3}}+\frac{3}{2} x^{\underline{4}}+\frac{1}{5} x^{\underline{5}} \\
& =\frac{1}{30}(x-1) x(2 x-1)\left(3 x^{2}-3 x-1\right)
\end{aligned}
$$

such that

$$
g(x+1)-g(x)=f(x)
$$

holds. In particular we get
$\sum_{k=1}^{n} k^{4}=\sum_{k=1}^{n} f(k)=g(n+1)-g(1)=\frac{1}{30} n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)$.

Tactic 2: linear algebra.

We use the following property: for $f(x) \in \mathbb{K}[x]$ there is a $g(x) \in \mathbb{K}[x]$ with (1) where

$$
\operatorname{deg}(g) \leq \operatorname{deg}(f)+1
$$

Thus setting $d:=\operatorname{deg}(f)+1$ for given $f \in \mathbb{K}[x]$ the desired solution has the form

$$
g(x)=\sum_{m=0}^{d} g_{m} x^{m}
$$

and we can determine the unknowns $g_{0}, \ldots, g_{d} \in \mathbb{K}$ by linear algebra as follows.

Example. Take $f(x)=x^{4} \in \mathbb{Q}[x]$. With $d=\operatorname{deg}(f)+1=5$ the ansatz

$$
g(x)=g_{0}+g_{1} x+g_{2} x^{2}+g_{3} x^{3}+g_{4} x^{4}+g_{5} x^{5}
$$

for the unknowns $g_{0}, g_{1}, g_{2}, g_{3}, g_{4}, g_{5} \in \mathbb{Q}$ is in place. This gives

$$
\begin{aligned}
x^{4}= & \Delta g(x)=g(x+1)-g(x)=0 x^{5} \\
& +5 g_{5} x^{4} \\
& +\left(4 g_{4}+10 g_{5}\right) x^{3} \\
& +\left(3 g_{3}+6 g_{4}+10 g_{5}\right) x^{2} \\
& +\left(2 g_{2}+3 g_{3}+4 g_{4}+5 g_{5}\right) x \\
& +\left(g_{1}+g_{2}+g_{3}+g_{4}+g_{5}\right) x^{0} .
\end{aligned}
$$

By coefficient comparison this yields the linear system

$$
\begin{array}{ll}
{\left[x^{4}\right]} \\
{\left[x^{3}\right]} & 1=5 g_{5} \\
{\left[x^{2}\right]} & 0=4 g_{4}+10 g_{5} \\
{\left[x^{1}\right]} & 0=3 g_{3}+6 g_{4}+10 g_{5} \\
{\left[x^{0}\right]} & 0=2 g_{2}+3 g_{3}+4 g_{4}+5 g_{5} \\
& 0=g_{1}+g_{2}+g_{3}+g_{4}+g_{5}
\end{array}
$$

which is already in triangular form.

Thus we can read off the solution

$$
g_{5}=\frac{1}{5}, \quad g_{4}=-\frac{1}{2}, \quad g_{3}=\frac{1}{3}, \quad g_{2}=0, \quad g_{1}=-\frac{1}{30}, \quad g_{0}=c
$$

with $c \in \mathbb{Q}$. In particular, we can choose $c=0$ and obtain

$$
g(x)=\frac{x^{5}}{5}-\frac{x^{4}}{2}+\frac{x^{3}}{3}-\frac{x}{30}=\frac{1}{30}(x-1) x(2 x-1)\left(3 x^{2}-3 x-1\right)
$$

To this end, we continue as in the previous example and get the desired result.

More general summation objects for indefinite and definite summation

Clearly, the first tactic is very elegant, but it works only for the special case of polynomial summation. For the second tactic one has to work more (i.e., has to solve in addition a linear system), but it turns out to be more general. More precisely, one can carry over these ideas to a rather general setting that works not only for the polynomial ring $\mathbb{Q}[x]$ but in more general rings called $R \Pi \Sigma$-difference rings that have been implemented within the summation package Sigma. In the following all technical details are omitted and we proceed with a concrete example.

Example. We want to sum

$$
\sum_{k=0}^{n} H_{k}
$$

In order to accomplish this task, we take

$$
f(k)=H_{k}
$$

and search for

$$
g(k) \in \mathbb{Q}(k)\left[H_{k}\right]
$$

with

$$
f(k)=g(k+1)-g(k)
$$

Here we can use a similar tactic as used in the case of polynomial summation. Namely, summation theory tells us that any such solution $g(k)$ has the property

$$
\operatorname{deg}(g) \leq \operatorname{deg}(f)+1=1+1=2
$$

As a consequence we can make the ansatz

$$
g(k)=g_{0}(k) H_{k}^{0}+g_{1}(k) H_{k}^{1}+g_{2}(k) H_{k}^{2}
$$

with $g_{0}(k), g_{1}(k), g_{2}(k) \in \mathbb{Q}(k)$.

Using recursive algorithms and linear system solving (details are skipped here) we find

$$
\begin{aligned}
g_{0}(k) & =-k \\
g_{1}(k) & =k \\
g_{2}(k) & =0
\end{aligned}
$$

i.e.,

$$
g(k)=-k+k H_{k}+0 H_{k}^{2} .
$$

Hence summing the telescoping equation over k from 0 to n gives

$$
\sum_{k=0}^{n} H_{k}=g(n+1)-g(0)=(n+1) H_{n+1}-(n+1)=-n+(1+n) H_{n}
$$

The above machinery can be carried out within the summation package Sigma. After loading it into Mathematica

$$
\ln [1]:=\ll \text { Sigma.m }
$$

Sigma - A summation package by Carsten Schneider (c) RISC-JKU
one can insert the above sum
$\operatorname{In}[2]:=\operatorname{mySum}=\operatorname{SigmaSum}[\operatorname{SigmaHNumber}[k],\{\mathbf{k}, \mathbf{0}, 1\}]$
Out[2] $=\sum_{k=0}^{n} H_{k}$
and can apply the command
$\operatorname{In}[3]:=$ SigmaReduce[mySum]
Out[3]= $-\mathrm{n}+(1+\mathrm{n}) \mathrm{H}_{\mathrm{n}}$

In general one can insert, e.g., a sum of the form

$$
\sum_{k=l}^{n} f(k)
$$

with $l \in \mathbb{N}$ where $f(k)$ itself is given in terms of indefinite nested sums defined over hypergeometric products.

Definition

Let \mathbb{K} be a field. A product $\prod_{j=l}^{k} f(j), l \in \mathbb{N}$, is called hypergeometric in k over \mathbb{K} if $f(x) \in \mathbb{K}(x)$ is a rational function where the numerator and denominator of $f(j)$ are nonzero for all $j \in \mathbb{Z}$ with $j \geq l$. An expression in terms indefinite of nested sums over hypergeometric products in k over \mathbb{K} is composed recursively by the three operations $(+,-, \cdot)$ with

- elements from the rational function field $\mathbb{K}(k)$,
- hypergeometric products in k over \mathbb{K},
- and sums of the form $\sum_{j=l}^{k} f(j)$ with $l \in \mathbb{N}$ where $f(j)$ is an expression in terms of indefinite nested sums over hypergeometric products in j over \mathbb{K}; here it is assumed that the evaluation of $f(j)$ for all $j \geq l$ does not introduce any poles.
$\ln [4]:=$ mySum $=$
SigmaSum $[$ SigmaPower $[-1, k] \operatorname{SigmaBinomial}[n, k] \operatorname{SigmaHNumber}[k],\{k, a, b\}$
Out $[4]=\sum_{k=a}^{b}(-1)^{k}\binom{n}{k} H_{k}$
$\ln [5]:=$ SigmaReduce[mySum]
Out $[5]=\left(\frac{(a-n)(-1+a-n)}{a^{2}}+\frac{(-1+a-n) H_{a}}{n}\right)(-1)^{1+a}\binom{n}{-1+a}+\left(\frac{-b+n}{n^{2}}+\right.$

$$
\left.\frac{(-\mathrm{b}+\mathrm{n}) \mathrm{H}_{\mathrm{b}}}{\mathrm{n}}\right)(-1)^{\mathrm{b}}\binom{\mathrm{n}}{\mathrm{~b}}
$$

$\ln [6]:=\operatorname{mySum}=\operatorname{SigmaSum}\left[\operatorname{SigmaSum}[\operatorname{SigmaBinomial}[\mathrm{n}, \mathrm{k}],\{\mathrm{k}, \mathbf{0}, \mathrm{r}\}]^{2},\{r, \mathbf{0}, \mathrm{~b}\}\right]$
Out $[6]=\sum_{r=0}^{b}\left(\sum_{k=0}^{r}\binom{n}{k}\right)^{2}$
$\ln [7]:=$ SigmaReduce[mySum]
$\operatorname{Out}[7]=(-b+n)\binom{n}{b} \sum_{i_{1}=0}^{b}\binom{n}{i_{1}}+\frac{1}{2}(2+2 b-n)\left(\sum_{i_{1}=0}^{b}\binom{n}{i_{1}}\right)^{2}-\frac{1}{2} n \sum_{i_{1}=0}^{b}\binom{n}{i_{1}}^{2}$

General picture:

General picture:

Part 1: Symbolic summation (a short introduction)

Part 2: Modeling of sequences with a term algebra (user interface)

Part 3: Modeling of sequences in difference rings (computer algebra)

Part 4: Construction of appropriate difference rings (advanced CA)

Part 5: Applications

The ground field (throughout this talk): $\mathbb{G}=\mathbb{K}(x)$

The ground field (throughout this talk): $\mathbb{G}=\mathbb{K}(x)$

- For any element $f=\frac{p}{q} \in \mathbb{G}$ with $p, q \in \mathbb{K}[x]$ where $q \neq 0$ and p, q being coprime we define

$$
\operatorname{ev}(f, k)= \begin{cases}0 & \text { if } q(k)=0 \\ \frac{p(k)}{q(k)} & \text { if } q(k) \neq 0\end{cases}
$$

The ground field (throughout this talk): $\mathbb{G}=\mathbb{K}(x)$

- For any element $f=\frac{p}{q} \in \mathbb{G}$ with $p, q \in \mathbb{K}[x]$ where $q \neq 0$ and p, q being coprime we define

$$
\operatorname{ev}(f, k)= \begin{cases}0 & \text { if } q(k)=0 \\ \frac{p(k)}{q(k)} & \text { if } q(k) \neq 0\end{cases}
$$

- We define $L(f)$ to be the minimal value $\delta \in \mathbb{N}$ such that $q(k) \neq 0$ holds for all $k \geq \delta$; further,

$$
Z(f)=\max \left(L\left(\frac{1}{p}\right), L\left(\frac{1}{q}\right)\right) \quad \text { if } f \neq 0
$$

The ground field (throughout this talk): $\mathbb{G}=\mathbb{K}(x)$

- For any element $f=\frac{p}{q} \in \mathbb{G}$ with $p, q \in \mathbb{K}[x]$ where $q \neq 0$ and p, q being coprime we define

$$
\operatorname{ev}(f, k)= \begin{cases}0 & \text { if } q(k)=0 \\ \frac{p(k)}{q(k)} & \text { if } q(k) \neq 0\end{cases}
$$

- We define $L(f)$ to be the minimal value $\delta \in \mathbb{N}$ such that $q(k) \neq 0$ holds for all $k \geq \delta$; further,

$$
Z(f)=\max \left(L\left(\frac{1}{p}\right), L\left(\frac{1}{q}\right)\right) \quad \text { if } f \neq 0
$$

Example: For

$$
f=\frac{p}{q}=\frac{x-4}{(x-3)(x-1)}
$$

we get

$$
(\operatorname{ev}(f, n))_{n \geq 0}=\left(-\frac{4}{3}, \underline{0}, 2, \underline{0}, 0, \frac{1}{8}, \ldots\right) \in \mathbb{Q}^{\mathbb{N}}
$$

For $n \geq L(f)=4$ no poles arise;
for $n \geq Z(f)=\max \left(L\left(\frac{1}{p}\right), L\left(\frac{1}{q}\right)\right)=\max (4,5)=5$ no zeroes arise.

The ground field (throughout this talk): $\mathbb{G}=\mathbb{K}(x)$

- For any element $f=\frac{p}{q} \in \mathbb{G}$ with $p, q \in \mathbb{K}[x]$ where $q \neq 0$ and p, q being coprime we define

$$
\operatorname{ev}(f, k)= \begin{cases}0 & \text { if } q(k)=0 \\ \frac{p(k)}{q(k)} & \text { if } q(k) \neq 0\end{cases}
$$

- We define $L(f)$ to be the minimal value $\delta \in \mathbb{N}$ such that $q(k) \neq 0$ holds for all $k \geq \delta$; further,

$$
Z(f)=\max \left(L\left(\frac{1}{p}\right), L\left(\frac{1}{q}\right)\right) \quad \text { if } f \neq 0
$$

- We define

$$
\mathcal{R}=\{r \in \mathbb{K} \backslash\{1\} \mid r \text { is a root of unity }\}
$$

with the function ord: $\mathcal{R} \rightarrow \mathbb{Z}_{\geq 1}$ where

$$
\operatorname{ord}(r)=\min \left\{n \in \mathbb{Z}_{\geq 1} \mid r^{n}=1\right\}
$$

Let \otimes, \oplus, \odot, Sum, Prod and RPow be operations with the signatures

$\otimes:$	$\operatorname{SumProd}(\mathbb{G}) \times \mathbb{Z}$	\rightarrow	$\operatorname{SumProd}(\mathbb{G})$
$\oplus:$	$\operatorname{SumProd}(\mathbb{G}) \times \operatorname{SumProd}(\mathbb{G})$	\rightarrow	$\operatorname{SumProd}(\mathbb{G})$
$\odot:$	$\operatorname{SumProd}(\mathbb{G}) \times \operatorname{SumProd}(\mathbb{G})$	\rightarrow	$\operatorname{SumProd}(\mathbb{G})$
$\operatorname{Sum}:$	$\mathbb{N} \times \operatorname{SumProd}(\mathbb{G})$	$\rightarrow \operatorname{SumProd}(\mathbb{G})$	
$\operatorname{Prod}:$	$\mathbb{N} \times \operatorname{SumProd}(\mathbb{G})$	$\rightarrow \operatorname{SumProd}(\mathbb{G})$	
$\operatorname{RPow}:$	\mathcal{R}	\rightarrow	$\operatorname{SumProd}(\mathbb{G})$.

$\operatorname{Prod}^{*}(\mathbb{G})=$ the smallest set that contains 1 with the following properties:

1. If $r \in \mathcal{R}$ then $\operatorname{RPow}(r) \in \operatorname{Prod}^{*}(\mathbb{G})$.
2. If $f \in \mathbb{G}^{*}$ and $l \in \mathbb{N}$ with $l \geq Z(f)$ then $\operatorname{Prod}(l, f) \in \operatorname{Prod}^{*}(\mathbb{G})$.
3. If $p, q \in \operatorname{Prod}^{*}(\mathbb{G})$ then $p \odot q \in \operatorname{Prod}^{*}(\mathbb{G})$.
4. If $p \in \operatorname{Prod}^{*}(\mathbb{G})$ and $z \in \mathbb{Z} \backslash\{0\}$ then $p^{\triangle} z \in \operatorname{Prod}^{*}(\mathbb{G})$.

Let \otimes, \oplus, \odot, Sum, Prod and RPow be operations with the signatures

$\otimes:$	$\operatorname{SumProd}(\mathbb{G}) \times \mathbb{Z}$	\rightarrow	$\operatorname{SumProd}(\mathbb{G})$
$\oplus:$	$\operatorname{SumProd}(\mathbb{G}) \times \operatorname{SumProd}(\mathbb{G})$	\rightarrow	$\operatorname{SumProd}(\mathbb{G})$
$\odot:$	$\operatorname{SumProd}(\mathbb{G}) \times \operatorname{SumProd}(\mathbb{G})$	\rightarrow	$\operatorname{SumProd}(\mathbb{G})$
$\operatorname{Sum}:$	$\mathbb{N} \times \operatorname{SumProd}(\mathbb{G})$	$\rightarrow \operatorname{SumProd}(\mathbb{G})$	
$\operatorname{Prod}:$	$\mathbb{N} \times \operatorname{SumProd}(\mathbb{G})$	$\rightarrow \operatorname{SumProd}(\mathbb{G})$	
$R P o w:$	\mathcal{R}	$\rightarrow \operatorname{SumProd}(\mathbb{G})$.	

$\operatorname{Prod}^{*}(\mathbb{G})=$ the smallest set that contains 1 with the following properties:

1. If $r \in \mathcal{R}$ then $\operatorname{RPow}(r) \in \operatorname{Prod}^{*}(\mathbb{G})$.
2. If $f \in \mathbb{G}^{*}$ and $l \in \mathbb{N}$ with $l \geq Z(f)$ then $\operatorname{Prod}(l, f) \in \operatorname{Prod}^{*}(\mathbb{G})$.
3. If $p, q \in \operatorname{Prod}^{*}(\mathbb{G})$ then $p \odot q \in \operatorname{Prod}^{*}(\mathbb{G})$.
4. If $p \in \operatorname{Prod}^{*}(\mathbb{G})$ and $z \in \mathbb{Z} \backslash\{0\}$ then $p^{\triangle} z \in \operatorname{Prod}^{*}(\mathbb{G})$.

Furthermore, we define

$$
\Pi(\mathbb{G})=\{\operatorname{RPow}(r) \mid r \in \mathcal{R}\} \cup\{\operatorname{Prod}(l, f) \mid f \in \mathbb{G}, l \in \mathbb{N}\} .
$$

Let \otimes, \oplus, \odot, Sum, Prod and RPow be operations with the signatures

$\otimes:$	$\operatorname{SumProd}(\mathbb{G}) \times \mathbb{Z}$	\rightarrow	$\operatorname{SumProd}(\mathbb{G})$
$\oplus:$	$\operatorname{SumProd}(\mathbb{G}) \times \operatorname{SumProd}(\mathbb{G})$	\rightarrow	$\operatorname{SumProd}(\mathbb{G})$
$\odot:$	$\operatorname{SumProd}(\mathbb{G}) \times \operatorname{SumProd}(\mathbb{G})$	\rightarrow	$\operatorname{SumProd}(\mathbb{G})$
$\operatorname{Sum}:$	$\mathbb{N} \times \operatorname{SumProd}(\mathbb{G})$	$\rightarrow \operatorname{SumProd}(\mathbb{G})$	
$\operatorname{Prod}:$	$\mathbb{N} \times \operatorname{SumProd}(\mathbb{G})$	$\rightarrow \operatorname{SumProd}(\mathbb{G})$	
$\operatorname{RPow}:$	\mathcal{R}	$\rightarrow \operatorname{SumProd}(\mathbb{G})$.	

$\operatorname{Prod}^{*}(\mathbb{G})=$ the smallest set that contains 1 with the following properties:

1. If $r \in \mathcal{R}$ then $\operatorname{RPow}(r) \in \operatorname{Prod}^{*}(\mathbb{G})$.
2. If $f \in \mathbb{G}^{*}$ and $l \in \mathbb{N}$ with $l \geq Z(f)$ then $\operatorname{Prod}(l, f) \in \operatorname{Prod}^{*}(\mathbb{G})$.
3. If $p, q \in \operatorname{Prod}^{*}(\mathbb{G})$ then $p \odot q \in \operatorname{Prod}^{*}(\mathbb{G})$.
4. If $p \in \operatorname{Prod}^{*}(\mathbb{G})$ and $z \in \mathbb{Z} \backslash\{0\}$ then $p^{\otimes} z \in \operatorname{Prod}^{*}(\mathbb{G})$.

Example: $\ln \mathbb{G}=\mathbb{Q}(x)$ we get

$$
P=(\underbrace{\operatorname{Prod}(1, x)}_{\in \Pi(\mathbb{G})}{ }^{\circledR}(-2)) \odot \underbrace{\operatorname{RPow}(-1)}_{\Pi(\mathbb{G})} \in \operatorname{Prod}^{*}(\mathbb{G})
$$

SumProd $(\mathbb{G})=$ the smallest set containing $\mathbb{G} \cup \operatorname{Prod}^{*}(\mathbb{G})$ with:

1. For all $f, g \in \operatorname{SumProd}(\mathbb{G})$ we have $f \oplus g \in \operatorname{SumProd}(\mathbb{G})$.
2. For all $f, g \in \operatorname{SumProd}(\mathbb{G})$ we have $f \odot g \in \operatorname{SumProd}(\mathbb{G})$.
3. For all $f \in \operatorname{SumProd}(\mathbb{G})$ and $k \in \mathbb{Z}_{\geq 1}$ we have $f^{\otimes} k \in \operatorname{SumProd}(\mathbb{G})$.
4. For all $f \in \operatorname{SumProd}(\mathbb{G})$ and $l \in \mathbb{N}$ we have $\operatorname{Sum}(l, f) \in \operatorname{SumProd}(\mathbb{G})$.

SumProd $(\mathbb{G})=$ the smallest set containing $\mathbb{G} \cup \operatorname{Prod}^{*}(\mathbb{G})$ with:

1. For all $f, g \in \operatorname{SumProd}(\mathbb{G})$ we have $f \oplus g \in \operatorname{SumProd}(\mathbb{G})$.
2. For all $f, g \in \operatorname{SumProd}(\mathbb{G})$ we have $f \odot g \in \operatorname{SumProd}(\mathbb{G})$.
3. For all $f \in \operatorname{SumProd}(\mathbb{G})$ and $k \in \mathbb{Z}_{\geq 1}$ we have $f^{\boxtimes} k \in \operatorname{SumProd}(\mathbb{G})$.
4. For all $f \in \operatorname{SumProd}(\mathbb{G})$ and $l \in \mathbb{N}$ we have $\operatorname{Sum}(l, f) \in \operatorname{SumProd}(\mathbb{G})$.

Furthermore, the set of nested sums over hypergeometric products is given by

$$
\Sigma(\mathbb{G})=\{\operatorname{Sum}(l, f) \mid l \in \mathbb{N} \text { and } f \in \operatorname{SumProd}(\mathbb{G})\}
$$

and the set of nested sums and hypergeometric products is given by

$$
\Sigma \Pi(\mathbb{G})=\Sigma(\mathbb{G}) \cup \Pi(\mathbb{G})
$$

SumProd $(\mathbb{G})=$ the smallest set containing $\mathbb{G} \cup \operatorname{Prod}^{*}(\mathbb{G})$ with:

1. For all $f, g \in \operatorname{SumProd}(\mathbb{G})$ we have $f \oplus g \in \operatorname{SumProd}(\mathbb{G})$.
2. For all $f, g \in \operatorname{SumProd}(\mathbb{G})$ we have $f \odot g \in \operatorname{SumProd}(\mathbb{G})$.
3. For all $f \in \operatorname{SumProd}(\mathbb{G})$ and $k \in \mathbb{Z}_{\geq 1}$ we have $f^{\triangle} k \in \operatorname{SumProd}(\mathbb{G})$.
4. For all $f \in \operatorname{SumProd}(\mathbb{G})$ and $l \in \mathbb{N}$ we have $\operatorname{Sum}(l, f) \in \operatorname{SumProd}(\mathbb{G})$.

Example

With $\mathbb{G}=\mathbb{K}(x)$ we get, e.g., the following expressions:

$$
\begin{aligned}
& E_{1}=\operatorname{Sum}(1, \operatorname{Prod}(1, x)) \in \Sigma(\mathbb{G}) \subset \operatorname{SumProd}(\mathbb{G}), \\
& E_{2}=\operatorname{Sum}\left(1, \frac{1}{x+1} \odot \operatorname{Sum}\left(1, \frac{1}{x^{3}}\right) \odot \operatorname{Sum}\left(1, \frac{1}{x}\right)\right) \in \Sigma(\mathbb{G}) \subset \operatorname{SumProd}(\mathbb{G}), \\
& E_{3}=\left(E_{1} \oplus E_{2}\right) \odot E_{1} \in \operatorname{SumProd}(\mathbb{G})
\end{aligned}
$$

Part 2: Modeling of sequences with a term algebra (user interface)
ev : $\mathbb{G} \times \mathbb{N} \rightarrow \mathbb{K} \quad \longrightarrow \quad$ ev $: \operatorname{SumProd}(\mathbb{G}) \times \mathbb{N} \rightarrow \mathbb{K}$

1. For $f, g \in \operatorname{SumProd}(\mathbb{G}), k \in \mathbb{Z} \backslash\{0\}\left(k>0\right.$ if $\left.f \notin \operatorname{Prod}^{*}(\mathbb{G})\right)$ we set

$$
\begin{aligned}
\operatorname{ev}\left(f f^{\otimes} k, n\right) & :=\operatorname{ev}(f, n)^{k}, \\
\operatorname{ev}(f \oplus g, n) & :=\operatorname{ev}(f, n)+\operatorname{ev}(g, n), \\
\operatorname{ev}(f \odot g, n) & :=\operatorname{ev}(f, n) \operatorname{ev}(g, n)
\end{aligned}
$$

$\mathrm{ev}: \mathbb{G} \times \mathbb{N} \rightarrow \mathbb{K}$
 $\longrightarrow \quad$ ev: $\operatorname{SumProd}(\mathbb{G}) \times \mathbb{N} \rightarrow \mathbb{K}$

1. For $f, g \in \operatorname{SumProd}(\mathbb{G}), k \in \mathbb{Z} \backslash\{0\}\left(k>0\right.$ if $\left.f \notin \operatorname{Prod}^{*}(\mathbb{G})\right)$ we set

$$
\begin{aligned}
\operatorname{ev}(f \otimes k, n) & :=\operatorname{ev}(f, n)^{k}, \\
\operatorname{ev}(f \oplus g, n) & :=\operatorname{ev}(f, n)+\operatorname{ev}(g, n), \\
\operatorname{ev}(f \odot g, n) & :=\operatorname{ev}(f, n) \operatorname{ev}(g, n) ;
\end{aligned}
$$

2. for $r \in \mathcal{R}$ and $\operatorname{Sum}(l, f), \operatorname{Prod}(\lambda, g) \in \operatorname{SumProd}(\mathbb{G})$ we define

$$
\begin{aligned}
\operatorname{ev}(\operatorname{RPow}(r), n) & :=\prod_{i=1}^{n} r=r^{n} \\
\operatorname{ev}(\operatorname{Sum}(l, f), n) & :=\sum_{i=l}^{n} \operatorname{ev}(f, i), \\
\operatorname{ev}(\operatorname{Prod}(\lambda, g), n) & :=\prod_{i=\lambda}^{n} \operatorname{ev}(g, i)=\prod_{i=\lambda}^{n} g(i) .
\end{aligned}
$$

1. For $f, g \in \operatorname{SumProd}(\mathbb{G}), k \in \mathbb{Z} \backslash\{0\}\left(k>0\right.$ if $\left.f \notin \operatorname{Prod}^{*}(\mathbb{G})\right)$ we set

$$
\begin{aligned}
\operatorname{ev}\left(f f^{\boxtimes} k, n\right) & :=\operatorname{ev}(f, n)^{k} \\
\operatorname{ev}(f \oplus g, n) & :=\operatorname{ev}(f, n)+\operatorname{ev}(g, n), \\
\operatorname{ev}(f \odot g, n) & :=\operatorname{ev}(f, n) \operatorname{ev}(g, n)
\end{aligned}
$$

2. for $r \in \mathcal{R}$ and $\operatorname{Sum}(l, f), \operatorname{Prod}(\lambda, g) \in \operatorname{SumProd}(\mathbb{G})$ we define

$$
\begin{aligned}
\operatorname{ev}(\operatorname{RPow}(r), n) & :=\prod_{i=1}^{n} r=r^{n} \\
\operatorname{ev}(\operatorname{Sum}(l, f), n) & :=\sum_{i=l}^{n} \operatorname{ev}(f, i), \\
\operatorname{ev}(\operatorname{Prod}(\lambda, g), n) & :=\prod_{i=\lambda}^{n} \operatorname{ev}(g, i)=\prod_{i=\lambda}^{n} g(i) .
\end{aligned}
$$

Note: $\Pi(\mathbb{G})$ defines all hypergeometric products (which evaluate to sequences with non-zero entries).
ev applied to $f \in \operatorname{SumProd}(\mathbb{G})$ represents a sequence.
f can be considered as a simple program and $\operatorname{ev}(f, n)$ with $n \in \mathbb{N}$ executes it (like an interpreter/compiler) yielding the nth entry of the represented sequence.

Definition

For $F \in \operatorname{SumProd}(\mathbb{G})$ and $n \in \mathbb{N}$ we write $F(n):=\operatorname{ev}(F, n)$.
ev applied to $f \in \operatorname{SumProd}(\mathbb{G})$ represents a sequence.
f can be considered as a simple program and $\operatorname{ev}(f, n)$ with $n \in \mathbb{N}$ executes it (like an interpreter/compiler) yielding the nth entry of the represented sequence.

Definition

For $F \in \operatorname{SumProd}(\mathbb{G})$ and $n \in \mathbb{N}$ we write $F(n):=\operatorname{ev}(F, n)$.

Example

For $E_{i} \in \operatorname{SumProd}(\mathbb{K}(x))$ with $i=1,2,3$ we get

$$
E_{1}(n)=\operatorname{ev}\left(E_{1}, n\right)=\operatorname{ev}(\operatorname{Sum}(1, \operatorname{Prod}(1, x)), n)=\sum_{k=1}^{n} \prod_{i=1}^{k} i=\sum_{k=1}^{n} k!
$$

ev applied to $f \in \operatorname{SumProd}(\mathbb{G})$ represents a sequence.
f can be considered as a simple program and $\operatorname{ev}(f, n)$ with $n \in \mathbb{N}$ executes it (like an interpreter/compiler) yielding the nth entry of the represented sequence.

Definition

For $F \in \operatorname{SumProd}(\mathbb{G})$ and $n \in \mathbb{N}$ we write $F(n):=\operatorname{ev}(F, n)$.

Example

For $E_{i} \in \operatorname{SumProd}(\mathbb{K}(x))$ with $i=1,2,3$ we get

$$
\begin{aligned}
E_{1}(n) & =\operatorname{ev}\left(E_{1}, n\right)=\operatorname{ev}(\operatorname{Sum}(1, \operatorname{Prod}(1, x)), n)=\sum_{k=1}^{n} \prod_{i=1}^{k} i=\sum_{k=1}^{n} k!, \\
E_{2}(n) & =\operatorname{ev}\left(\operatorname{Sum}\left(1, \frac{1}{x+1} \odot \operatorname{Sum}\left(1, \frac{1}{x^{3}}\right) \odot \operatorname{Sum}\left(1, \frac{1}{x}\right)\right), n\right) \\
& =\sum_{k=1}^{n} \frac{1}{1+k}\left(\sum_{i=1}^{k} \frac{1}{i^{3}}\right) \sum_{i=1}^{k} \frac{1}{i}
\end{aligned}
$$

ev applied to $f \in \operatorname{SumProd}(\mathbb{G})$ represents a sequence.
f can be considered as a simple program and $\operatorname{ev}(f, n)$ with $n \in \mathbb{N}$ executes it (like an interpreter/compiler) yielding the nth entry of the represented sequence.

Definition

For $F \in \operatorname{SumProd}(\mathbb{G})$ and $n \in \mathbb{N}$ we write $F(n):=\operatorname{ev}(F, n)$.

Example

For $E_{i} \in \operatorname{SumProd}(\mathbb{K}(x))$ with $i=1,2,3$ we get

$$
\begin{aligned}
E_{1}(n) & =\operatorname{ev}\left(E_{1}, n\right)=\operatorname{ev}(\operatorname{Sum}(1, \operatorname{Prod}(1, x)), n)=\sum_{k=1}^{n} \prod_{i=1}^{k} i=\sum_{k=1}^{n} k!, \\
E_{2}(n) & =\operatorname{ev}\left(\operatorname{Sum}\left(1, \frac{1}{x+1} \odot \operatorname{Sum}\left(1, \frac{1}{x^{3}}\right) \odot \operatorname{Sum}\left(1, \frac{1}{x}\right)\right), n\right) \\
& =\sum_{k=1}^{n} \frac{1}{1+k}\left(\sum_{i=1}^{k} \frac{1}{i^{3}}\right) \sum_{i=1}^{k} \frac{1}{i} \\
E_{3}(n) & =\left(E_{1}(n)+E_{2}(n)\right) E_{1}(n)
\end{aligned}
$$

General picture:

Definition

An expression $A \in \operatorname{SumProd}(\mathbb{G})$ is in reduced representation if

$$
\begin{equation*}
A=\left(f_{1} \odot P_{1}\right) \oplus\left(f_{2} \odot P_{2}\right) \oplus \cdots \oplus\left(f_{r} \odot P_{r}\right) \tag{4}
\end{equation*}
$$

with $f_{i} \in \mathbb{G}^{*}$ and

$$
P_{i}=\left(a_{i, 1}{ }^{\triangle} z_{i, 1}\right) \odot\left(a_{i, 2}{ }^{\triangle} z_{i, 2}\right) \odot \cdots \odot\left(a_{i, n_{i}} \otimes_{z_{i, n_{i}}}\right)
$$

Definition

An expression $A \in \operatorname{SumProd}(\mathbb{G})$ is in reduced representation if

$$
\begin{equation*}
A=\left(f_{1} \odot P_{1}\right) \oplus\left(f_{2} \odot P_{2}\right) \oplus \cdots \oplus\left(f_{r} \odot P_{r}\right) \tag{4}
\end{equation*}
$$

with $f_{i} \in \mathbb{G}^{*}$ and

$$
P_{i}=\left(a_{i, 1} \otimes_{z_{i, 1}}\right) \odot\left(a_{i, 2} \otimes_{z_{i, 2}}\right) \odot \cdots \odot\left(a_{i, n_{i}} \otimes_{z_{i, n_{i}}}\right)
$$

for $1 \leq i \leq r$ where

- $a_{i, j}=\operatorname{Sum}\left(l_{i, j}, f_{i, j}\right)$ with $l_{i, j} \in \mathbb{N}, f_{i, j} \in \operatorname{SumProd}(\mathbb{G})$ and $z_{i, j} \in \mathbb{Z}_{\geq 1}$,
- $a_{i, j}=\operatorname{Prod}\left(l_{i, j}, f_{i, j}\right)$ with $l_{i, j} \in \mathbb{N}, f_{i, j} \in \operatorname{Prod}^{*}(\mathbb{G})$ and $z_{i, j} \in \mathbb{Z} \backslash\{0\}$,
- $a_{i, j}=\operatorname{RPow}\left(f_{i, j}\right)$ with $f_{i, j} \in \mathcal{R}$ and $1 \leq z_{i, j}<\operatorname{ord}\left(r_{i, j}\right)$
such that the following properties hold:

1. for each $1 \leq i \leq r$ and $1 \leq j<j^{\prime}<n_{i}$ we have $a_{i, j} \neq a_{i, j^{\prime}}$;
2. for each $1 \leq i<i^{\prime} \leq r$ with $n_{i}=n_{j}$ there does not exist a $\sigma \in S_{n_{i}}$ with $P_{i^{\prime}}=\left(a_{i, \sigma(1)} \mathbb{®}_{z_{i, \sigma(1)}}\right) \odot\left(a_{i, \sigma(2)} \mathbb{\triangle}_{\left.z_{i, \sigma(2)}\right)}\right) \odot \cdots \odot\left(a_{i, \sigma\left(n_{i}\right)} \mathbb{®}_{\left.z_{i, \sigma\left(n_{i}\right)}\right)}\right)$.

Definition

An expression $A \in \operatorname{SumProd}(\mathbb{G})$ is in reduced representation if

$$
\begin{equation*}
A=\left(f_{1} \odot P_{1}\right) \oplus\left(f_{2} \odot P_{2}\right) \oplus \cdots \oplus\left(f_{r} \odot P_{r}\right) \tag{4}
\end{equation*}
$$

with $f_{i} \in \mathbb{G}^{*}$
$H \in \operatorname{SumProd}(\mathbb{G})$ is in sum-product reduced representation if

- it is in reduced representation;
- for each $\operatorname{Sum}(l, A)$ and $\operatorname{Prod}(l, A)$ that occur recursively in H the following holds:
- A is in reduced representation as given in (4);
- $l \geq \max \left(L\left(f_{1}\right), \ldots, L\left(f_{r}\right)\right)$ (i.e., no poles occur);
- the lower bound l is greater than or equal to the lower bounds of the sums and products inside of A.

Definition

An expression $A \in \operatorname{SumProd}(\mathbb{G})$ is in reduced representation if

$$
\begin{equation*}
A=\left(f_{1} \odot P_{1}\right) \oplus\left(f_{2} \odot P_{2}\right) \oplus \cdots \oplus\left(f_{r} \odot P_{r}\right) \tag{4}
\end{equation*}
$$

with $f_{i} \in \mathbb{G}^{*}$
$H \in \operatorname{SumProd}(\mathbb{G})$ is in sum-product reduced representation if

- it is in reduced representation;
- for each $\operatorname{Sum}(l, A)$ and $\operatorname{Prod}(l, A)$ that occur recursively in H the following holds:
- A is in reduced representation as given in (4);
- $l \geq \max \left(L\left(f_{1}\right), \ldots, L\left(f_{r}\right)\right)$ (i.e., no poles occur);
- the lower bound l is greater than or equal to the lower bounds of the sums and products inside of A.
Example
$E_{3}=\left(E_{1} \oplus E_{2}\right) \odot E_{1}$ is not in reduced representation

Definition

An expression $A \in \operatorname{SumProd}(\mathbb{G})$ is in reduced representation if

$$
\begin{equation*}
A=\left(f_{1} \odot P_{1}\right) \oplus\left(f_{2} \odot P_{2}\right) \oplus \cdots \oplus\left(f_{r} \odot P_{r}\right) \tag{4}
\end{equation*}
$$

with $f_{i} \in \mathbb{G}^{*}$
$H \in \operatorname{SumProd}(\mathbb{G})$ is in sum-product reduced representation if

- it is in reduced representation;
- for each $\operatorname{Sum}(l, A)$ and $\operatorname{Prod}(l, A)$ that occur recursively in H the following holds:
- A is in reduced representation as given in (4);
- $l \geq \max \left(L\left(f_{1}\right), \ldots, L\left(f_{r}\right)\right)$ (i.e., no poles occur);
- the lower bound l is greater than or equal to the lower bounds of the sums and products inside of A.

Example
$E_{3}=\left(E_{1} \oplus E_{2}\right) \odot E_{1}$ is not in reduced representation
Sum $\left(0, \frac{1}{x}\right)$ is not in sum-product reduced represenation

Definition

An expression $A \in \operatorname{SumProd}(\mathbb{G})$ is in reduced representation if

$$
\begin{equation*}
A=\left(f_{1} \odot P_{1}\right) \oplus\left(f_{2} \odot P_{2}\right) \oplus \cdots \oplus\left(f_{r} \odot P_{r}\right) \tag{4}
\end{equation*}
$$

with $f_{i} \in \mathbb{G}^{*}$
$H \in \operatorname{SumProd}(\mathbb{G})$ is in sum-product reduced representation if

- it is in reduced representation;
- for each $\operatorname{Sum}(l, A)$ and $\operatorname{Prod}(l, A)$ that occur recursively in H the following holds:
- A is in reduced representation as given in (4);
- $l \geq \max \left(L\left(f_{1}\right), \ldots, L\left(f_{r}\right)\right)$ (i.e., no poles occur);
- the lower bound l is greater than or equal to the lower bounds of the sums and products inside of A.

Example
$E_{3}=\left(E_{1} \oplus E_{2}\right) \odot E_{1}$ is not in reduced representation
$\operatorname{Sum}\left(0, \frac{1}{x}\right)$ is not in sum-product reduced represenation
$\operatorname{Sum}\left(1, \operatorname{Sum}\left(2, \frac{1}{x}\right)\right)$ is not in sum-product reduced represenation

Definition

An expression $A \in \operatorname{SumProd}(\mathbb{G})$ is in reduced representation if

$$
\begin{equation*}
A=\left(f_{1} \odot P_{1}\right) \oplus\left(f_{2} \odot P_{2}\right) \oplus \cdots \oplus\left(f_{r} \odot P_{r}\right) \tag{4}
\end{equation*}
$$

with $f_{i} \in \mathbb{G}^{*}$
$H \in \operatorname{SumProd}(\mathbb{G})$ is in sum-product reduced representation if

- it is in reduced representation;
- for each $\operatorname{Sum}(l, A)$ and $\operatorname{Prod}(l, A)$ that occur recursively in H the following holds:
- A is in reduced representation as given in (4);
- $l \geq \max \left(L\left(f_{1}\right), \ldots, L\left(f_{r}\right)\right)$ (i.e., no poles occur);
- the lower bound l is greater than or equal to the lower bounds of the sums and products inside of A.

Lemma

For any $A \in \operatorname{SumProd}(\mathbb{G})$, there is a $B \in \operatorname{SumProd}(\mathbb{G})$ in sum-product reduced representation and $\lambda \in \mathbb{N}$ such that

$$
A(n)=B(n) \quad \forall n \geq \lambda
$$

Key-Definitions: Let $W \subseteq \Sigma \Pi(\mathbb{G})$.

$\operatorname{SumProd}(W, \mathbb{G})=$ the set of elements from $\operatorname{SumProd}(\mathbb{G})$ which are in reduced representation and the arising sums/products are taken from W.

Key-Definitions: Let $W \subseteq \Sigma \Pi(\mathbb{G})$.

$\operatorname{SumProd}(W, \mathbb{G})=$ the set of elements from $\operatorname{SumProd}(\mathbb{G})$ which are in reduced representation and the arising sums/products are taken from W.

- W is called shift-closed over \mathbb{G} if for any $A \in \operatorname{SumProd}(W, \mathbb{G}), s \in \mathbb{Z}$ there are $B \in \operatorname{SumProd}(W, \mathbb{G})$ and $\delta \in \mathbb{N}$ such that

$$
A(n+s)=B(n) \quad \forall n \geq \delta
$$

Key-Definitions: Let $W \subseteq \Sigma \Pi(\mathbb{G})$.

$\operatorname{SumProd}(W, \mathbb{G})=$ the set of elements from $\operatorname{SumProd}(\mathbb{G})$ which are in reduced representation and the arising sums/products are taken from W.

- W is called shift-closed over \mathbb{G} if for any $A \in \operatorname{SumProd}(W, \mathbb{G}), s \in \mathbb{Z}$ there are $B \in \operatorname{SumProd}(W, \mathbb{G})$ and $\delta \in \mathbb{N}$ such that

$$
A(n+s)=B(n) \quad \forall n \geq \delta
$$

- W is called shift-stable over \mathbb{G} if for any product or sum in W the multiplicand or summand is built by sums and products from W.

Key-Definitions: Let $W \subseteq \Sigma \Pi(\mathbb{G})$.

$\operatorname{SumProd}(W, \mathbb{G})=$ the set of elements from $\operatorname{SumProd}(\mathbb{G})$ which are in reduced representation and the arising sums/products are taken from W.

- W is called shift-closed over \mathbb{G} if for any $A \in \operatorname{SumProd}(W, \mathbb{G}), s \in \mathbb{Z}$ there are $B \in \operatorname{SumProd}(W, \mathbb{G})$ and $\delta \in \mathbb{N}$ such that

$$
A(n+s)=B(n) \quad \forall n \geq \delta
$$

- W is called shift-stable over \mathbb{G} if for any product or sum in W the multiplicand or summand is built by sums and products from W.

Example
$W=\left\{\operatorname{Sum}\left(1, \operatorname{Sum}\left(1, \frac{1}{x}\right), \frac{1}{x}\right)\right\}$ is neither shift-closed nor shift-stable;

Key-Definitions: Let $W \subseteq \Sigma \Pi(\mathbb{G})$.

$\operatorname{SumProd}(W, \mathbb{G})=$ the set of elements from $\operatorname{SumProd}(\mathbb{G})$ which are in reduced representation and the arising sums/products are taken from W.

- W is called shift-closed over \mathbb{G} if for any $A \in \operatorname{SumProd}(W, \mathbb{G}), s \in \mathbb{Z}$ there are $B \in \operatorname{SumProd}(W, \mathbb{G})$ and $\delta \in \mathbb{N}$ such that

$$
A(n+s)=B(n) \quad \forall n \geq \delta
$$

- W is called shift-stable over \mathbb{G} if for any product or sum in W the multiplicand or summand is built by sums and products from W.

Example

$W=\left\{\operatorname{Sum}\left(1, \operatorname{Sum}\left(1, \frac{1}{x}\right), \frac{1}{x}\right)\right\}$ is neither shift-closed nor shift-stable;
$W=\left\{\operatorname{Sum}\left(1, \frac{1}{x}\right), \operatorname{Sum}\left(1, \operatorname{Sum}\left(1, \frac{1}{x}\right), \frac{1}{x}\right)\right\}$ is shift-closed and shift-stable;

Key-Definitions: Let $W \subseteq \Sigma \Pi(\mathbb{G})$.

$\operatorname{SumProd}(W, \mathbb{G})=$ the set of elements from $\operatorname{SumProd}(\mathbb{G})$ which are in reduced representation and the arising sums/products are taken from W.

- W is called shift-closed over \mathbb{G} if for any $A \in \operatorname{SumProd}(W, \mathbb{G}), s \in \mathbb{Z}$ there are $B \in \operatorname{SumProd}(W, \mathbb{G})$ and $\delta \in \mathbb{N}$ such that

$$
A(n+s)=B(n) \quad \forall n \geq \delta
$$

- W is called shift-stable over \mathbb{G} if for any product or sum in W the multiplicand or summand is built by sums and products from W.

Example

$W=\left\{\operatorname{Sum}\left(1, \operatorname{Sum}\left(1, \frac{1}{x}\right), \frac{1}{x}\right)\right\}$ is neither shift-closed nor shift-stable;
$W=\left\{\operatorname{Sum}\left(1, \frac{1}{x}\right), \operatorname{Sum}\left(1, \operatorname{Sum}\left(1, \frac{1}{x}\right), \frac{1}{x}\right)\right\}$ is shift-closed and shift-stable;
W is shift-stable $\begin{array}{ll}\Rightarrow \\ & \nLeftarrow\end{array}$

Key-Definitions: Let $W \subseteq \Sigma \Pi(\mathbb{G})$.

$\operatorname{SumProd}(W, \mathbb{G})=$ the set of elements from $\operatorname{SumProd}(\mathbb{G})$ which are in reduced representation and the arising sums/products are taken from W.

- W is called shift-closed over \mathbb{G} if for any $A \in \operatorname{SumProd}(W, \mathbb{G}), s \in \mathbb{Z}$ there are $B \in \operatorname{SumProd}(W, \mathbb{G})$ and $\delta \in \mathbb{N}$ such that

$$
A(n+s)=B(n) \quad \forall n \geq \delta
$$

- W is called shift-stable over \mathbb{G} if for any product or sum in W the multiplicand or summand is built by sums and products from W.
- W is called canonical reduced over \mathbb{G} if for any $A, B \in \operatorname{SumProd}(W, \mathbb{G})$ with

$$
A(n)=B(n) \quad \forall n \geq \delta
$$

for some $\delta \in \mathbb{N}$ the following holds: A and B are the same up to permutations of the operands in \oplus and \odot.

Definition

$W \subseteq \Sigma \Pi(\mathbb{G})$ is called σ-reduced over \mathbb{G} if

1. the elements in W are in sum-product reduced form,
2. W is shift-stable (and thus shift-closed) and
3. W is canonical reduced.

In particular, $A \in \operatorname{SumProd}(W, \mathbb{G})$ is called σ-reduced (w.r.t. W) if W is σ-reduced over \mathbb{G}.

Definition

$W \subseteq \Sigma \Pi(\mathbb{G})$ is called σ-reduced over \mathbb{G} if

1. the elements in W are in sum-product reduced form,
2. W is shift-stable (and thus shift-closed) and
3. W is canonical reduced.

In particular, $A \in \operatorname{SumProd}(W, \mathbb{G})$ is called σ-reduced (w.r.t. W) if W is σ-reduced over \mathbb{G}.

Problem SigmaReduce: Compute a σ-reduced representation

Given: $A_{1}, \ldots, A_{u} \in \operatorname{SumProd}(\mathbb{G})$ with $\mathbb{G}=\mathbb{K}(x)$.
Find: a σ-reduced set $W=\left\{T_{1}, \ldots, T_{e}\right\} \subset \Sigma \Pi(\mathbb{G})$, $B_{1} \ldots, B_{u} \in \operatorname{SumProd}(W, \mathbb{G})$ and $\delta_{1}, \ldots, \delta_{u} \in \mathbb{N}$ such that for all $1 \leq i \leq r$ we get

$$
A_{i}(n)=B_{i}(n) \quad n \geq \delta_{i} .
$$

- Canonical representation in term algebras

$$
\left.\begin{array}{c}
\stackrel{\underbrace{}_{1}}{B_{1}} \quad \sigma \text {-reduced } \\
\forall n \geq \delta \operatorname{ev}\left(A_{1}, n\right)=\operatorname{ev}\left(B_{1}, n\right)
\end{array} \quad \text { in SumProd(} \mathbb{G}\right)
$$

- Canonical representation in term algebras

Part 2: Modeling of sequences with a term agebra (user interface)

in SumProd (\mathbb{G})
$\operatorname{ev}\left(A_{2}, n\right)=\operatorname{ev}\left(B_{2}, n\right)$
$\forall n \geq \delta \operatorname{ev}\left(A_{1}, n\right)=\operatorname{ev}\left(B_{1}, n\right)$

$$
\tau
$$

(G)

- Canonical representation in term algebras

$$
\forall n \geq \delta \operatorname{ev}\left(A_{1}, n\right)=\operatorname{ev}\left(B_{1}, n\right) \quad=\quad \operatorname{ev}\left(A_{2}, n\right)=\operatorname{ev}\left(B_{2}, n\right)
$$

凹 canonical simplifier

$$
B_{1}=B_{2}
$$

General picture:

General picture:

Part 1: Symbolic summation (a short introduction)

Part 2: Modeling of sequences with a term algebra (user interface)

Part 3: Modeling of sequences in difference rings (computer algebra)

Part 4: Construction of appropriate difference rings (advanced CA)

Part 5: Applications

Represent $H=\operatorname{Sum}\left(1, \frac{1}{x}\right) \in \operatorname{SumProd}(\mathbb{G})$ with

$$
H(n)=H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

Represent $H=\operatorname{Sum}\left(1, \frac{1}{x}\right) \in \operatorname{SumProd}(\mathbb{G})$ with

$$
H(n)=H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

1. a formal ring $\mathbb{A}=\underbrace{\mathbb{Q}(x)}[s]$

$$
\underbrace{\text { rat. fu. field }}_{\text {polynomial ring }}
$$

Represent $H=\operatorname{Sum}\left(1, \frac{1}{x}\right) \in \operatorname{SumProd}(\mathbb{G})$ with

$$
H(n)=H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

1. a formal ring $\mathbb{A}=\mathbb{Q}(x)[s]$
2. an evaluation function

$$
\begin{array}{rll}
\mathrm{ev}^{\prime}: \mathbb{Q}(x) \times \mathbb{N} & & \rightarrow \mathbb{Q} \\
& \left(\frac{p(x)}{q(x)}, n\right) & \mapsto \begin{cases}\frac{p(n)}{q(n)} & \text { if } q(n) \neq 0 \\
0 & \text { otherwise }\end{cases}
\end{array}
$$

Represent $H=\operatorname{Sum}\left(1, \frac{1}{x}\right) \in \operatorname{SumProd}(\mathbb{G})$ with

$$
H(n)=H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

1. a formal ring $\mathbb{A}=\mathbb{Q}(x)[s]$
2. an evaluation function

$$
\begin{array}{rlll}
\mathrm{ev}^{\prime}: \mathbb{Q}(x) \times \mathbb{N} & & \rightarrow \mathbb{Q} \\
& \left(\frac{p(x)}{q(x)}, n\right) & & \mapsto \begin{cases}\frac{p(n)}{q(n)} & \text { if } q(n) \neq 0 \\
0 & \text { otherwise }\end{cases} \\
\text { ev : } \mathbb{Q}(x)[s] \times \mathbb{N} & & \rightarrow \mathbb{Q}
\end{array}
$$

$$
\operatorname{ev}(\mathbf{s}, \mathbf{n})=\mathbf{H}_{\mathbf{n}}
$$

Represent $H=\operatorname{Sum}\left(1, \frac{1}{x}\right) \in \operatorname{SumProd}(\mathbb{G})$ with

$$
H(n)=H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

1. a formal ring $\mathbb{A}=\mathbb{Q}(x)[s]$
2. an evaluation function ev: $\mathbb{A} \times \mathbb{N} \rightarrow \mathbb{Q}$

$$
\begin{array}{rlll}
\mathrm{ev}^{\prime}: \mathbb{Q}(x) \times \mathbb{N} & & \rightarrow \mathbb{Q} & \\
& \left(\frac{p(x)}{q(x)}, n\right) & \mapsto \begin{cases}\frac{p(n)}{q(n)} & \text { if } q(n) \neq 0 \\
0 & \text { otherwise }\end{cases} \\
\text { ev : } \mathbb{Q}(x)[s] \times \mathbb{N} & \rightarrow \mathbb{Q} \\
\left(\sum_{i=0}^{d} f_{i} s^{i}, n\right) & \mapsto \sum_{i=0}^{d} \operatorname{ev}^{\prime}\left(f_{i}, n\right) H_{n}^{i} & \operatorname{ev}(\mathbf{s}, \mathbf{n})=\mathbf{H}_{\mathbf{n}}
\end{array}
$$

Definition: $(\mathbb{A}, \mathrm{ev})$ is called an eval-ring

Represent $H=\operatorname{Sum}\left(1, \frac{1}{x}\right) \in \operatorname{SumProd}(\mathbb{G})$ with

$$
H(n)=H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

1. a formal ring $\mathbb{A}=\mathbb{Q}(x)[s]$
2. an evaluation function ev: $\mathbb{A} \times \mathbb{N} \rightarrow \mathbb{Q}$

Consider the map

$$
\begin{aligned}
\tau: \mathbb{A} & \rightarrow \mathbb{Q}^{\mathbb{N}} \\
f & \mapsto\langle\operatorname{ev}(f, n)\rangle_{n \geq 0}
\end{aligned}
$$

It is almost a ring homomorphism :

$$
\tau(x) \tau\left(\frac{1}{x}\right) \quad=\quad\langle 0,1,2,3, \ldots\rangle\left\langle 0,1, \frac{1}{2}, \frac{1}{3}, \ldots\right\rangle
$$

Represent $H=\operatorname{Sum}\left(1, \frac{1}{x}\right) \in \operatorname{SumProd}(\mathbb{G})$ with

$$
H(n)=H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

1. a formal ring $\mathbb{A}=\mathbb{Q}(x)[s]$
2. an evaluation function ev: $\mathbb{A} \times \mathbb{N} \rightarrow \mathbb{Q}$

Consider the map

$$
\begin{aligned}
\tau: \mathbb{A} & \rightarrow \mathbb{Q}^{\mathbb{N}} \\
f & \mapsto\langle\operatorname{ev}(f, n)\rangle_{n \geq 0}
\end{aligned}
$$

It is almost a ring homomorphism :

$$
\begin{gathered}
\tau(x) \tau\left(\frac{1}{x}\right) \quad=\quad\langle 0,1,2,3, \ldots\rangle\left\langle 0,1, \frac{1}{2}, \frac{1}{3}, \ldots\right\rangle \\
\| 0,1,1,1, \ldots\rangle
\end{gathered}
$$

Represent $H=\operatorname{Sum}\left(1, \frac{1}{x}\right) \in \operatorname{SumProd}(\mathbb{G})$ with

$$
H(n)=H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

1. a formal ring $\mathbb{A}=\mathbb{Q}(x)[s]$
2. an evaluation function ev : $\mathbb{A} \times \mathbb{N} \rightarrow \mathbb{Q}$

Consider the map

$$
\begin{aligned}
\tau: \mathbb{A} & \rightarrow \mathbb{Q}^{\mathbb{N}} \\
f & \mapsto\langle\operatorname{ev}(f, n)\rangle_{n \geq 0}
\end{aligned}
$$

It is almost a ring homomorphism :

$$
\begin{array}{cc}
\tau(x) \tau\left(\frac{1}{x}\right) \quad= & \langle 0,1,2,3, \ldots\rangle\left\langle 0,1, \frac{1}{2}, \frac{1}{3}, \ldots\right\rangle \\
\| 0,1,1,1, \ldots\rangle \\
\psi
\end{array}
$$

Represent $H=\operatorname{Sum}\left(1, \frac{1}{x}\right) \in \operatorname{SumProd}(\mathbb{G})$ with

$$
H(n)=H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

1. a formal ring $\mathbb{A}=\mathbb{Q}(x)[s]$
2. an evaluation function ev : $\mathbb{A} \times \mathbb{N} \rightarrow \mathbb{Q}$

Consider the map

$$
\begin{aligned}
\tau: & \mathbb{A} & \rightarrow \mathbb{Q}^{\mathbb{N}} / \sim & \left(a_{n}\right) \sim\left(b_{n}\right) \text { iff } a_{n}=b_{n} \\
f & \mapsto\langle\operatorname{ev}(f, n)\rangle_{n \geq 0} & & \text { from a certain point on }
\end{aligned}
$$

It is a ring homomorphism :

$$
\begin{array}{cc}
\tau(x) \tau\left(\frac{1}{x}\right) \quad= & \langle 0,1,2,3, \ldots\rangle\left\langle 0,1, \frac{1}{2}, \frac{1}{3}, \ldots\right\rangle \\
\langle 0,1,1,1, \ldots\rangle \\
\tau\left(x \frac{1}{x}\right)=\tau(1)= & \|
\end{array}
$$

Represent $H=\operatorname{Sum}\left(1, \frac{1}{x}\right) \in \operatorname{SumProd}(\mathbb{G})$ with

$$
H(n)=H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

1. a formal ring $\mathbb{A}=\mathbb{Q}(x)[s]$
2. an evaluation function iv : $\mathbb{A} \times \mathbb{N} \rightarrow \mathbb{Q}$

Consider the map

$$
\begin{array}{rlrl}
\tau: & \mathbb{A} & \rightarrow \mathbb{Q}^{\mathbb{N}} / \sim & \\
& f & \mapsto\langle\operatorname{av}(f, n)\rangle_{n \geq 0} & \\
& & \text { from a certain point on }
\end{array}
$$

It is an infective ring homomorphism (ring embedding):

$$
\begin{array}{cc}
\tau(x) \tau\left(\frac{1}{x}\right) \quad=\quad\langle 0,1,2,3, \ldots\rangle\left\langle 0,1, \frac{1}{2}, \frac{1}{3}, \ldots\right\rangle \\
\| 0,1,1,1, \ldots\rangle \\
\tau\left(x \frac{1}{x}\right)=\tau(1)= & \|
\end{array}
$$

Represent $H=\operatorname{Sum}\left(1, \frac{1}{x}\right) \in \operatorname{SumProd}(\mathbb{G})$ with

$$
H(n)=H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

1. a formal ring $\mathbb{A}=\mathbb{Q}(x)[s]$
2. an evaluation function ev : $\mathbb{A} \times \mathbb{N} \rightarrow \mathbb{Q}$
3. a ring automorphism

$$
\begin{array}{rlll}
\sigma^{\prime}: \mathbb{Q}(x) & & \rightarrow \mathbb{Q}(x) \\
& r(x) & & \mapsto r(x+1)
\end{array}
$$

Represent $H=\operatorname{Sum}\left(1, \frac{1}{x}\right) \in \operatorname{SumProd}(\mathbb{G})$ with

$$
H(n)=H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

1. a formal ring $\mathbb{A}=\mathbb{Q}(x)[s]$
2. an evaluation function ev : $\mathbb{A} \times \mathbb{N} \rightarrow \mathbb{Q}$
3. a ring automorphism

$$
\begin{array}{rll}
\sigma^{\prime}: \mathbb{Q}(x) & \rightarrow \mathbb{Q}(x) \\
& r(x) & \mapsto r(x+1) \\
\sigma: \mathbb{Q}(x)[s] & \rightarrow \mathbb{Q}(x)[s]
\end{array}
$$

$$
\begin{aligned}
& s \mapsto s+\frac{1}{x+1} \\
& H_{n+1}=H_{n}+\frac{1}{n+1}
\end{aligned}
$$

Represent $H=\operatorname{Sum}\left(1, \frac{1}{x}\right) \in \operatorname{SumProd}(\mathbb{G})$ with

$$
H(n)=H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

1. a formal ring $\mathbb{A}=\mathbb{Q}(x)[s]$
2. an evaluation function ev: $\mathbb{A} \times \mathbb{N} \rightarrow \mathbb{Q}$
3. a ring automorphism

$$
\begin{array}{rlll}
\sigma^{\prime}: \mathbb{Q}(x) & \rightarrow \mathbb{Q}(x) & \\
& r(x) & \mapsto r(x+1) & \\
\sigma: \mathbb{Q}(x)[s] & \rightarrow \mathbb{Q}(x)[s] & s \mapsto s+\frac{1}{x+1} \\
& \sum_{i=0}^{d} f_{i} s^{i} & \mapsto \sum_{i=0}^{d} \sigma^{\prime}\left(f_{i}\right)\left(s+\frac{1}{x+1}\right)^{i} & H_{n+1}=H_{n}+\frac{1}{n+1}
\end{array}
$$

Definition: (\mathbb{A}, σ) with a ring \mathbb{A} and automorphism σ is called a difference ring; the set of constants is

$$
\operatorname{const}_{\sigma} \mathbb{A}=\{c \in \mathbb{A} \mid \sigma(c)=c\}
$$

Represent $H=\operatorname{Sum}\left(1, \frac{1}{x}\right) \in \operatorname{SumProd}(\mathbb{G})$ with

$$
H(n)=H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

1. a formal ring $\mathbb{A}=\mathbb{Q}(x)[s]$
2. an evaluation function ev : $\mathbb{A} \times \mathbb{N} \rightarrow \mathbb{Q}$
3. a ring automorphism $\sigma: \mathbb{A} \rightarrow \mathbb{A}$
ev and σ interact:

$$
\operatorname{ev}(\sigma(s), n)=\operatorname{ev}\left(s+\frac{1}{x+1}, n\right)=H_{n}+\frac{1}{n+1}=\operatorname{ev}(s, n+1)
$$

Represent $H=\operatorname{Sum}\left(1, \frac{1}{x}\right) \in \operatorname{SumProd}(\mathbb{G})$ with

$$
H(n)=H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

1. a formal ring $\mathbb{A}=\mathbb{Q}(x)[s]$
2. an evaluation function ev : $\mathbb{A} \times \mathbb{N} \rightarrow \mathbb{Q}$
3. a ring automorphism $\sigma: \mathbb{A} \rightarrow \mathbb{A}$
ev and σ interact:

$$
\begin{gathered}
\operatorname{ev}(\sigma(s), n)=\operatorname{ev}\left(s+\frac{1}{x+1}, n\right)=H_{n}+\frac{1}{n+1}=\operatorname{ev}(s, n+1) \\
\tau(\sigma(s))=\left\langle 1,1+\frac{1}{2}, 1+\frac{1}{2}+\frac{1}{3}, \ldots\right\rangle=\underset{\sim}{S}\left(\left\langle 0,1,1+\frac{1}{2}, \ldots\right\rangle\right)=S(\tau(s)) \\
\text { shift operator }
\end{gathered}
$$

Represent $H=\operatorname{Sum}\left(1, \frac{1}{x}\right) \in \operatorname{SumProd}(\mathbb{G})$ with

$$
H(n)=H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

1. a formal ring $\mathbb{A}=\mathbb{Q}(x)[s]$
2. an evaluation function ev : $\mathbb{A} \times \mathbb{N} \rightarrow \mathbb{Q}$
3. a ring automorphism $\sigma: \mathbb{A} \rightarrow \mathbb{A}$
ev and σ interact:

$$
\begin{gathered}
\operatorname{ev}(\sigma(s), n)=\operatorname{ev}\left(s+\frac{1}{x+1}, n \downarrow=H_{n}+\frac{1}{n+1}=\operatorname{ev}(s, n+1)\right. \\
\tau(\sigma(s))=\left\langle 1,1+\frac{1}{2}, 1+\frac{1}{2}+\frac{1}{3}, \ldots\right\rangle=S\left(\left\langle 0,1,1+\frac{1}{2}, \ldots\right\rangle\right)=S(\tau(s))
\end{gathered}
$$

τ is an injective difference ring homomorphism:

Represent $H=\operatorname{Sum}\left(1, \frac{1}{x}\right) \in \operatorname{SumProd}(\mathbb{G})$ with

$$
H(n)=H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

1. a formal ring $\mathbb{A}=\mathbb{Q}(x)[s]$
2. an evaluation function ev : $\mathbb{A} \times \mathbb{N} \rightarrow \mathbb{Q}$
3. a ring automorphism $\sigma: \mathbb{A} \rightarrow \mathbb{A}$
ev and σ interact:

$$
\begin{gathered}
\operatorname{ev}(\sigma(s), n)=\operatorname{ev}\left(s+\frac{1}{x+1}, n \downarrow=H_{n}+\frac{1}{n+1}=\mathrm{ev}(s, n+1)\right. \\
\tau(\sigma(s))=\left\langle 1,1+\frac{1}{2}, 1+\frac{1}{2}+\frac{1}{3}, \ldots\right\rangle=S\left(\left\langle 0,1,1+\frac{1}{2}, \ldots\right\rangle\right)=S(\tau(s))
\end{gathered}
$$

τ is an injective difference ring homomorphism:

$$
(\mathbb{K}(x)[s], \sigma) \stackrel{\tau}{\simeq}(\underbrace{\tau(\mathbb{Q}(x))}_{\text {rat. seq. }}\left[\left\langle H_{n}\right\rangle_{n \geq 0}\right], S) \leq\left(\mathbb{K}^{\mathbb{N}} / \sim, S\right)
$$

Summary: we rephrase $H \in \operatorname{SumProd}(\mathbb{G})$ as element h in a formal difference ring. More precisely, we will design

- a ring \mathbb{A} with $\mathbb{A} \supseteq \mathbb{G} \supseteq \mathbb{K}$ in which H can be represented by $h \in \mathbb{A}$;
- an evaluation function ev : $\mathbb{A} \times \mathbb{N} \rightarrow \mathbb{K}$ such that $H(n)=\operatorname{ev}(h, n)$ holds for sufficiently large $n \in \mathbb{N}$;
- a ring automorphism $\sigma: \mathbb{A} \rightarrow \mathbb{A}$ which models $H(n+1)$ with $\sigma(h)$.

A hypergeometric $A P S$-extension of $(\mathbb{K}(x), \sigma)$ is
\rightarrow a ring

$$
\mathbb{A}:=\mathbb{K}(x)
$$

- with an automorphism where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and where

$$
\sigma(x)=x+1
$$

A hypergeometric $A P S$-extension of $(\mathbb{K}(x), \sigma)$ is

- a ring

$$
\mathbb{A}:=\mathbb{K}(x)
$$

- with an automorphism where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and where

$$
\sigma(x)=x+1
$$

$S k!=(k+1) k!$

A hypergeometric $A P S$-extension of $(\mathbb{K}(x), \sigma)$ is

- a ring

$$
\mathbb{A}:=\mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right]
$$

- with an automorphism where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and where

$$
\sigma(x)=x+1
$$

$\mathrm{Sk}!=(\mathrm{k}+1) \mathrm{k}!\quad \leftrightarrow \quad \sigma\left(p_{1}\right)=(x+1) p_{1}$

A hypergeometric $A P S$-extension of $(\mathbb{K}(x), \sigma)$ is

- a ring

$$
\mathbb{A}:=\mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right]
$$

- with an automorphism where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and where

$$
\sigma(x)=x+1
$$

hypergeometric $\leftrightarrow \sigma\left(p_{1}\right)=a_{1} p_{1} \quad a_{1} \in \mathbb{K}(x)^{*}$ products

A hypergeometric $A P S$-extension of $(\mathbb{K}(x), \sigma)$ is

- a ring

$$
\mathbb{A}:=\mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right]\left[p_{2}, p_{2}^{-1}\right]
$$

- with an automorphism where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and where

$$
\sigma(x)=x+1
$$

hypergeometric
products

$$
\begin{array}{lll}
\leftrightarrow & \sigma\left(p_{1}\right)=a_{1} p_{1} & a_{1} \in \mathbb{K}(x)^{*} \\
\sigma\left(p_{2}\right) & =a_{2} p_{2} & \\
a_{2} \in \mathbb{K}(x)^{*}
\end{array}
$$

A hypergeometric $A P S$-extension of $(\mathbb{K}(x), \sigma)$ is

- a ring

$$
\mathbb{A}:=\mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right]\left[p_{2}, p_{2}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right]
$$

- with an automorphism where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and where

$$
\begin{array}{rlrl}
\sigma(x) & =x+1 & & \\
\text { hypergeometric } \leftrightarrow \quad \leftrightarrow\left(p_{1}\right) & =a_{1} p_{1} & & a_{1} \in \mathbb{K}(x)^{*} \\
\text { products } & \sigma\left(p_{2}\right) & =a_{2} p_{2} & \\
a_{2} \in \mathbb{K}(x)^{*} \\
\vdots & & & \\
\sigma\left(p_{e}\right) & =a_{e} p_{e} & & a_{e} \in \mathbb{K}(x)^{*}
\end{array}
$$

A hypergeometric $A P S$-extension of $(\mathbb{K}(x), \sigma)$ is

- a ring

$$
\mathbb{A}:=\mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right]\left[p_{2}, p_{2}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]
$$

- with an automorphism where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and where

$$
\sigma(x)=x+1
$$

hypergeometric

$$
\begin{aligned}
\leftrightarrow \quad \sigma\left(p_{1}\right) & =a_{1} p_{1} \\
\sigma\left(p_{2}\right) & =a_{2} p_{2}
\end{aligned}
$$

$$
a_{1} \in \mathbb{K}(x)^{*}
$$

products

$$
a_{2} \in \mathbb{K}(x)^{*}
$$

$$
\sigma\left(p_{e}\right)=a_{e} p_{e}
$$

$$
a_{e} \in \mathbb{K}(x)^{*}
$$

$$
(-\mathbf{1})^{\mathbf{k}} \quad \leftrightarrow \quad \sigma(\mathbf{z})=-\mathbf{z} \quad \mathbf{z}^{2}=\mathbf{1}
$$

A hypergeometric $A P S$-extension of $(\mathbb{K}(x), \sigma)$ is
$>$ a ring

$$
\mathbb{A}:=\mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right]\left[p_{2}, p_{2}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]
$$

- with an automorphism where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and where

$$
\sigma(x)=x+1
$$

hypergeometric products

$$
\begin{aligned}
\leftrightarrow & \sigma\left(p_{1}\right) & =a_{1} p_{1} & a_{1} \in \mathbb{K}(x)^{*} \\
\sigma\left(p_{2}\right) & =a_{2} p_{2} & & a_{2} \in \mathbb{K}(x)^{*}
\end{aligned}
$$

$$
\sigma\left(p_{e}\right)=a_{e} p_{e}
$$

$$
a_{e} \in \mathbb{K}(x)^{*}
$$

$\underset{\substack{\gamma \text { is a primitive } \\ \text { root of unity }}}{\text { th }} \quad \gamma^{\mathbf{k}} \quad \leftrightarrow \quad \sigma(\mathbf{z})=\gamma \mathbf{Z} \quad \mathbf{z}^{\lambda}=\mathbf{1}$

A hypergeometric $A P S$-extension of $(\mathbb{K}(x), \sigma)$ is

- a ring

$$
\mathbb{A}:=\mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right]\left[p_{2}, p_{2}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right]
$$

- with an automorphism where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and where

$$
\sigma(x)=x+1
$$

hypergeometric

$$
\begin{aligned}
\leftrightarrow & \sigma\left(p_{1}\right) & =a_{1} p_{1} & a_{1} \in \mathbb{K}(x)^{*} \\
\sigma\left(p_{2}\right) & =a_{2} p_{2} & & a_{2} \in \mathbb{K}(x)^{*} \\
\vdots & & & \\
\sigma\left(p_{e}\right) & =a_{e} p_{e} & & a_{e} \in \mathbb{K}(x)^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{\gamma \text { is a primitive } \lambda t h} \\
& \text { root of unity }
\end{aligned} \quad \gamma^{\mathbf{k}} \quad \leftrightarrow \quad \sigma(\mathbf{z})=\gamma \mathbf{z} \quad \mathbf{z}^{\lambda}=\mathbf{1}
$$

$$
H_{k+1}=H_{k}+\frac{1}{k+1} \quad \leftrightarrow \quad \sigma\left(s_{1}\right)=s_{1}+\frac{1}{x+1}
$$

A hypergeometric $A P S$-extension of $(\mathbb{K}(x), \sigma)$ is

- a ring

$$
\mathbb{A}:=\mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right]\left[p_{2}, p_{2}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right]
$$

- with an automorphism where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and where

$$
\sigma(x)=x+1
$$

hypergeometric products

$$
\begin{array}{rlrl}
\leftrightarrow & \sigma\left(p_{1}\right) & =a_{1} p_{1} & \\
\sigma\left(p_{2}\right) \in \mathbb{K}(x)^{*} \\
\vdots & =a_{2} p_{2} & & a_{2} \in \mathbb{K}(x)^{*} \\
\sigma\left(p_{e}\right) & =a_{e} p_{e} & & a_{e} \in \mathbb{K}(x)^{*}
\end{array}
$$

$$
\begin{aligned}
& \gamma \text { is a primitive } \lambda \text { th } \\
& \text { root of unity }
\end{aligned} \gamma^{\mathbf{k}} \quad \leftrightarrow \quad \sigma(\mathbf{z})=\gamma \mathbf{z} \quad \mathbf{z}^{\lambda}=\mathbf{1}
$$

$$
\text { (nested) sum } \leftrightarrow \sigma\left(s_{1}\right)=s_{1}+f_{1} \quad f_{1} \in \mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]
$$

A hypergeometric $A P S$-extension of $(\mathbb{K}(x), \sigma)$ is

- a ring

$$
\mathbb{A}:=\mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right]\left[p_{2}, p_{2}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right]\left[s_{2}\right]
$$

- with an automorphism where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and where

$$
\sigma(x)=x+1
$$

hypergeometric products

$$
\begin{array}{rlrl}
\leftrightarrow & \sigma\left(p_{1}\right) & =a_{1} p_{1} & \\
\sigma\left(p_{2}\right) \in \mathbb{K}(x)^{*} \\
\vdots & =a_{2} p_{2} & & a_{2} \in \mathbb{K}(x)^{*} \\
\sigma\left(p_{e}\right) & =a_{e} p_{e} & & a_{e} \in \mathbb{K}(x)^{*}
\end{array}
$$

$$
\begin{aligned}
& \gamma \text { is a primitive } \lambda \text { th } \\
& \text { root of unity }
\end{aligned} \gamma^{\mathbf{k}} \quad \leftrightarrow \quad \sigma(\mathbf{z})=\gamma \mathbf{z} \quad \mathbf{z}^{\lambda}=\mathbf{1}
$$

$$
\begin{aligned}
& \text { (nested) sum } \leftrightarrow \sigma\left(s_{1}\right)=s_{1}+f_{1} \quad f_{1} \in \mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z] \\
& \sigma\left(s_{2}\right)=s_{2}+f_{2} \quad f_{2} \in \mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right]
\end{aligned}
$$

A hypergeometric $A P S$-extension of $(\mathbb{K}(x), \sigma)$ is

- a ring

$$
\mathbb{A}:=\mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right]\left[p_{2}, p_{2}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right]\left[s_{2}\right]\left[s_{3}\right] \ldots
$$

- with an automorphism where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and where

$$
\sigma(x)=x+1
$$

hypergeometric products

$$
\begin{array}{rlrl}
\leftrightarrow & \sigma\left(p_{1}\right) & =a_{1} p_{1} & \\
\sigma\left(p_{2}\right) & =a_{2} \in \mathbb{K}(x)^{*} \\
\vdots & & a_{2} \in \mathbb{K}(x)^{*} \\
\sigma\left(p_{e}\right) & =a_{e} p_{e} & & a_{e} \in \mathbb{K}(x)^{*}
\end{array}
$$

$$
\begin{aligned}
& \gamma \text { is a primitive } \lambda \text { th } \\
& \text { root of unity }
\end{aligned} \gamma^{\mathbf{k}} \quad \leftrightarrow \quad \sigma(\mathbf{z})=\gamma \mathbf{z} \quad \mathbf{z}^{\lambda}=\mathbf{1}
$$

$$
\begin{aligned}
& \text { (nested) sum } \leftrightarrow \sigma\left(s_{1}\right)=s_{1}+f_{1} \quad f_{1} \in \mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z] \\
& \sigma\left(s_{2}\right)=s_{2}+f_{2} \quad f_{2} \in \mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right] \\
& \sigma\left(s_{3}\right)=s_{3}+f_{3} \quad f_{3} \in \mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right]\left[s_{2}\right]
\end{aligned}
$$

Definition (Evaluation function)

Take (\mathbb{A}, σ) with a subfield \mathbb{K} of \mathbb{A} with $\left.\sigma\right|_{\mathbb{K}}=\mathrm{id}$.

1. ev : $\mathbb{A} \times \mathbb{N} \rightarrow \mathbb{K}$ is called evaluation function for (\mathbb{A}, σ) if for all $f, g \in \mathbb{A}, c \in \mathbb{K}$ and $l \in \mathbb{Z}$ there exists a $\lambda \in \mathbb{N}$ with

$$
\begin{align*}
& \forall n \geq \lambda: \operatorname{ev}(c, n)=c, \tag{5}\\
& \forall n \geq \lambda: \operatorname{ev}(f+g, n)=\operatorname{ev}(f, n)+\operatorname{ev}(g, n), \tag{6}\\
& \forall n \geq \lambda: \operatorname{ev}(f g, n)=\operatorname{ev}(f, n) \operatorname{ev}(g, n), \tag{7}\\
& \forall n \geq \lambda: \operatorname{ev}\left(\sigma^{l}(f), n\right)=\operatorname{ev}(f, n+l) \tag{8}
\end{align*}
$$

Definition (Evaluation function)

Take (\mathbb{A}, σ) with a subfield \mathbb{K} of \mathbb{A} with $\left.\sigma\right|_{\mathbb{K}}=\mathrm{id}$.

1. ev : $\mathbb{A} \times \mathbb{N} \rightarrow \mathbb{K}$ is called evaluation function for (\mathbb{A}, σ) if for all $f, g \in \mathbb{A}, c \in \mathbb{K}$ and $l \in \mathbb{Z}$ there exists a $\lambda \in \mathbb{N}$ with

$$
\begin{align*}
& \forall n \geq \lambda: \operatorname{ev}(c, n)=c, \tag{5}\\
& \forall n \geq \lambda: \operatorname{ev}(f+g, n)=\operatorname{ev}(f, n)+\operatorname{ev}(g, n), \tag{6}\\
& \forall n \geq \lambda: \operatorname{ev}(f g, n)=\operatorname{ev}(f, n) \operatorname{ev}(g, n), \tag{7}\\
& \forall n \geq \lambda: \operatorname{ev}\left(\sigma^{l}(f), n\right)=\operatorname{ev}(f, n+l) \tag{8}
\end{align*}
$$

2. $L: \mathbb{A} \rightarrow \mathbb{N}$ is called o-function if for any $f, g \in \mathbb{A}$ with $\lambda=\max (L(f), L(g))$ the properties (6) and (7) hold and for any $f \in \mathbb{A}$ and $l \in \mathbb{Z}$ with $\lambda=L(f)+\max (0,-l)$ property (8) holds.

Connection between SumProd (\mathbb{G}) and hypergeometric $A P S$-extension

- Observation 1: Given $\left\{T_{1}, \ldots, T_{e}\right\} \subseteq \Sigma \Pi(\mathbb{G})$, one can construct a hypergeometric $A P S$-extension (\mathbb{E}, σ) of (\mathbb{G}, σ) with ev and L such that there are $a_{1}, \ldots, a_{e} \in \mathbb{E}$ and $\delta_{1}, \ldots, \delta_{e}$ with $\operatorname{ev}\left(a_{i}, n\right)=T_{i}(n)$.

Connection between SumProd (\mathbb{G}) and hypergeometric $A P S$-extension

- Observation 1: Given $\left\{T_{1}, \ldots, T_{e}\right\} \subseteq \Sigma \Pi(\mathbb{G})$, one can construct a hypergeometric $A P S$-extension (\mathbb{E}, σ) of (\mathbb{G}, σ) with ev and L such that there are $a_{1}, \ldots, a_{e} \in \mathbb{E}$ and $\delta_{1}, \ldots, \delta_{e}$ with $\operatorname{ev}\left(a_{i}, n\right)=T_{i}(n)$.
- Observation 2:
(\mathbb{E}, σ) with $\mathbb{E}=\mathbb{G}\left\langle t_{1}\right\rangle \ldots\left\langle t_{e}\right\rangle$ a hypergeometric APS-extension of (\mathbb{G}, σ) $\mathrm{ev}: \mathbb{E} \times \mathbb{N} \rightarrow \mathbb{K}, L: \mathbb{E} \rightarrow \mathbb{N}$

$$
\downarrow \quad \begin{aligned}
& \forall n \geq L\left(t_{i}\right): \\
& \operatorname{ev}\left(t_{i}, n\right)=T_{i}(n) \in \Sigma \Pi(\mathbb{G})
\end{aligned}
$$

$W=\left\{T_{1}, \ldots, T_{e}\right\} \subseteq \Sigma \Pi(\mathbb{G})$ is sum-product reduced and shift stable: sums/products in T_{i} are from $\left\{T_{1}, \ldots, T_{i-1}\right\}$.

In particular, if $f \in \mathbb{E} \backslash\{0\}$, then we can take the "unique" $0 \neq F \in \operatorname{SumProd}\left(\left\{T_{1}, \ldots, T_{e}\right\}, \mathbb{G}\right)$ with $F(n)=\operatorname{ev}(f, n)$ for all $n \geq L(f)$.

Connection between SumProd (\mathbb{G}) and hypergeometric $A P S$-extension

- Observation 1: Given $\left\{T_{1}, \ldots, T_{e}\right\} \subseteq \Sigma \Pi(\mathbb{G})$, one can construct a hypergeometric $A P S$-extension (\mathbb{E}, σ) of (\mathbb{G}, σ) with ev and L such that there are $a_{1}, \ldots, a_{e} \in \mathbb{E}$ and $\delta_{1}, \ldots, \delta_{e}$ with $\operatorname{ev}\left(a_{i}, n\right)=T_{i}(n)$.
- Observation 2:
(\mathbb{E}, σ) with $\mathbb{E}=\mathbb{G}\left\langle t_{1}\right\rangle \ldots\left\langle t_{e}\right\rangle$ a hypergeometric APS-extension of (\mathbb{G}, σ) $\mathrm{ev}: \mathbb{E} \times \mathbb{N} \rightarrow \mathbb{K}, L: \mathbb{E} \rightarrow \mathbb{N}$

$$
\downarrow \quad \begin{aligned}
& \forall n \geq L\left(t_{i}\right): \\
& \operatorname{ev}\left(t_{i}, n\right)=T_{i}(n) \in \Sigma \Pi(\mathbb{G})
\end{aligned}
$$

$W=\left\{T_{1}, \ldots, T_{e}\right\} \subseteq \Sigma \Pi(\mathbb{G})$ is sum-product reduced and shift stable: sums/products in T_{i} are from $\left\{T_{1}, \ldots, T_{i-1}\right\}$.

In particular, if $f \in \mathbb{E} \backslash\{0\}$, then we can take the "unique" $0 \neq F \in \operatorname{SumProd}\left(\left\{T_{1}, \ldots, T_{e}\right\}, \mathbb{G}\right)$ with $F(n)=\operatorname{ev}(f, n)$ for all $n \geq L(f)$.

Definition

For $f \in \mathbb{E}$ we also write $\operatorname{expr}(f)=F$ for this particular F.

Connection between SumProd (\mathbb{G}) and hypergeometric $A P S$-extension

- Observation 1: Given $\left\{T_{1}, \ldots, T_{e}\right\} \subseteq \Sigma \Pi(\mathbb{G})$, one can construct a hypergeometric $A P S$-extension (\mathbb{E}, σ) of (\mathbb{G}, σ) with ev and L such that there are $a_{1}, \ldots, a_{e} \in \mathbb{E}$ and $\delta_{1}, \ldots, \delta_{e}$ with $\operatorname{ev}\left(a_{i}, n\right)=T_{i}(n)$.
- Observation 2:
(\mathbb{E}, σ) with $\mathbb{E}=\mathbb{G}\left\langle t_{1}\right\rangle \ldots\left\langle t_{e}\right\rangle$ a hypergeometric APS-extension of (\mathbb{G}, σ) $\mathrm{ev}: \mathbb{E} \times \mathbb{N} \rightarrow \mathbb{K}, L: \mathbb{E} \rightarrow \mathbb{N}$

$$
\downarrow \quad \begin{aligned}
& \forall n \geq L\left(t_{i}\right): \\
& \operatorname{ev}\left(t_{i}, n\right)=T_{i}(n) \in \Sigma \Pi(\mathbb{G})
\end{aligned}
$$

$W=\left\{T_{1}, \ldots, T_{e}\right\} \subseteq \Sigma \Pi(\mathbb{G})$ is sum-product reduced and shift stable: sums/products in T_{i} are from $\left\{T_{1}, \ldots, T_{i-1}\right\}$.

Example
For $f=x+\frac{x+1}{x} s^{4} \in \mathbb{Q}(x)[s]$ we obtain

$$
\operatorname{expr}(f)=F=x \oplus\left(\frac{x+1}{x} \odot\left(\operatorname{Sum}\left(1, \frac{1}{x}\right)^{\mathbb{Q}_{4}}\right) \in \operatorname{Sum}(\mathbb{Q}(x))\right)
$$

with $F(n)=\operatorname{ev}(f, n)$ for all $n \geq 1$.

Connection between SumProd (\mathbb{G}) and hypergeometric $A P S$-extension

- Observation 1: Given $\left\{T_{1}, \ldots, T_{e}\right\} \subseteq \Sigma \Pi(\mathbb{G})$, one can construct a hypergeometric $A P S$-extension (\mathbb{E}, σ) of (\mathbb{G}, σ) with ev and L such that there are $a_{1}, \ldots, a_{e} \in \mathbb{E}$ and $\delta_{1}, \ldots, \delta_{e}$ with $\operatorname{ev}\left(a_{i}, n\right)=T_{i}(n)$.
- Observation 2:
(\mathbb{E}, σ) with $\mathbb{E}=\mathbb{G}\left\langle t_{1}\right\rangle \ldots\left\langle t_{e}\right\rangle$ a hypergeometric APS-extension of (\mathbb{G}, σ) $\mathrm{ev}: \mathbb{E} \times \mathbb{N} \rightarrow \mathbb{K}, L: \mathbb{E} \rightarrow \mathbb{N}$

$$
\downarrow \quad \begin{aligned}
& \forall n \geq L\left(t_{i}\right): \\
& \operatorname{ev}\left(t_{i}, n\right)=T_{i}(n) \in \Sigma \Pi(\mathbb{G})
\end{aligned}
$$

$W=\left\{T_{1}, \ldots, T_{e}\right\} \subseteq \Sigma \Pi(\mathbb{G})$ is sum-product reduced and shift stable: sums/products in T_{i} are from $\left\{T_{1}, \ldots, T_{i-1}\right\}$.

Difference ring theory in action

Let (\mathbb{E}, σ) be a hypergeometric $A P S$-extension of (\mathbb{G}, σ) with ev $: \mathbb{E} \times \mathbb{N} \rightarrow \mathbb{K}$ and let $\tau: \mathbb{E} \rightarrow \mathbb{K}^{\mathbb{N}} / \sim$ be the \mathbb{K}-homomorphism given by

$$
\tau(f)=(\operatorname{ev}(f, n))_{n \geq 0}
$$

Difference ring theory in action

Let (\mathbb{E}, σ) be a hypergeometric $A P S$-extension of (\mathbb{G}, σ) with ev $: \mathbb{E} \times \mathbb{N} \rightarrow \mathbb{K}$ and let $\tau: \mathbb{E} \rightarrow \mathbb{K}^{\mathbb{N}} / \sim$ be the \mathbb{K}-homomorphism given by

$$
\tau(f)=(\operatorname{ev}(f, n))_{n \geq 0}
$$

Lemma

Let $W=\left\{T_{1}, \ldots, T_{e}\right\} \in \Sigma \Pi(\mathbb{G})$ with $T_{i}=\operatorname{expr}\left(t_{i}\right)$. Then:
W is canonical reduced $\Leftrightarrow \tau$ is injective.

Difference ring theory in action

Let (\mathbb{E}, σ) be a hypergeometric $A P S$-extension of (\mathbb{G}, σ) with ev $: \mathbb{E} \times \mathbb{N} \rightarrow \mathbb{K}$ and let $\tau: \mathbb{E} \rightarrow \mathbb{K}^{\mathbb{N}} / \sim$ be the \mathbb{K}-homomorphism given by

$$
\tau(f)=(\operatorname{ev}(f, n))_{n \geq 0}
$$

Lemma
Let $W=\left\{T_{1}, \ldots, T_{e}\right\} \in \Sigma \Pi(\mathbb{G})$ with $T_{i}=\operatorname{expr}\left(t_{i}\right)$. Then:
W is canonical reduced $\Leftrightarrow \tau$ is injective.

Using difference ring theory we get the following crucial property:

Theorem

τ is injective \Leftrightarrow const $_{\sigma} \mathbb{E}=\mathbb{K}$.

Example

For our difference field $\mathbb{G}=\mathbb{K}(x)$ with $\sigma(x)=x+1$ and const $_{\sigma} \mathbb{K}=\mathbb{K}$ we have const ${ }_{\sigma} \mathbb{K}(x)=\mathbb{K}$.

Example

For our difference field $\mathbb{G}=\mathbb{K}(x)$ with $\sigma(x)=x+1$ and $\operatorname{const}_{\sigma} \mathbb{K}=\mathbb{K}$ we have const $_{\sigma} \mathbb{K}(x)=\mathbb{K}$.

Definition

A hypergeometric $A P S$-extension (\mathbb{E}, σ) of (\mathbb{G}, σ) is called hypergeometric $R \Pi \Sigma$-extension if

$$
\operatorname{const}_{\sigma} \mathbb{E}=\mathbb{K}
$$

Example

For our difference field $\mathbb{G}=\mathbb{K}(x)$ with $\sigma(x)=x+1$ and const $_{\sigma} \mathbb{K}=\mathbb{K}$ we have const $_{\sigma} \mathbb{K}(x)=\mathbb{K}$.

Definition

A hypergeometric $A P S$-extension (\mathbb{E}, σ) of (\mathbb{G}, σ) is called hypergeometric $R \Pi \Sigma$-extension if

$$
\text { const }_{\sigma} \mathbb{E}=\mathbb{K}
$$

Theorem

Let $W=\left\{T_{1}, \ldots, T_{e}\right\} \subset \Sigma \Pi(\mathbb{G})$ be in sum-product reduced representation and shift-stable, i.e., for each $1 \leq i \leq e$ the arising sums and products in T_{i} are contained in $\left\{T_{1}, \ldots, T_{i-1}\right\}$. Then the following is equivalent:

1. There is a hypergeometric $R \Pi \Sigma$-extension (\mathbb{E}, σ) of (\mathbb{G}, σ) with $\mathbb{E}=\mathbb{G}\left\langle t_{1}\right\rangle \ldots\left\langle t_{e}\right\rangle$ equipped with an evaluation function ev with $T_{i}=\operatorname{expr}\left(t_{i}\right) \in \Sigma \Pi(\mathbb{G})$ for $1 \leq i \leq e$.
2. W is σ-reduced over \mathbb{G}.

This yields a strategy (actually the only strategy for shift-stable sets).

A Strategy to solve Problem SigmaReduce

Given: $A_{1}, \ldots, A_{u} \in \operatorname{SumProd}(\mathbb{G})$ with $\mathbb{G}=\mathbb{K}(x)$.
Find: a σ-reduced set $W=\left\{T_{1}, \ldots, T_{e}\right\} \subset \Sigma \Pi(\mathbb{G})$ with $B_{1} \ldots, B_{u} \in$ $\operatorname{SumProd}(W, \mathbb{G})$ and $\delta_{1}, \ldots, \delta_{u} \in \mathbb{N}$ such that $A_{i}(n)=B_{i}(n)$ holds for all $n \geq \delta_{i}$ and $1 \leq i \leq r$.

1. Construct $R \Pi \Sigma$-extension (\mathbb{E}, σ) of (\mathbb{G}, σ) with $\mathbb{E}=\mathbb{G}\left\langle t_{1}\right\rangle \ldots\left\langle t_{e}\right\rangle$ equipped with ev : $\mathbb{E} \times \mathbb{N} \rightarrow \mathbb{K}$ such that we get $a_{1}, \ldots, a_{u} \in \mathbb{E}$ and $\delta_{1}, \ldots, \delta_{u} \in \mathbb{N}$ with

$$
\begin{equation*}
A_{i}(n)=\operatorname{ev}\left(a_{i}, n\right) \quad \forall n \geq \delta_{i} . \tag{12}
\end{equation*}
$$

2. Set $W=\left\{T_{1}, \ldots, T_{e}\right\}$ with $T_{i}:=\operatorname{expr}\left(t_{i}\right) \in \Sigma \Pi(\mathbb{G})$ for $1 \leq i \leq e$.
3. Set $B_{i}:=\operatorname{expr}\left(a_{i}\right) \in \operatorname{SumProd}(W, \mathbb{G})$ for $1 \leq i \leq u$.
4. Return $W,\left(B_{1}, \ldots, B_{u}\right)$ and $\left(\delta_{1}, \ldots, \delta_{u}\right)$.

General picture:

General picture:

Part 1: Symbolic summation (a short introduction)

Part 2: Modeling of sequences with a term algebra (user interface)

Part 3: Modeling of sequences in difference rings (computer algebra)

Part 4: Construction of appropriate difference rings (advanced CA)

Part 5: Applications

A hypergeometric $A P S$-extension of $(\mathbb{K}(x), \sigma)$ is

- a ring

$$
\mathbb{A}:=\mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right]\left[p_{2}, p_{2}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right]\left[s_{2}\right]\left[s_{3}\right] \ldots
$$

- with an automorphism where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and where

$$
\sigma(x)=x+1
$$

hypergeometric products

$$
\begin{array}{rlrl}
\leftrightarrow & \sigma\left(p_{1}\right) & =a_{1} p_{1} & \\
\sigma\left(p_{2}\right) & =a_{2} \in \mathbb{K}(x)^{*} \\
\vdots & & a_{2} \in \mathbb{K}(x)^{*} \\
\sigma\left(p_{e}\right) & =a_{e} p_{e} & & a_{e} \in \mathbb{K}(x)^{*}
\end{array}
$$

$$
\begin{aligned}
& \gamma \text { is a primitive } \lambda \text { th } \\
& \text { root of unity }
\end{aligned} \gamma^{\mathbf{k}} \quad \leftrightarrow \quad \sigma(\mathbf{z})=\gamma \mathbf{z} \quad \mathbf{z}^{\lambda}=\mathbf{1}
$$

$$
\begin{aligned}
& \text { (nested) sum } \leftrightarrow \sigma\left(s_{1}\right)=s_{1}+f_{1} \quad f_{1} \in \mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z] \\
& \sigma\left(s_{2}\right)=s_{2}+f_{2} \quad f_{2} \in \mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right] \\
& \sigma\left(s_{3}\right)=s_{3}+f_{3} \quad f_{3} \in \mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right]\left[s_{2}\right]
\end{aligned}
$$

A hypergeometric $R \Pi \Sigma$-extension of $(\mathbb{K}(x), \sigma)$ is

- a ring

$$
\mathbb{A}:=\mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right]\left[p_{2}, p_{2}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right]\left[s_{2}\right]\left[s_{3}\right] \ldots
$$

- with an automorphism where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and where

$$
\sigma(x)=x+1
$$

hypergeometric products

$$
\begin{aligned}
\leftrightarrow & \sigma\left(p_{1}\right) & =a_{1} p_{1} & \\
\sigma\left(p_{2}\right) & =a_{2} \in \mathbb{K}(x)_{2} & & a_{2} \in \mathbb{K}(x)^{*} \\
\vdots & & & \\
\sigma\left(p_{e}\right) & =a_{e} p_{e} & & a_{e} \in \mathbb{K}(x)^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma \text { is a primitive } \lambda \text { th } \\
& \text { root of unity }
\end{aligned} \gamma^{\mathbf{k}} \quad \leftrightarrow \quad \sigma(\mathbf{z})=\gamma \mathbf{z} \quad \mathbf{z}^{\lambda}=\mathbf{1}
$$

such that const $_{\sigma} \mathbb{E}=\mathbb{K}$

$$
\begin{aligned}
& \text { (nested) sum } \leftrightarrow \sigma\left(s_{1}\right)=s_{1}+f_{1} \quad f_{1} \in \mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z] \\
& \sigma\left(s_{2}\right)=s_{2}+f_{2} \quad f_{2} \in \mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right] \\
& \sigma\left(s_{3}\right)=s_{3}+f_{3} \quad f_{3} \in \mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right]\left[s_{2}\right]
\end{aligned}
$$

Represent sums (extension of Karr's result, 1981)

- Let (\mathbb{A}, σ) be a difference ring with constant set

$$
\operatorname{const}_{\sigma} \mathbb{A}:=\{k \in \mathbb{A} \mid \sigma(k)=k\}
$$

Note 1: const $_{\sigma} \mathbb{A}$ is a ring that contains \mathbb{Q}
Note 2: We always take care that const $_{\sigma} \mathbb{A}$ is a field

Represent sums (extension of Karr's result, 1981)

- Let (\mathbb{A}, σ) be a difference ring with constant field

$$
\operatorname{const}_{\sigma} \mathbb{A}:=\{k \in \mathbb{A} \mid \sigma(k)=k\}
$$

- Adjoin a new variable t to \mathbb{A} (i.e., $\mathbb{A}[t]$ is a polynomial ring).

Represent sums (extension of Karr's result, 1981)

- Let (\mathbb{A}, σ) be a difference ring with constant field

$$
\operatorname{const}_{\sigma} \mathbb{A}:=\{k \in \mathbb{A} \mid \sigma(k)=k\} .
$$

- Adjoin a new variable t to \mathbb{A} (i.e., $\mathbb{A}[t]$ is a polynomial ring).
- Extend the shift operator s.t.

$$
\sigma(t)=t+f \quad \text { for some } f \in \mathbb{A}
$$

Represent sums (extension of Karr's result, 1981)

- Let (\mathbb{A}, σ) be a difference ring with constant field

$$
\operatorname{const}_{\sigma} \mathbb{A}:=\{k \in \mathbb{A} \mid \sigma(k)=k\}
$$

- Adjoin a new variable t to \mathbb{A} (i.e., $\mathbb{A}[t]$ is a polynomial ring).
- Extend the shift operator s.t.

$$
\sigma(t)=t+f \quad \text { for some } f \in \mathbb{A}
$$

Then $\operatorname{const}_{\sigma} \mathbb{A}[t]=\operatorname{const}_{\sigma} \mathbb{A}$ iff

$$
\nexists g \in \mathbb{A}: \quad \sigma(g)=g+f
$$

Represent sums (extension of Karr's result, 1981)

- Let (\mathbb{A}, σ) be a difference ring with constant field

$$
\operatorname{const}_{\sigma} \mathbb{A}:=\{k \in \mathbb{A} \mid \sigma(k)=k\} .
$$

- Adjoin a new variable t to \mathbb{A} (i.e., $\mathbb{A}[t]$ is a polynomial ring).
- Extend the shift operator s.t.

$$
\sigma(t)=t+f \quad \text { for some } f \in \mathbb{A}
$$

Then $\operatorname{const}_{\sigma} \mathbb{A}[t]=\operatorname{const}_{\sigma} \mathbb{A}$ iff

$$
\nexists g \in \mathbb{A}: \quad \sigma(g)=g+f
$$

Such a difference ring extension $(\mathbb{A}[t], \sigma)$ of (\mathbb{A}, σ) is called Σ^{*}-extension

Represent sums (extension of Karr's result, 1981)

- Let (\mathbb{A}, σ) be a difference ring with constant field

$$
\operatorname{const}_{\sigma} \mathbb{A}:=\{k \in \mathbb{A} \mid \sigma(k)=k\} .
$$

- Adjoin a new variable t to \mathbb{A} (i.e., $\mathbb{A}[t]$ is a polynomial ring).
- Extend the shift operator s.t.

$$
\sigma(t)=t+f \quad \text { for some } f \in \mathbb{A}
$$

Then $\operatorname{const}_{\sigma} \mathbb{A}[t]=\operatorname{const}_{\sigma} \mathbb{A}$ iff

$$
\nexists g \in \mathbb{A}: \quad \sigma(g)=g+f
$$

There are 2 cases:

1. $\nexists g \in \mathbb{A}: \sigma(g)=g+f:(\mathbb{A}[t], \sigma)$ is a Σ^{*}-extension of (\mathbb{A}, σ)

Represent sums (extension of Karr's result, 1981)

- Let (\mathbb{A}, σ) be a difference ring with constant field

$$
\operatorname{const}_{\sigma} \mathbb{A}:=\{k \in \mathbb{A} \mid \sigma(k)=k\}
$$

- Adjoin a new variable t to \mathbb{A} (i.e., $\mathbb{A}[t]$ is a polynomial ring).
- Extend the shift operator s.t.

$$
\sigma(t)=t+f \quad \text { for some } f \in \mathbb{A}
$$

Then $\operatorname{const}_{\sigma} \mathbb{A}[t]=\operatorname{const}_{\sigma} \mathbb{A}$ iff

$$
\nexists g \in \mathbb{A}: \quad \sigma(g)=g+f
$$

There are 2 cases:

1. $\nexists g \in \mathbb{A}: \sigma(g)=g+f:(\mathbb{A}[t], \sigma)$ is a Σ^{*}-extension of (\mathbb{A}, σ)
2. $\exists g \in \mathbb{A}: \sigma(g)=g+f$: No need for a Σ^{*}-extension!

A hypergeometric $R \Pi \Sigma$-extension of $(\mathbb{K}(x), \sigma)$ is

- a ring

$$
\mathbb{A}:=\mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right]\left[p_{2}, p_{2}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right]\left[s_{2}\right]\left[s_{3}\right] \ldots
$$

- with an automorphism where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and where

$$
\sigma(x)=x+1
$$

hypergeometric products

$$
\begin{array}{rlrl}
\leftrightarrow & \sigma\left(p_{1}\right) & =a_{1} p_{1} & \\
\sigma\left(p_{2}\right) & =a_{2} p_{2} & & a_{2} \in \mathbb{K}(x)^{*} \\
\vdots & & \\
\sigma\left(p_{e}\right) & =a_{e} p_{e} & & a_{e} \in \mathbb{K}(x)^{*}
\end{array}
$$

$$
\underset{\substack{\gamma \text { is a primitive } \lambda t h \\ \text { root of unity }}}{ } \gamma^{\mathbf{k}} \quad \leftrightarrow \quad \sigma(\mathbf{z})=\gamma \mathbf{z} \quad \mathbf{z}^{\lambda}=\mathbf{1}
$$

such that const $_{\sigma} \mathbb{E}=\mathbb{K}$

$$
\begin{aligned}
& \text { (nested) sum } \leftrightarrow \sigma\left(s_{1}\right)=s_{1}+f_{1} \quad f_{1} \in \mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z] \\
& \sigma\left(s_{2}\right)=s_{2}+f_{2} \quad f_{2} \in \mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right] \\
& \sigma\left(s_{3}\right)=s_{3}+f_{3} \quad f_{3} \in \mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right]\left[s_{2}\right]
\end{aligned}
$$

Represent products (extension of Karr's result, 1981)

- Let (\mathbb{A}, σ) be a difference ring with constant field

$$
\operatorname{const}_{\sigma} \mathbb{A}:=\{k \in \mathbb{A} \mid \sigma(k)=k\}
$$

Represent products (extension of Karr's result, 1981)

- Let (\mathbb{A}, σ) be a difference ring with constant field

$$
\operatorname{const}_{\sigma} \mathbb{A}:=\{k \in \mathbb{A} \mid \sigma(k)=k\}
$$

Take the ring of Laurent polynomials $\mathbb{A}\left[t, \frac{1}{t}\right]$.

Represent products (extension of Karr's result, 1981)

- Let (\mathbb{A}, σ) be a difference ring with constant field

$$
\operatorname{const}_{\sigma} \mathbb{A}:=\{k \in \mathbb{A} \mid \sigma(k)=k\}
$$

- Take the ring of Laurent polynomials $\mathbb{A}\left[t, \frac{1}{t}\right]$.
- Extend the shift operator s.t.

$$
\sigma(t)=a t \quad \text { for some } a \in \mathbb{A}^{*}
$$

Represent products (extension of Karr's result, 1981)

- Let (\mathbb{A}, σ) be a difference ring with constant field

$$
\operatorname{const}_{\sigma} \mathbb{A}:=\{k \in \mathbb{A} \mid \sigma(k)=k\}
$$

- Take the ring of Laurent polynomials $\mathbb{A}\left[t, \frac{1}{t}\right]$.
- Extend the shift operator s.t.

$$
\sigma(t)=a t \quad \text { for some } a \in \mathbb{A}^{*}
$$

Then const $_{\sigma} \mathbb{A}\left[t, t^{-1}\right]=\operatorname{const}_{\sigma} \mathbb{A}$ iff

$$
\nexists g \in \mathbb{A} \backslash\{0\}:
$$

$$
\sigma(g)=a g
$$

Represent products (extension of Karr's result, 1981)

- Let (\mathbb{A}, σ) be a difference ring with constant field

$$
\operatorname{const}_{\sigma} \mathbb{A}:=\{k \in \mathbb{A} \mid \sigma(k)=k\}
$$

- Take the ring of Laurent polynomials $\mathbb{A}\left[t, \frac{1}{t}\right]$.
- Extend the shift operator s.t.

$$
\sigma(t)=a t \quad \text { for some } a \in \mathbb{A}^{*}
$$

Then const $_{\sigma} \mathbb{A}\left[t, t^{-1}\right]=\operatorname{const}_{\sigma} \mathbb{A}$ iff

0

$$
\nexists g \in \mathbb{A} \backslash\{0\}:
$$

$$
\sigma(g)=a g
$$

Represent products (extension of Karr's result, 1981)

- Let (\mathbb{A}, σ) be a difference ring with constant field

$$
\operatorname{const}_{\sigma} \mathbb{A}:=\{k \in \mathbb{A} \mid \sigma(k)=k\}
$$

- Take the ring of Laurent polynomials $\mathbb{A}\left[t, \frac{1}{t}\right]$.
- Extend the shift operator s.t.

$$
\sigma(t)=a t \quad \text { for some } a \in \mathbb{A}^{*}
$$

Then const $_{\sigma} \mathbb{A}\left[t, t^{-1}\right]=\operatorname{const}_{\sigma} \mathbb{A}$ iff

$$
\nexists g \in \mathbb{A} \backslash\{0\} \nexists n \in \mathbb{Z} \backslash\{0\}: \quad \sigma(g)=a^{n} g
$$

Represent products (extension of Karr's result, 1981)

- Let (\mathbb{A}, σ) be a difference ring with constant field

$$
\operatorname{const}_{\sigma} \mathbb{A}:=\{k \in \mathbb{A} \mid \sigma(k)=k\}
$$

- Take the ring of Laurent polynomials $\mathbb{A}\left[t, \frac{1}{t}\right]$.
- Extend the shift operator s.t.

$$
\sigma(t)=a t \quad \text { for some } a \in \mathbb{A}^{*}
$$

Then const $_{\sigma} \mathbb{A}\left[t, t^{-1}\right]=\operatorname{const}_{\sigma} \mathbb{A}$ iff

$$
\nexists g \in \mathbb{A} \backslash\{0\} \nexists n \in \mathbb{Z} \backslash\{0\}: \quad \sigma(g)=a^{n} g
$$

Such a difference ring extension $\left(\mathbb{A}\left[t, \frac{1}{t}\right], \sigma\right)$ of (\mathbb{A}, σ) is called Π-extension

Represent products (extension of Karr's result, 1981)

- Let (\mathbb{A}, σ) be a difference ring with constant field

$$
\operatorname{const}_{\sigma} \mathbb{A}:=\{k \in \mathbb{A} \mid \sigma(k)=k\}
$$

- Take the ring of Laurent polynomials $\mathbb{A}\left[t, \frac{1}{t}\right]$.
- Extend the shift operator s.t.

$$
\sigma(t)=a t \quad \text { for some } a \in \mathbb{A}^{*}
$$

Then const $_{\sigma} \mathbb{A}\left[t, t^{-1}\right]=\operatorname{const}_{\sigma} \mathbb{A}$ iff

$$
\nexists g \in \mathbb{A} \backslash\{0\} \nexists n \in \mathbb{Z} \backslash\{0\}: \quad \sigma(g)=a^{n} g
$$

There are 3 cases:

1. $\exists g \in \mathbb{A} \backslash\{0\} \nexists n \in \mathbb{Z} \backslash\{0\}: \sigma(g)=a^{n} g$: $\left.\left(\mathbb{A}\left[t, \frac{1}{t}\right]\right), \sigma\right)$ is a Π-ext. of (\mathbb{A}, σ)

Represent products (extension of Karr's result, 1981)

- Let (\mathbb{A}, σ) be a difference ring with constant field

$$
\operatorname{const}_{\sigma} \mathbb{A}:=\{k \in \mathbb{A} \mid \sigma(k)=k\}
$$

- Take the ring of Laurent polynomials $\mathbb{A}\left[t, \frac{1}{t}\right]$.
- Extend the shift operator s.t.

$$
\sigma(t)=a t \quad \text { for some } a \in \mathbb{A}^{*}
$$

Then const $_{\sigma} \mathbb{A}\left[t, t^{-1}\right]=\operatorname{const}_{\sigma} \mathbb{A}$ iff

$$
\nexists g \in \mathbb{A} \backslash\{0\} \nexists n \in \mathbb{Z} \backslash\{0\}: \quad \sigma(g)=a^{n} g
$$

There are 3 cases:

1. $\nexists g \in \mathbb{A} \backslash\{0\} \nexists n \in \mathbb{Z} \backslash\{0\}: \sigma(g)=a^{n} g$: $\left.\left(\mathbb{A}\left[t, \frac{1}{t}\right]\right), \sigma\right)$ is a Π-ext. of (\mathbb{A}, σ)
2. $\exists g \in \mathbb{A} \backslash\{0\}: \sigma(g)=a g$: No need for a Π-extension!

Represent products (extension of Karr's result, 1981)

- Let (\mathbb{A}, σ) be a difference ring with constant field

$$
\operatorname{const}_{\sigma} \mathbb{A}:=\{k \in \mathbb{A} \mid \sigma(k)=k\}
$$

- Take the ring of Laurent polynomials $\mathbb{A}\left[t, \frac{1}{t}\right]$.
- Extend the shift operator st.

$$
\sigma(t)=a t \quad \text { for some } a \in \mathbb{A}^{*}
$$

Then const $_{\sigma} \mathbb{A}\left[t, t^{-1}\right]=$ const $_{\sigma} \mathbb{A}$ iff

$$
\nexists g \in \mathbb{A} \backslash\{0\} \nexists n \in \mathbb{Z} \backslash\{0\}: \quad \sigma(g)=a^{n} g
$$

There are 3 cases:

1. $\exists g \in \mathbb{A} \backslash\{0\} \nexists n \in \mathbb{Z} \backslash\{0\}: \sigma(g)=a^{n} g$: $\left.\left(\mathbb{A}\left[t, \frac{1}{t}\right]\right), \sigma\right)$ is a Π-ext. of (\mathbb{A}, σ)
2. $\exists g \in \mathbb{A} \backslash\{0\}: \sigma(g)=a g$: No need for a Π-extension!
3. $\exists g \in \mathbb{A} \backslash\{0\}: \sigma(g)=a^{n} g$ only for $n \in \mathbb{Z} \backslash\{0,1\}$:

The hypergeometric case

- Take the difference field $(\mathbb{K}(x), \sigma)$ with $\left.\sigma\right|_{\mathbb{K}}=$ id and $\sigma(x)=x+1$.
- Let $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{K}(x)^{*}$

The hypergeometric case

- Take the difference field $(\mathbb{K}(x), \sigma)$ with $\left.\sigma\right|_{\mathbb{K}}=$ id and $\sigma(x)=x+1$.
- Let $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{K}(x)^{*}$
- Then there is a difference ring
\mathbb{E}
such that for $1 \leq i \leq r$ there are $g_{i} \in \mathbb{E}^{*}$ with

$$
\sigma\left(g_{i}\right)=\alpha_{i} g_{i}
$$

The hypergeometric case

- Take the difference field $(\mathbb{K}(x), \sigma)$ with $\left.\sigma\right|_{\mathbb{K}}=$ id and $\sigma(x)=x+1$.
- Let $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{K}(x)^{*}$
- Then there is a difference ring

$$
\mathbb{E}=\mathbb{K}(x) \underbrace{\left[t_{1}, t_{1}^{-1}\right] \ldots\left[t_{e}, t_{e}^{-1}\right]}_{\text {tower of } \Pi \text {-ext. }} \underbrace{[z]}_{(-1)^{k} \text { or } \gamma^{k}}
$$

with

- $\frac{\sigma\left(t_{i}\right)}{t_{i}} \in \mathbb{K}(x)^{*}$ for $1 \leq i \leq e$
- $\sigma(z)=\gamma z$ and $z^{\lambda}=1$ for some primitive λ th root of unity $\gamma \in \mathbb{K}^{*}$
- const $_{\sigma} \mathbb{E}=\mathbb{K}$
such that for $1 \leq i \leq r$ there are $g_{i} \in \mathbb{E}^{*}$ with

$$
\sigma\left(g_{i}\right)=\alpha_{i} g_{i}
$$

The hypergeometric case

- Take the difference field $(\mathbb{K}(x), \sigma)$ with $\left.\sigma\right|_{\mathbb{K}}=$ id and $\sigma(x)=x+1$.
- Let $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{K}(x)^{*}$
- Then there is a difference ring

$$
\mathbb{E}=\mathbb{K}(x) \underbrace{\left[t_{1}, t_{1}^{-1}\right] \ldots\left[t_{e}, t_{e}^{-1}\right]}_{\text {tower of } \Pi \text {-ext. }} \underbrace{[z]}_{(-1)^{k} \text { or } \gamma^{k}}
$$

with

- $\frac{\sigma\left(t_{i}\right)}{t_{i}} \in \mathbb{K}(x)^{*}$ for $1 \leq i \leq e$
- $\sigma(z)=\gamma z$ and $z^{\lambda}=1$ for some primitive λ th root of unity $\gamma \in \mathbb{K}^{*}$
- const $_{\sigma} \mathbb{E}=\mathbb{K}$
such that for $1 \leq i \leq r$ there are $g_{i} \in \mathbb{E}^{*}$ with

$$
\sigma\left(g_{i}\right)=\alpha_{i} g_{i}
$$

Note: There are similar results for the q-rational, multi-basic and mixed case

A hypergeometric $R \Pi \Sigma$-extension of $(\mathbb{K}(x), \sigma)$ is

- a ring

$$
\mathbb{A}:=\mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right]\left[p_{2}, p_{2}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right]\left[s_{2}\right]\left[s_{3}\right] \ldots
$$

- with an automorphism where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and where

$$
\sigma(x)=x+1
$$

hypergeometric products

$$
\begin{aligned}
\leftrightarrow & \sigma\left(p_{1}\right) & =a_{1} p_{1} & \\
\sigma\left(p_{2}\right) & =a_{2} \in \mathbb{K}(x)_{2} & & a_{2} \in \mathbb{K}(x)^{*} \\
\vdots & & & \\
\sigma\left(p_{e}\right) & =a_{e} p_{e} & & a_{e} \in \mathbb{K}(x)^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma \text { is a primitive } \lambda \text { th } \\
& \text { root of unity }
\end{aligned} \quad \gamma^{\mathbf{k}} \quad \leftrightarrow \quad \sigma(\mathbf{z})=\gamma \mathbf{z} \quad \mathbf{z}^{\lambda}=\mathbf{1}
$$

such that const $_{\sigma} \mathbb{E}=\mathbb{K}$

$$
\begin{aligned}
& \text { (nested) sum } \leftrightarrow \sigma\left(s_{1}\right)=s_{1}+f_{1} \quad f_{1} \in \mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z] \\
& \sigma\left(s_{2}\right)=s_{2}+f_{2} \quad f_{2} \in \mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right] \\
& \sigma\left(s_{3}\right)=s_{3}+f_{3} \quad f_{3} \in \mathbb{K}(x)\left[p_{1}, p_{1}^{-1}\right] \ldots\left[p_{e}, p_{e}^{-1}\right][z]\left[s_{1}\right]\left[s_{2}\right]
\end{aligned}
$$

This yields a strategy (actually the only strategy for shift-stable sets).

A Strategy to solve Problem SigmaReduce

Given: $A_{1}, \ldots, A_{u} \in \operatorname{SumProd}(\mathbb{G})$ with $\mathbb{G}=\mathbb{K}(x)$.
Find: a σ-reduced set $W=\left\{T_{1}, \ldots, T_{e}\right\} \subset \Sigma \Pi(\mathbb{G})$ with $B_{1} \ldots, B_{u} \in$ $\operatorname{SumProd}(W, \mathbb{G})$ and $\delta_{1}, \ldots, \delta_{u} \in \mathbb{N}$ such that $A_{i}(n)=B_{i}(n)$ holds for all $n \geq \delta_{i}$ and $1 \leq i \leq r$.

1. Construct $R \Pi \Sigma$-extension (\mathbb{E}, σ) of (\mathbb{G}, σ) with $\mathbb{E}=\mathbb{G}\left\langle t_{1}\right\rangle \ldots\left\langle t_{e}\right\rangle$ equipped with ev : $\mathbb{E} \times \mathbb{N} \rightarrow \mathbb{K}$ such that we get $a_{1}, \ldots, a_{u} \in \mathbb{E}$ and $\delta_{1}, \ldots, \delta_{u} \in \mathbb{N}$ with

$$
\begin{equation*}
A_{i}(n)=\operatorname{ev}\left(a_{i}, n\right) \quad \forall n \geq \delta_{i} . \tag{12}
\end{equation*}
$$

2. Set $W=\left\{T_{1}, \ldots, T_{e}\right\}$ with $T_{i}:=\operatorname{expr}\left(t_{i}\right) \in \Sigma \Pi(\mathbb{G})$ for $1 \leq i \leq e$.
3. Set $B_{i}:=\operatorname{expr}\left(a_{i}\right) \in \operatorname{SumProd}(W, \mathbb{G})$ for $1 \leq i \leq u$.
4. Return $W,\left(B_{1}, \ldots, B_{u}\right)$ and $\left(\delta_{1}, \ldots, \delta_{u}\right)$.

This yields a strategy (actually the only strategy for shift-stable sets).

An Algorithm to solve Problem SigmaReduce

Given: $A_{1}, \ldots, A_{u} \in \operatorname{SumProd}(\mathbb{G})$ with $\mathbb{G}=\mathbb{K}(x)$.
Find: a σ-reduced set $W=\left\{T_{1}, \ldots, T_{e}\right\} \subset \Sigma \Pi(\mathbb{G})$ with $B_{1} \ldots, B_{u} \in$ $\operatorname{SumProd}(W, \mathbb{G})$ and $\delta_{1}, \ldots, \delta_{u} \in \mathbb{N}$ such that $A_{i}(n)=B_{i}(n)$ holds for all $n \geq \delta_{i}$ and $1 \leq i \leq r$.

1. Construct $R \Pi \Sigma$-extension (\mathbb{E}, σ) of (\mathbb{G}, σ) with $\mathbb{E}=\mathbb{G}\left\langle t_{1}\right\rangle \ldots\left\langle t_{e}\right\rangle$ equipped with ev : $\mathbb{E} \times \mathbb{N} \rightarrow \mathbb{K}$ such that we get $a_{1}, \ldots, a_{u} \in \mathbb{E}$ and $\delta_{1}, \ldots, \delta_{u} \in \mathbb{N}$ with

$$
\begin{equation*}
A_{i}(n)=\operatorname{ev}\left(a_{i}, n\right) \quad \forall n \geq \delta_{i} . \tag{12}
\end{equation*}
$$

2. Set $W=\left\{T_{1}, \ldots, T_{e}\right\}$ with $T_{i}:=\operatorname{expr}\left(t_{i}\right) \in \Sigma \Pi(\mathbb{G})$ for $1 \leq i \leq e$.
3. Set $B_{i}:=\operatorname{expr}\left(a_{i}\right) \in \operatorname{SumProd}(W, \mathbb{G})$ for $1 \leq i \leq u$.
4. Return $W,\left(B_{1}, \ldots, B_{u}\right)$ and $\left(\delta_{1}, \ldots, \delta_{u}\right)$.

Telescoping

GIVEN $f(k)=S_{1}(k)$.
FIND $g(k)$:

$$
f(k)=g(k+1)-g(k)
$$

for all $1 \leq k \leq n$ and $n \geq 0$.

Telescoping

GIVEN $f(k)=S_{1}(k)$.
FIND $g(k)$:

$$
f(k)=g(k+1)-g(k)
$$

for all $1 \leq k \leq n$ and $n \geq 0$.

Sigma computes

$$
g(k)=\left(S_{1}(k)-1\right) k .
$$

Telescoping

GIVEN $f(k)=S_{1}(k)$.
FIND $g(k)$:

$$
f(k)=g(k+1)-g(k)
$$

for all $1 \leq k \leq n$ and $n \geq 0$.

Summing this equation over k from 1 to n gives

$$
\begin{aligned}
\sum_{k=1}^{n} S_{1}(k) & =g(n+1)-g(1) \\
& =\left(S_{1}(n+1)-1\right)(n+1)
\end{aligned}
$$

Telescoping in the given difference ring

FIND a closed form for

$$
\sum_{k=1}^{n} S_{1}(k)
$$

A difference ring for the summand
Consider a ring

$$
\mathbb{A}
$$

with the automorphism $\sigma: \mathbb{A} \rightarrow \mathbb{A}$ defined by

Telescoping in the given difference ring

FIND a closed form for

$$
\sum_{k=1}^{n} S_{1}(k)
$$

A difference ring for the summand
Consider a ring

$$
\mathbb{A}:=\mathbb{Q}
$$

with the automorphism $\sigma: \mathbb{A} \rightarrow \mathbb{A}$ defined by

$$
\sigma(c)=c \quad \forall c \in \mathbb{Q}
$$

Telescoping in the given difference ring

FIND a closed form for

$$
\sum_{k=1}^{n} S_{1}(k)
$$

A difference ring for the summand
Consider a ring

$$
\mathbb{A}:=\mathbb{Q}(x)
$$

with the automorphism $\sigma: \mathbb{A} \rightarrow \mathbb{A}$ defined by

$$
\begin{aligned}
\sigma(c) & =c \quad \forall c \in \mathbb{Q}, \\
\sigma(x) & =x+1,
\end{aligned} \quad \mathcal{S} k=k+1
$$

Telescoping in the given difference ring

FIND a closed form for

$$
\sum_{k=1}^{n} S_{1}(k)
$$

A difference ring for the summand

Consider a ring

$$
\mathbb{A}:=\mathbb{Q}(x)[h]
$$

with the automorphism $\sigma: \mathbb{A} \rightarrow \mathbb{A}$ defined by

$$
\begin{array}{rlrl}
\sigma(c) & =c \forall c \in \mathbb{Q}, & \\
\sigma(x) & =x+1, & \mathcal{S} k & =k+1, \\
\sigma(h) & =h+\frac{1}{x+1}, & \mathcal{S} S_{1}(k) & =S_{1}(k)+\frac{1}{k+1} .
\end{array}
$$

Telescoping in the given difference ring

FIND $g \in \mathbb{A}:$

$$
\sigma(g)-g=h
$$

Telescoping in the given difference ring

FIND $g \in \mathbb{A}$:

$$
\sigma(g)-g=h
$$

We compute

$$
g=(h-1) x \in \mathbb{A}
$$

Telescoping in the given difference ring

FIND $g \in \mathbb{A}$:

$$
\sigma(g)-g=h
$$

We compute

$$
g=(h-1) x \in \mathbb{A}
$$

This gives

$$
g(k+1)-g(k)=S_{1}(k)
$$

with

$$
g(k)=\left(S_{1}(k)-1\right) k
$$

Telescoping in the given difference ring

FIND $g \in \mathbb{A}$:

$$
\sigma(g)-g=h
$$

We compute

$$
g=(h-1) x \in \mathbb{A} .
$$

This gives

$$
g(k+1)-g(k)=S_{1}(k)
$$

with

$$
g(k)=\left(S_{1}(k)-1\right) k .
$$

Hence,

$$
\left(S_{1}(n+1)-1\right)(n+1)=\sum_{k=1}^{n} S_{1}(k)
$$

\begin{abstract}
$$
\sigma(g)-g
$$

.
■

$\sigma(g)$ －

> Pr

Abstract

$$
1
$$ －

\qquad
\qquad
\end{abstract}

都
－

都
\qquad
\qquad

$$
\text { 4: Construction of appropriate difference rings (ad) } \quad \sigma(g)-g=h \text {. }(x)[h] \text { : }
$$

Cones en
\qquad
\square

$-2+\log$
\square
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Abstract

－

\square

元

\qquad T
\qquad
\qquad

FIND $g \in \mathbb{Q}(x)[h]:$

$$
\sigma(g)-g=h .
$$

Degree bound: COMPUTE $b \geq 0$:

$$
\forall g \in \mathbb{Q}(x)[h] \quad \sigma(g)-g=h \quad \Rightarrow \quad \operatorname{deg}(g) \leq b .
$$

FIND $g \in \mathbb{Q}(x)[h]:$

$$
\sigma(g)-g=h .
$$

Degree bound: COMPUTE $b \geq 0$:
$b=2$

$$
\forall g \in \mathbb{Q}(x)[h] \quad \sigma(g)-g=h \quad \Rightarrow \quad \operatorname{deg}(g) \leq b .
$$

FIND $g \in \mathbb{Q}(x)[h]:$

$$
\sigma(g)-g=h
$$

Degree bound: COMPUTE $b \geq 0$:

$$
b=2
$$

$$
\forall g \in \mathbb{Q}(x)[h] \quad \sigma(g)-g=h \quad \Rightarrow \quad \operatorname{deg}(g) \leq b
$$

Polynomial Solution: FIND

$$
g=g_{2} h^{2}+g_{1} h+g_{0} \in \mathbb{Q}(x)[h] .
$$

ANSATZ $g=g_{2} h^{2}+g_{1} h+g_{0} \in \mathbb{Q}(x)[h]$

$$
\sigma(g)-g=h
$$

ANSATZ $g=g_{2} h^{2}+g_{1} h+g_{0} \in \mathbb{Q}(x)[h]$

$$
\begin{aligned}
{\left[\sigma \left(g_{2} h^{2}+g_{1} h\right.\right.} & \left.\left.+g_{0}\right)\right] \\
& -\left[g_{2} h^{2}+g_{1} h+g_{0}\right]=h
\end{aligned}
$$

\square

ANSATZ $g=g_{2} h^{2}+g_{1} h+g_{0} \in \mathbb{Q}(x)[h]$

$$
\begin{aligned}
& {\left[\sigma\left(g_{2} h^{2}\right)+\sigma\left(g_{1} h+g_{0}\right)\right]} \\
& \quad-\left[g_{2} h^{2}+g_{1} h+g_{0}\right]=h
\end{aligned}
$$

\square

ANSATZ $g=g_{2} h^{2}+g_{1} h+g_{0} \in \mathbb{Q}(x)[h]$

$$
\begin{align*}
{\left[\sigma\left(g_{2}\right) \sigma\left(h^{2}\right)+\right.} & \left.\sigma\left(g_{1} h+g_{0}\right)\right] \\
& -\left[g_{2} h^{2}+g_{1} h+g_{0}\right]=h
\end{align*}
$$

ANSATZ $g=g_{2} h^{2}+g_{1} h+g_{0} \in \mathbb{Q}(x)[h]$

$$
\begin{aligned}
{\left[\sigma\left(g_{2}\right) \sigma(h)^{2}+\right.} & \left.\sigma\left(g_{1} h+g_{0}\right)\right] \\
& -\left[g_{2} h^{2}+g_{1} h+g_{0}\right]=h
\end{aligned}
$$

\square

ANSATZ $g=g_{2} h^{2}+g_{1} h+g_{0} \in \mathbb{Q}(x)[h]$

$$
\begin{aligned}
& {\left[\sigma\left(g_{2}\right)\left(h+\frac{1}{x+1}\right)^{2}+\sigma\left(g_{1} h+g_{0}\right)\right]} \\
& -\left[g_{2} h^{2}+g_{1} h+g_{0}\right]=h
\end{aligned}
$$

ANSATZ $g=g_{2} h^{2}+g_{1} h+g_{0} \in \mathbb{Q}(x)[h]$

$$
\begin{aligned}
& {\left[\sigma\left(g_{2}\right)\left(h+\frac{1}{x+1}\right)^{2}+\sigma\left(g_{1} h+g_{0}\right)\right]} \\
& -\left[g_{2} h^{2}+g_{1} h+g_{0}\right]=h
\end{aligned}
$$

ANSATZ $g=g_{2} h^{2}+g_{1} h+g_{0} \in \mathbb{Q}(x)[h]$

$$
\begin{aligned}
& {\left[\sigma\left(g_{2}\right)\left(h+\frac{1}{x+1}\right)^{2}+\sigma\left(g_{1} h+g_{0}\right)\right]} \\
& -\left[g_{2} h^{2}+g_{1} h+g_{0}\right]=h
\end{aligned}
$$

$$
\sigma\left(g_{2}\right)-g_{2}=0
$$

$$
g_{2}=c \in \mathbb{Q}
$$

ANSATZ $g=g_{2} h^{2}+g_{1} h+g_{0} \in \mathbb{Q}(x)[h]$

$$
\begin{aligned}
& {\left[\sigma\left(g_{2}\right)\left(h+\frac{1}{x+1}\right)^{2}+\sigma\left(g_{1} h+g_{0}\right)\right]} \\
& -\left[g_{2} h^{2}+g_{1} h+g_{0}\right]=h \\
& {\left[\sigma(c)\left(h+\frac{1}{x+1}\right)^{2}+\sigma\left(g_{1} h+g_{0}\right)\right] \quad g_{2}=c \in \mathbb{Q}} \\
& -\left[c h^{2}+g_{1} h+g_{0}\right]=h
\end{aligned}
$$

ANSATZ $g=g_{2} h^{2}+g_{1} h+g_{0} \in \mathbb{Q}(x)[h]$

$$
\begin{aligned}
& {\left[\sigma\left(g_{2}\right)\left(h+\frac{1}{x+1}\right)^{2}+\sigma\left(g_{1} h+g_{0}\right)\right]} \\
& -\left[g_{2} h^{2}+g_{1} h+g_{0}\right]=h \\
& {\left[c\left(h+\frac{1}{x+1}\right)^{2}+\right.} \\
& \left.\quad-\quad g_{2}=c \in \mathbb{Q}\left(g_{1} h+g_{0}\right)\right] \\
& \quad-\left[c h^{2}+g_{1} h+g_{0}\right]=h
\end{aligned}
$$

ANSATZ $g=g_{2} h^{2}+g_{1} h+g_{0} \in \mathbb{Q}(x)[h]$

$$
\begin{gathered}
{\left[\sigma\left(g_{2}\right)\left(h+\frac{1}{x+1}\right)^{2}+\sigma\left(g_{1} h+g_{0}\right)\right]} \\
-\left[g_{2} h^{2}+g_{1} h+g_{0}\right]=h \\
\sigma\left(g_{1} h+g_{0}\right)-\left(g_{1} h+g_{0}\right)=h-c\left[\frac{2 h(x+1)+1}{(x+1)^{2}}\right]
\end{gathered}
$$

ANSATZ $g=g_{2} h^{2}+g_{1} h+g_{0} \in \mathbb{Q}(x)[h]$

$$
\begin{gathered}
{\left[\sigma\left(g_{2}\right)\left(h+\frac{1}{x+1}\right)^{2}+\sigma\left(g_{1} h+g_{0}\right)\right]} \\
-\left[g_{2} h^{2}+g_{1} h+g_{0}\right]=h \\
\sigma\left(g_{1} h+g_{0}\right)-\left(g_{1} h+g_{0}\right)=h-c\left[\frac{2 h(x+1)+1}{(x+1)^{2}}\right] \\
\left.g_{2}=c \in \mathbb{Q}\right] \\
\sigma\left(g_{1}\right)-g_{1}=1-c \frac{2}{x+1}
\end{gathered}
$$

ANSATZ $g=g_{2} h^{2}+g_{1} h+g_{0} \in \mathbb{Q}(x)[h]$

$$
\begin{gathered}
\left.\sigma\left(g_{2}\right)\left(h+\frac{1}{x+1}\right)^{2}+\sigma\left(g_{1} h+g_{0}\right)\right] \\
-\left[g_{2} h^{2}+g_{1} h+g_{0}\right]=h \\
\sigma\left(g_{1} h+g_{0}\right)-\left(g_{1} h+g_{0}\right)=h-c\left[\frac{2 h(x+1)+1}{(x+1)^{2}}\right]
\end{gathered}
$$

ANSATZ $g=g_{2} h^{2}+g_{1} h+g_{0} \in \mathbb{Q}(x)[h]$

$$
\begin{gathered}
{\left[\sigma\left(g_{2}\right)\left(h+\frac{1}{x+1}\right)^{2}+\sigma\left(g_{1} h+g_{0}\right)\right]} \\
-\left[g_{2} h^{2}+g_{1} h+g_{0}\right]=h \\
\sigma\left(g_{1} h+g_{0}\right)-\left(g_{1} h+g_{0}\right)=h-c\left[\frac{2 h(x+1)+1}{(x+1)^{2}}\right] \\
\quad \sigma\left(g_{0}\right)-g_{0}=-1-d \frac{1}{x+1}
\end{gathered}
$$

ANSATZ $g=g_{2} h^{2}+g_{1} h+g_{0} \in \mathbb{Q}(x)[h]$

$$
\begin{gathered}
{\left[\sigma\left(g_{2}\right)\left(h+\frac{1}{x+1}\right)^{2}+\sigma\left(g_{1} h+g_{0}\right)\right]} \\
-\left[g_{2} h^{2}+g_{1} h+g_{0}\right]=h \\
\sigma\left(g_{1} h+g_{0}\right)-\left(g_{1} h+g_{0}\right)=h-c\left[\frac{2 h(x+1)+1}{(x+1)^{2}}\right] \\
\begin{array}{l}
g_{0}=-x \in \mathbb{Q} \\
d=0
\end{array} \leftarrow \square \frac{\mathrm{Q}=\mathrm{hx}-\mathrm{x}}{} \\
\sigma\left(g_{0}\right)-g_{0}=-1-d \frac{1}{x+1}
\end{gathered}
$$

Telescoping in the given difference ring

FIND $g \in \mathbb{A}$:

$$
\sigma(g)-g=h
$$

We compute

$$
g=(h-1) x \in \mathbb{A} .
$$

This gives

$$
g(k+1)-g(k)=S_{1}(k)
$$

with

$$
g(k)=\left(S_{1}(k)-1\right) k .
$$

Hence,

$$
\left(S_{1}(n+1)-1\right)(n+1)=\sum_{k=1}^{n} S_{1}(k) .
$$

Remarks. All results can be generalized to the following setting:

- the mixed multibasic hypergeometric case:
$\mathbb{G}:=\mathbb{K}\left(x, x_{1}, \ldots, x_{v}\right)$ with $\mathbb{K}=K\left(q_{1}, \ldots, q_{v}\right)$ For $f=\frac{p}{q} \in \mathbb{G}$ with $p, q \in \mathbb{K}\left[x, x_{1}, \ldots, x_{v}\right]$ where $q \neq 0$ and p, q being coprime we define

$$
\operatorname{ev}(f, k)= \begin{cases}0 & \text { if } q\left(k, q_{1}^{k}, \ldots, q_{v}^{k}\right)=0 \\ \frac{p\left(k, q_{1}^{k}, \ldots, q_{v}^{k}\right)}{q\left(k, q_{1}^{k}, \ldots, q_{v}^{k}\right)} & \text { if } q\left(k, q_{1}^{k}, \ldots, q_{v}^{k}\right) \neq 0\end{cases}
$$

Remarks. All results can be generalized to the following setting:

- the mixed multibasic hypergeometric case:
$\mathbb{G}:=\mathbb{K}\left(x, x_{1}, \ldots, x_{v}\right)$ with $\mathbb{K}=K\left(q_{1}, \ldots, q_{v}\right)$ For $f=\frac{p}{q} \in \mathbb{G}$ with $p, q \in \mathbb{K}\left[x, x_{1}, \ldots, x_{v}\right]$ where $q \neq 0$ and p, q being coprime we define

$$
\operatorname{ev}(f, k)= \begin{cases}0 & \text { if } q\left(k, q_{1}^{k}, \ldots, q_{v}^{k}\right)=0 \\ \frac{p\left(k, q_{1}^{k}, \ldots, q_{v}^{k}\right)}{q\left(k, q_{1}^{k}, \ldots, q_{v}^{k}\right)} & \text { if } q\left(k, q_{1}^{k}, \ldots, q_{v}^{k}\right) \neq 0\end{cases}
$$

- simple products: $\operatorname{Prod}^{*}(\mathbb{G})$ is the smallest set that contains 1 with:

1. If $r \in \mathcal{R}$ then $\operatorname{RPow}(r) \in \operatorname{Prod}^{*}(\mathbb{G})$.
2. If

$$
f \in \mathbb{G}^{*}, l \in \mathbb{N} \text { with } l \geq Z(f) \text { then } \operatorname{Prod}(l, f \quad) \in \operatorname{Prod}^{*}(\mathbb{G}) .
$$

3. If $p, q \in \operatorname{Prod}^{*}(\mathbb{G})$ then $p \odot q \in \operatorname{Prod}^{*}(\mathbb{G})$.
4. If $p \in \operatorname{Prod}^{*}(\mathbb{G})$ and $z \in \mathbb{Z} \backslash\{0\}$ then $p^{\otimes_{z}} \in \operatorname{Prod}^{*}(\mathbb{G})$.

Remarks. All results can be generalized to the following setting:

- the mixed multibasic hypergeometric case:
$\mathbb{G}:=\mathbb{K}\left(x, x_{1}, \ldots, x_{v}\right)$ with $\mathbb{K}=K\left(q_{1}, \ldots, q_{v}\right)$ For $f=\frac{p}{q} \in \mathbb{G}$ with $p, q \in \mathbb{K}\left[x, x_{1}, \ldots, x_{v}\right]$ where $q \neq 0$ and p, q being coprime we define

$$
\operatorname{ev}(f, k)= \begin{cases}0 & \text { if } q\left(k, q_{1}^{k}, \ldots, q_{v}^{k}\right)=0 \\ \frac{p\left(k, q_{1}^{k}, \ldots, q_{v}^{k}\right)}{q\left(k, q_{1}^{k}, \ldots, q_{v}^{k}\right)} & \text { if } q\left(k, q_{1}^{k}, \ldots, q_{v}^{k}\right) \neq 0\end{cases}
$$

- nested products: $\operatorname{Prod}^{*}(\mathbb{G})$ is the smallest set that contains 1 with:

1. If $r \in \mathcal{R}$ then $\operatorname{RPow}(r) \in \operatorname{Prod}^{*}(\mathbb{G})$.
2. If $p \in \operatorname{Prod}^{*}(\mathbb{G}), f \in \mathbb{G}^{*}, l \in \mathbb{N}$ with $l \geq Z(f)$ then $\operatorname{Prod}(l, f \odot p) \in \operatorname{Prod}^{*}(\mathbb{G})$.
3. If $p, q \in \operatorname{Prod}^{*}(\mathbb{G})$ then $p \odot q \in \operatorname{Prod}^{*}(\mathbb{G})$.
4. If $p \in \operatorname{Prod}^{*}(\mathbb{G})$ and $z \in \mathbb{Z} \backslash\{0\}$ then $p^{\otimes_{z} \in \operatorname{Prod}^{*}(\mathbb{G}) \text {. }}$

Remarks. All results can be generalized to the following setting:

- the mixed multibasic hypergeometric case:
$\mathbb{G}:=\mathbb{K}\left(x, x_{1}, \ldots, x_{v}\right)$ with $\mathbb{K}=K\left(q_{1}, \ldots, q_{v}\right)$ For $f=\frac{p}{q} \in \mathbb{G}$ with $p, q \in \mathbb{K}\left[x, x_{1}, \ldots, x_{v}\right]$ where $q \neq 0$ and p, q being coprime we define

$$
\operatorname{ev}(f, k)= \begin{cases}0 & \text { if } q\left(k, q_{1}^{k}, \ldots, q_{v}^{k}\right)=0 \\ \frac{p\left(k, q_{1}^{k}, \ldots, q_{v}^{k}\right)}{q\left(k, q_{1}^{k}, \ldots, q_{v}^{k}\right)} & \text { if } q\left(k, q_{1}^{k}, \ldots, q_{v}^{k}\right) \neq 0\end{cases}
$$

- nested products: $\operatorname{Prod}^{*}(\mathbb{G})$ is the smallest set that contains 1 with:

1. If $r \in \mathcal{R}$ then $\operatorname{RPow}(r) \in \operatorname{Prod}^{*}(\mathbb{G})$.
2. If $p \in \operatorname{Prod}^{*}(\mathbb{G}), f \in \mathbb{G}^{*}, l \in \mathbb{N}$ with $l \geq Z(f)$ then $\operatorname{Prod}(l, f \odot p) \in \operatorname{Prod}^{*}(\mathbb{G})$.
3. If $p, q \in \operatorname{Prod}^{*}(\mathbb{G})$ then $p \odot q \in \operatorname{Prod}^{*}(\mathbb{G})$.
4. If $p \in \operatorname{Prod}^{*}(\mathbb{G})$ and $z \in \mathbb{Z} \backslash\{0\}$ then $p^{\mathbb{D}_{z}} \operatorname{Prod}^{*}(\mathbb{G})$.

For further details see
Term Algebras, Canonical Representations and Difference Ring Theory for Symbolic Summation. To appear in:
Anti-Differentiation and the Calculation of Feynman Amplitudes, J. Blümlein and C. Schneider (ed.),
Texts and Monographs in Symbolic Computuation, 2021. Springer, arXiv:2102.01471 [cs.SC]

General picture:

Part 1: Symbolic summation (a short introduction)

Part 2: Modeling of sequences with a term algebra (user interface)

Part 3: Modeling of sequences in difference rings (computer algebra)

Part 4: Construction of appropriate difference rings (advanced CA)

Part 5: Applications

A warm-up example: simplify

$$
\begin{aligned}
\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} & \left(\frac{(2 j+k+n+2) j!k!(j+k+n)!}{(j+k+1)(j+n+1)(j+k+1)!(j+n+1)!(k+n+1)!}\right. \\
& \underbrace{+\frac{j!k!(j+k+n)!\left(-S_{1}(j)+S_{1}(j+k)+S_{1}(j+n)-S_{1}(j+k+n)\right)}{(j+k+1)!(j+n+1)!(k+n+1)!}}_{f(j)})
\end{aligned}
$$

where

$$
S_{1}(n)=\sum_{i=1}^{n} \frac{1}{i} \quad\left(=H_{n}\right)
$$

Arose in the context of I. Bierenbaum, J. Blümlein, and S. Klein, Evaluating two-loop massive operator matrix elements with Mellin-Barnes integrals. 2006

A warm-up example: simplify

$$
\begin{aligned}
\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} & \left(\frac{(2 j+k+n+2) j!k!(j+k+n)!}{(j+k+1)(j+n+1)(j+k+1)!(j+n+1)!(k+n+1)!}\right. \\
& +\underbrace{\left.\frac{j!k!(j+k+n)!\left(-S_{1}(j)+S_{1}(j+k)+S_{1}(j+n)-S_{1}(j+k+n)\right)}{(j+k+1)!(j+n+1)!(k+n+1)!}\right)}
\end{aligned}
$$

FIND $g(j)$:

$$
f(j)=g(j+1)-g(j)
$$

A warm-up example: simplify

$$
\begin{aligned}
\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} & \left(\frac{(2 j+k+n+2) j!k!(j+k+n)!}{(j+k+1)(j+n+1)(j+k+1)!(j+n+1)!(k+n+1)!}\right. \\
& +\underbrace{\left.\frac{j!k!(j+k+n)!\left(-S_{1}(j)+S_{1}(j+k)+S_{1}(j+n)-S_{1}(j+k+n)\right)}{(j+k+1)!(j+n+1)!(k+n+1)!}\right)}
\end{aligned}
$$

FIND $g(j)$:

$$
f(j)=g(j+1)-g(j)
$$

\uparrow summation package Sigma

$$
g(j)=\frac{(j+k+1)(j+n+1) j!k!(j+k+n)!\left(S_{1}(j)-S_{1}(j+k)-S_{1}(j+n)+S_{1}(j+k+n)\right)}{k n(j+k+1)!(j+n+1)!(k+n+1)!}
$$

A_{∞} warm-up example: simplify

$$
\begin{aligned}
\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} & \left(\frac{(2 j+k+n+2) j!k!(j+k+n)!}{(j+k+1)(j+n+1)(j+k+1)!(j+n+1)!(k+n+1)!}\right. \\
& +\underbrace{\left.\frac{j!k!(j+k+n)!\left(-S_{1}(j)+S_{1}(j+k)+S_{1}(j+n)-S_{1}(j+k+n)\right)}{(j+k+1)!(j+n+1)!(k+n+1)!}\right)}
\end{aligned}
$$

FIND $g(j)$:

$$
f(j)=g(j+1)-g(j)
$$

Summing the telescoping equation over j from 0 to a gives

$$
\sum_{j=0}^{a} f(j)=g(a+1)-g(0)
$$

A warm-up example: simplify

$$
\begin{aligned}
\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} & \left(\frac{(2 j+k+n+2) j!k!(j+k+n)!}{(j+k+1)(j+n+1)(j+k+1)!(j+n+1)!(k+n+1)!}\right. \\
& +\underbrace{\left.\frac{j!k!(j+k+n)!\left(-S_{1}(j)+S_{1}(j+k)+S_{1}(j+n)-S_{1}(j+k+n)\right)}{(j+k+1)!(j+n+1)!(k+n+1)!}\right)}
\end{aligned}
$$

FIND $g(j)$:

$$
f(j)=g(j+1)-g(j)
$$

Summing the telescoping equation over j from 0 to a gives

$$
\begin{aligned}
& \sum_{j=0}^{a} f(j)=g(a+1)-g(0) \\
& \quad=\frac{(a+1)!(k-1)!(a+k+n+1)!\left(S_{1}(a)-S_{1}(a+k)-S_{1}(a+n)+S_{1}(a+k+n)\right)}{n(a+k+1)!(a+n+1)!(k+n+1)!} \\
& \quad \underbrace{\frac{S_{1}(k)+S_{1}(n)-S_{1}(k+n)}{k n(k+n+1) n!}+\frac{(2 a+k+n+2) a!k!(a+k+n)!}{(a+k+1)(a+n+1)(a+k+1)!(a+n+1)!(k+n+1)!}}_{a \rightarrow \infty}
\end{aligned}
$$

A warm-up example: simplify

$$
\begin{aligned}
\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} & \left(\frac{(2 j+k+n+2) j!k!(j+k+n)!}{(j+k+1)(j+n+1)(j+k+1)!(j+n+1)!(k+n+1)!}\right. \\
& \underbrace{+\frac{j!k!(j+k+n)!\left(-S_{1}(j)+S_{1}(j+k)+S_{1}(j+n)-S_{1}(j+k+n)\right)}{(j+k+1)!(j+n+1)!(k+n+1)!}}_{f(j)})
\end{aligned}
$$

$$
\sum_{j=0}^{\infty} f(j)=\quad \frac{S_{1}(k)+S_{1}(n)-S_{1}(k+n)}{k n(k+n+1)}
$$

$\ln [8]:=\ll$ Sigma.m

Sigma - A summation package by Carsten Schneider (C) RISC-Linz

$$
\begin{aligned}
& \operatorname{In}[9]:=\operatorname{mySum}=\sum_{j=0}^{\mathbf{a}}\left(\frac{(2 \mathbf{j}+\mathbf{k}+\mathbf{n}+2) \mathbf{j}!\mathrm{k}!(\mathrm{j}+\mathrm{k}+\mathbf{n})!}{(\mathrm{j}+\mathrm{k}+\mathbf{1})(\mathrm{j}+\mathbf{n}+\mathbf{1})(\mathrm{j}+\mathbf{k}+1)!(\mathrm{j}+\mathbf{n}+1)!(\mathrm{k}+\mathbf{n}+1)!}+\right.
\end{aligned}
$$

$\ln [8]:=\ll$ Sigma.m

Sigma - A summation package by Carsten Schneider (c) RISC-Linz

$$
\begin{aligned}
& \operatorname{In}[9]:=\operatorname{mySum}=\sum_{j=0}^{\mathbf{a}}\left(\frac{(2 \mathbf{j}+\mathbf{k}+\mathbf{n}+2) \mathbf{j}!\mathrm{k}!(\mathrm{j}+\mathrm{k}+\mathbf{n})!}{(\mathrm{j}+\mathrm{k}+\mathbf{1})(\mathrm{j}+\mathbf{n}+\mathbf{1})(\mathrm{j}+\mathbf{k}+1)!(\mathrm{j}+\mathbf{n}+\mathbf{1})!(\mathrm{k}+\mathbf{n}+1)!}+\right. \\
& \left.\frac{\mathrm{j}!\mathrm{k}!(\mathrm{j}+\mathrm{k}+\mathrm{n})!\left(-\mathrm{S}_{1}[\mathrm{j}]+\mathrm{S}_{1}[\mathrm{j}+\mathrm{k}]+\mathrm{S}_{1}[\mathrm{j}+\mathrm{n}]-\mathrm{S}_{1}[\mathrm{j}+\mathrm{k}+\mathrm{n}]\right)}{(\mathrm{j}+\mathrm{k}+\mathbf{1})!(\mathrm{j}+\mathbf{n}+\mathbf{1})!(\mathrm{k}+\mathbf{n}+\mathbf{1})!}\right) ;
\end{aligned}
$$

$\ln [10]:=$ res $=$ SigmaReduce[mySum]

$$
\begin{aligned}
\text { Out }[10]= & \frac{(a+1)!(k-1)!(a+k+n+1)!\left(S_{1}[a]-S_{1}[a+k]-S_{1}[a+n]+S_{1}[a+k+n]\right)}{n(a+k+1)!(a+n+1)!(k+n+1)!}+ \\
& \frac{S_{1}[k]+S_{1}[n]-S_{1}[k+n]}{k n(k+n+1) n!}+\frac{(2 a+k+n+2) a!k!(a+k+n)!}{(a+k+1)(a+n+1)(a+k+1)!(a+n+1)!(k+n+1)!}
\end{aligned}
$$

$\ln [8]:=\ll$ Sigma.m

Sigma - A summation package by Carsten Schneider (c) RISC-Linz

$$
\begin{aligned}
& \ln [9]:=\operatorname{mySum}=\sum_{j=0}^{\mathrm{a}}\left(\frac{(2 \mathrm{j}+\mathrm{k}+\mathbf{n}+\mathbf{2}) \mathrm{j}!\mathrm{k}!(\mathrm{j}+\mathrm{k}+\mathbf{n})!}{(\mathrm{j}+\mathrm{k}+\mathbf{1})(\mathrm{j}+\mathbf{n}+\mathbf{1})(\mathrm{j}+\mathbf{k}+\mathbf{1})!(\mathrm{j}+\mathbf{n}+\mathbf{1})!(\mathrm{k}+\mathbf{n}+\mathbf{1})!}+\right. \\
& \left.\frac{\mathrm{j}!\mathrm{k}!(\mathrm{j}+\mathrm{k}+\mathrm{n})!\left(-\mathrm{S}_{1}[\mathrm{j}]+\mathrm{S}_{1}[\mathrm{j}+\mathrm{k}]+\mathrm{S}_{1}[\mathrm{j}+\mathrm{n}]-\mathrm{S}_{1}[\mathrm{j}+\mathrm{k}+\mathrm{n}]\right)}{(\mathrm{j}+\mathrm{k}+\mathbf{1})!(\mathrm{j}+\mathbf{n}+\mathbf{1})!(\mathrm{k}+\mathbf{n}+\mathbf{1})!}\right) ;
\end{aligned}
$$

$\ln [10]:=$ res $=$ SigmaReduce[mySum]

$$
\begin{aligned}
\text { Out }[10]= & \frac{(a+1)!(k-1)!(a+k+n+1)!\left(S_{1}[a]-S_{1}[a+k]-S_{1}[a+n]+S_{1}[a+k+n]\right)}{n(a+k+1)!(a+n+1)!(k+n+1)!}+ \\
& \frac{S_{1}[k]+S_{1}[n]-S_{1}[k+n]}{k n(k+n+1) n!}+\frac{(2 a+k+n+2) a!k!(a+k+n)!}{(a+k+1)(a+n+1)(a+k+1)!(a+n+1)!(k+n+1)!}
\end{aligned}
$$

$\ln [11]:=\operatorname{SigmaLimit}[$ res, $\{\mathrm{n}\}, \mathrm{a}]$
Out [11] $=\frac{1}{\mathrm{n}!} \frac{\mathrm{S}_{1}[\mathrm{k}]+\mathrm{S}_{1}[\mathrm{n}]-\mathrm{S}_{1}[\mathrm{k}+\mathrm{n}]}{\mathrm{kn}(\mathrm{k}+\mathrm{n}+1)}$

A warm-up example: simplify

$$
\begin{aligned}
\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} & \left(\frac{(2 j+k+n+2) j!k!(j+k+n)!}{(j+k+1)(j+n+1)(j+k+1)!(j+n+1)!(k+n+1)!}\right. \\
& \underbrace{+\frac{j!k!(j+k+n)!\left(-S_{1}(j)+S_{1}(j+k)+S_{1}(j+n)-S_{1}(j+k+n)\right)}{(j+k+1)!(j+n+1)!(k+n+1)!}}_{f(j)})
\end{aligned}
$$

$$
\sum_{j=0}^{\infty} f(j)=\quad \frac{S_{1}(k)+S_{1}(n)-S_{1}(k+n)}{k n(k+n+1)}
$$

A warm-up example: simplify

$$
\begin{aligned}
\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} & \left(\frac{(2 j+k+n+2) j!k!(j+k+n)!}{(j+k+1)(j+n+1)(j+k+1)!(j+n+1)!(k+n+1)!}\right. \\
& \underbrace{+\frac{j!k!(j+k+n)!\left(-S_{1}(j)+S_{1}(j+k)+S_{1}(j+n)-S_{1}(j+k+n)\right)}{(j+k+1)!(j+n+1)!(k+n+1)!}}_{f(j)})
\end{aligned}
$$

$$
\sum_{k=1}^{\infty} \sum_{j=0}^{\infty} f(j)=\frac{1}{n!} \sum_{k=1}^{\infty} \frac{S_{1}(k)+S_{1}(n)-S_{1}(k+n)}{k n(k+n+1)}
$$

Telescoping

GIVEN

$$
\mathrm{A}(n):=\sum_{k=1}^{a} \underbrace{\frac{S_{1}(k)+S_{1}(n)-S_{1}(k+n)}{k n(k+n+1)}}_{=: f(k)} .
$$

FIND $g(k)$:

$$
g(k+1)-g(k)=f(k)
$$

for all $0 \leq k \leq n$ and all $n \geq 0$.

Telescoping
GIVEN

$$
\mathrm{A}(n):=\sum_{k=1}^{a} \underbrace{\frac{S_{1}(k)+S_{1}(n)-S_{1}(k+n)}{k n(k+n+1)}}_{=: f(k)} .
$$

FIND $g(k)$:

$$
g(k+1)-g(k)=f(k)
$$

for all $0 \leq k \leq n$ and all $n \geq 0$.
no solution \oslash

Zeilberger's creative telescoping paradigm
GIVEN

$$
\mathrm{A}(n):=\sum_{k=1}^{a} \underbrace{\frac{S_{1}(k)+S_{1}(n)-S_{1}(k+n)}{k n(k+n+1)}}_{=: f(n, k)}
$$

FIND $g(n, k)$

$$
g(n, k+1)-g(n, k)=f(n, k)
$$

for all $0 \leq k \leq n$ and all $n \geq 0$.

Zeilberger's creative telescoping paradigm GIVEN

$$
\mathrm{A}(n):=\sum_{k=1}^{a} \underbrace{\frac{S_{1}(k)+S_{1}(n)-S_{1}(k+n)}{k n(k+n+1)}}_{=: f(n, k)}
$$

FIND $g(n, k)$ and $c_{0}(n), c_{1}(n)$:

$$
g(n, k+1)-g(n, k)=c_{0}(n) f(n, k)+c_{1}(n) f(n+1, k)
$$

for all $0 \leq k \leq n$ and all $n \geq 0$.

Zeilberger's creative telescoping paradigm GIVEN

$$
\mathrm{A}(n):=\sum_{k=1}^{a} \underbrace{\frac{S_{1}(k)+S_{1}(n)-S_{1}(k+n)}{k n(k+n+1)}}_{=: f(n, k)}
$$

FIND $g(n, k)$ and $c_{0}(n), c_{1}(n)$:

$$
g(n, k+1)-g(n, k)=c_{0}(n) f(n, k)+c_{1}(n) f(n+1, k)
$$

for all $0 \leq k \leq n$ and all $n \geq 0$.
Sigma computes: $c_{0}(n)=-n, c_{1}(n)=(n+2)$ and

$$
g(n, k)=\frac{k S_{1}(k)+(-n-1) S_{1}(n)-k S_{1}(k+n)-2}{(k+n+1)(n+1)^{2}}
$$

Zeilberger's creative telescoping paradigm
GIVEN

$$
\mathrm{A}(n):=\sum_{k=1}^{a} \underbrace{\frac{S_{1}(k)+S_{1}(n)-S_{1}(k+n)}{k n(k+n+1)}}_{=: f(n, k)}
$$

FIND $g(n, k)$ and $c_{0}(n), c_{1}(n)$:

$$
g(n, k+1)-g(n, k)=c_{0}(n) f(n, k)+c_{1}(n) f(n+1, k)
$$

for all $0 \leq k \leq n$ and all $n \geq 0$.
Summing this equation over k from 1 to a gives:

$$
g(n, a+1)-g(n, 1)=\sum_{k=1}^{a}\left[c_{0}(n) f(n, k)+c_{1}(n) f(n+1, k)\right]
$$

Zeilberger's creative telescoping paradigm
GIVEN

$$
\mathrm{A}(n):=\sum_{k=1}^{a} \underbrace{\frac{S_{1}(k)+S_{1}(n)-S_{1}(k+n)}{k n(k+n+1)}}_{=: f(n, k)}
$$

FIND $g(n, k)$ and $c_{0}(n), c_{1}(n)$:

$$
g(n, k+1)-g(n, k)=c_{0}(n) f(n, k)+c_{1}(n) f(n+1, k)
$$

for all $0 \leq k \leq n$ and all $n \geq 0$.
Summing this equation over k from 1 to a gives:

$$
g(n, a+1)-g(n, 1)=\sum_{k=1}^{a} c_{0}(n) f(n, k)+\sum_{k=1}^{a} c_{1}(n) f(n+1, k)
$$

Zeilberger's creative telescoping paradigm
GIVEN

$$
\mathrm{A}(n):=\sum_{k=1}^{a} \underbrace{\frac{S_{1}(k)+S_{1}(n)-S_{1}(k+n)}{k n(k+n+1)}}_{=: f(n, k)}
$$

FIND $g(n, k)$ and $c_{0}(n), c_{1}(n)$:

$$
g(n, k+1)-g(n, k)=c_{0}(n) f(n, k)+c_{1}(n) f(n+1, k)
$$

for all $0 \leq k \leq n$ and all $n \geq 0$.
Summing this equation over k from 1 to a gives:

$$
g(n, a+1)-g(n, 1)=c_{0}(n) \sum_{k=1}^{a} f(n, k)+c_{1}(n) \sum_{k=1}^{a} f(n+1, k)
$$

Zeilberger's creative telescoping paradigm GIVEN

$$
\mathrm{A}(n):=\sum_{k=1}^{a} \underbrace{\frac{S_{1}(k)+S_{1}(n)-S_{1}(k+n)}{k n(k+n+1)}}_{=: f(n, k)}
$$

FIND $g(n, k)$ and $c_{0}(n), c_{1}(n)$:

$$
g(n, k+1)-g(n, k)=c_{0}(n) f(n, k)+c_{1}(n) f(n+1, k)
$$

for all $0 \leq k \leq n$ and all $n \geq 0$.
Summing this equation over k from 1 to a gives:

$$
g(n, a+1)-g(n, 1)=c_{0}(n) \mathrm{A}(n)+c_{1}(n) \mathrm{A}(n+1)
$$

Zeilberger's creative telescoping paradigm GIVEN

$$
\mathrm{A}(n):=\sum_{k=1}^{a} \underbrace{\frac{S_{1}(k)+S_{1}(n)-S_{1}(k+n)}{k n(k+n+1)}}_{=: f(n, k)}
$$

FIND $g(n, k)$ and $c_{0}(n), c_{1}(n)$:

$$
g(n, k+1)-g(n, k)=c_{0}(n) f(n, k)+c_{1}(n) f(n+1, k)
$$

for all $0 \leq k \leq n$ and all $n \geq 0$.
Summing this equation over k from 1 to a gives:

$$
\begin{array}{cc}
\hline g(n, a+1)-g(n, 1) & =c_{0}(n) \mathrm{A}(n)+c_{1}(n) \mathrm{A}(n+1) \\
\| & -n \mathrm{~A}(n)+(2+n) \mathrm{A}(n+1) \\
\frac{(a+1)\left(S_{1}(a)+S_{1}(n)-S_{1}(a+n)\right)}{(n+1)^{2}(a+n+2)} & \\
+\frac{a(a+1)}{(n+1)^{3}(a+n+1)(a+n+2)} &
\end{array}
$$

$$
A(n)=\sum_{k=1}^{\infty} \frac{S_{1}(k)+S_{1}(n)-S_{1}(k+n)}{k n(k+n+1)}
$$

where

$$
S_{1}(n)=\sum_{i=1}^{n} \frac{1}{i} \quad S_{2}(n)=\sum_{i=1}^{n} \frac{1}{i^{2}}
$$

where

$$
S_{1}(n)=\sum_{i=1}^{n} \frac{1}{i} \quad S_{2}(n)=\sum_{i=1}^{n} \frac{1}{i^{2}}
$$

$$
\ln [12]:=\operatorname{mySum}=\sum_{\mathrm{k}=1}^{\mathrm{a}} \frac{\mathrm{~S}[1, \mathrm{k}]+\mathrm{S}[1, \mathrm{n}]-\mathrm{S}[1, \mathrm{k}+\mathrm{n}]}{\operatorname{kn}(\mathrm{k}+\mathrm{n}+1)}
$$

$$
\ln [12]:=\operatorname{mySum}=\sum_{\mathrm{k}=1}^{\mathrm{a}} \frac{\mathrm{~S}[1, \mathrm{k}]+\mathrm{S}[1, \mathrm{n}]-\mathrm{S}[1, \mathrm{k}+\mathrm{n}]}{\operatorname{kn}(\mathrm{k}+\mathrm{n}+1)}
$$

Compute a recurrence

$\ln [13]:=\mathbf{r e c}=$ GenerateRecurrence[mySum, n][[1]]
Out $[13]=n \operatorname{SUM}[n]+(1+n)(2+n) \operatorname{SUM}[n+1]==\frac{(a+1)(S[1, a]+S[1, n]-S[1, a+n])}{(n+1)^{2}(a+n+2) n!}+\frac{a(a+1)}{(n+1)^{3}(a+n+1)(a+n+2) n!}$

$$
\ln [12]:=\operatorname{mySum}=\sum_{\mathrm{k}=1}^{\mathrm{a}} \frac{\mathrm{~S}[1, \mathrm{k}]+\mathrm{S}[1, \mathrm{n}]-\mathrm{S}[1, \mathrm{k}+\mathrm{n}]}{\operatorname{kn}(\mathrm{k}+\mathrm{n}+1)}
$$

Compute a recurrence

$\ln [13]:=\mathbf{r e c}=$ GenerateRecurrence[mySum, $\mathbf{n}][[1]]$
Out $[13]=n \operatorname{SUM}[n]+(1+n)(2+n)$ SUM $[n+1]==\frac{(a+1)(S[1, a]+S[1, n]-S[1, a+n])}{(n+1)^{2}(a+n+2) n!}+\frac{a(a+1)}{(n+1)^{3}(a+n+1)(a+n+2) n!}$
$\ln [14]:=\mathbf{r e c}=\operatorname{LimitRec}[\mathbf{r e c}, \operatorname{SUM}[\mathbf{n}],\{\mathbf{n}\}, \mathrm{a}]$
$\operatorname{Out}[14]=-\mathrm{nSUM}[\mathrm{n}]+(1+\mathrm{n})(2+\mathrm{n}) \operatorname{SUM}[\mathrm{n}+1]==\frac{(\mathrm{n}+1) \mathrm{S}[1, \mathrm{n}]+1}{(\mathrm{n}+1)^{3}}$
$\ln [12]:=\operatorname{mySum}=\sum_{\mathrm{k}=1}^{\mathrm{a}} \frac{\mathrm{S}[1, \mathrm{k}]+\mathrm{S}[1, \mathrm{n}]-\mathrm{S}[1, \mathrm{k}+\mathrm{n}]}{\operatorname{kn}(\mathrm{k}+\mathrm{n}+1)} ;$

Compute a recurrence

$\ln [13]:=\mathbf{r e c}=$ GenerateRecurrence[mySum, $\mathbf{n}][[1]]$
Out $[13]=n \operatorname{SUM}[n]+(1+n)(2+n)$ SUM $[n+1]==\frac{(a+1)(S[1, a]+S[1, n]-S[1, a+n])}{(n+1)^{2}(a+n+2) n!}+\frac{a(a+1)}{(n+1)^{3}(a+n+1)(a+n+2) n!}$
$\ln [14]:=\mathbf{r e c}=\operatorname{LimitRec}[\mathbf{r e c}, \operatorname{SUM}[\mathbf{n}],\{\mathbf{n}\}, \mathrm{a}]$
$\operatorname{Out}[14]=-\mathrm{nSUM}[\mathrm{n}]+(1+\mathrm{n})(2+\mathrm{n}) \operatorname{SUM}[\mathrm{n}+1]==\frac{(\mathrm{n}+1) \mathrm{S}[1, \mathrm{n}]+1}{(\mathrm{n}+1)^{3}}$

Solve a recurrence

$\ln [15]:=$ recSol $=$ SolveRecurrence[rec, SUM[n]]
Out[15] $=\left\{\left\{0, \frac{1}{\mathrm{n}(\mathrm{n}+1)}\right\},\left\{1, \frac{\mathrm{~S}[1, \mathrm{n}]^{2}+\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{1}{\mathrm{i}^{2}}}{2 \mathrm{n}(\mathrm{n}+1)}\right\}\right\}$
$\ln [12]:=\operatorname{mySum}=\sum_{\mathrm{k}=1}^{\mathrm{a}} \frac{\mathrm{S}[1, \mathrm{k}]+\mathrm{S}[1, \mathrm{n}]-\mathrm{S}[1, \mathrm{k}+\mathrm{n}]}{\operatorname{kn}(\mathrm{k}+\mathrm{n}+1)} ;$

Compute a recurrence

$\ln [13]:=\mathbf{r e c}=$ GenerateRecurrence[mySum, $\mathbf{n}][[1]]$
Out $[13]=n \operatorname{SUM}[n]+(1+n)(2+n)$ SUM $[n+1]==\frac{(a+1)(S[1, a]+S[1, n]-S[1, a+n])}{(n+1)^{2}(a+n+2) n!}+\frac{a(a+1)}{(n+1)^{3}(a+n+1)(a+n+2) n!}$
$\ln [14]:=\mathbf{r e c}=\operatorname{LimitRec}[\mathbf{r e c}, \operatorname{SUM}[\mathbf{n}],\{\mathbf{n}\}, \mathrm{a}]$
$\operatorname{Out}[14]=-\mathrm{nSUM}[\mathrm{n}]+(1+\mathrm{n})(2+\mathrm{n}) \operatorname{SUM}[\mathrm{n}+1]==\frac{(\mathrm{n}+1) \mathrm{S}[1, \mathrm{n}]+1}{(\mathrm{n}+1)^{3}}$

Solve a recurrence

$\ln [15]:=$ recSol $=$ SolveRecurrence[rec, SUM[n]]
$\operatorname{Out}[15]=\left\{\left\{0, \frac{1}{\mathrm{n}(\mathrm{n}+1)}\right\},\left\{1, \frac{\mathrm{~S}[1, \mathrm{n}]^{2}+\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{1}{\mathrm{i}^{2}}}{2 \mathrm{n}(\mathrm{n}+1)}\right\}\right\}$

Combine the solutions

$\operatorname{In}[16]$:= FindLinearCombination[recSol, $\{1,\{1 / 2\}, \mathrm{n}, 2]$
Out $[16]=\frac{\mathrm{S}[1, \mathrm{n}]^{2}+\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{1}{\mathrm{i}^{2}}}{2 \mathrm{n}(\mathrm{n}+1)}$

A warm-up example: simplify

$$
\begin{aligned}
\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} & \left(\frac{(2 j+k+n+2) j!k!(j+k+n)!}{(j+k+1)(j+n+1)(j+k+1)!(j+n+1)!(k+n+1)!}\right. \\
& \underbrace{\frac{j!k!(j+k+n)!\left(-S_{1}(j)+S_{1}(j+k)+S_{1}(j+n)-S_{1}(j+k+n)\right)}{(j+k+1)!(j+n+1)!(k+n+1)!}}_{f(j)})
\end{aligned}
$$

$$
\sum_{k=1}^{\infty} \sum_{j=0}^{\infty} f(j)=\frac{1}{n!} \sum_{k=1}^{\infty} \frac{S_{1}(k)+S_{1}(n)-S_{1}(k+n)}{k n(k+n+1)}
$$

$$
=\frac{1}{n!} \frac{S_{1}(n)^{2}+S_{2}(n)}{2 n(n+1)}
$$

where

$$
S_{1}(n)=\sum_{i=1}^{n} \frac{1}{i} \quad S_{2}(n)=\sum_{i=1}^{n} \frac{1}{i^{2}}
$$

A warm-up example: simplify

$$
\begin{gathered}
\sum_{k=0}^{\infty} \sum_{j=0}^{\infty}\left(\frac{(2 j+k+n+2) j!k!(j+k+n)!}{(j+k+1)(j+n+1)(j+k+1)!(j+n+1)!(k+n+1)!}\right. \\
\underbrace{\left.+\frac{j!k!(j+k+n)!\left(-S_{1}(j)+S_{1}(j+k)+S_{1}(j+n)-S_{1}(j+k+n)\right)}{(j+k+1)!(j+n+1)!(k+n+1)!}\right)}_{f(n, k, j)} \\
\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} f(n, k, j)=\frac{S_{1}(n)^{2}+3 S_{2}(n)}{2 n(n+1)!}
\end{gathered}
$$

where

$$
S_{1}(n)=\sum_{i=1}^{n} \frac{1}{i} \quad S_{2}(n)=\sum_{i=1}^{n} \frac{1}{i^{2}}
$$

1. Creative telescoping (for the special case of hypergeometric terms see Zeilberger's algorithm (1991)) GIVEN a definite sum

$$
A(n)=\sum_{k=0}^{n} f(n, k)
$$

$f(n, k)$: indefinite nested product-sum in k; n : extra parameter

FIND a recurrence for $A(n)$

1. Creative telescoping (for the special case of hypergeometric terms see Zeilberger's algorithm (1991)) GIVEN a definite sum

$$
A(n)=\sum_{k=0}^{n} f(n, k) ; \quad \begin{aligned}
& f(n, k): \text { indefinite nested product-sum in } k ; \\
& n: \text { extra parameter }
\end{aligned}
$$

FIND a recurrence for $A(n)$
2. Recurrence solving GIVEN a recurrence $\quad a_{0}(n), \ldots, a_{d}(n), h(n)$:
indefinite nested product-sum expressions.

$$
a_{0}(n) A(n)+\cdots+a_{d}(n) A(n+d)=h(n)
$$

FIND all solutions expressible by indefinite nested products/sums (Abramov/Bronstein/Petkovšek/CS, in preparation)

1. Creative telescoping (for the special case of hypergeometric terms see Zeilberger's algorithm (1991)) GIVEN a definite sum

$$
A(n)=\sum_{k=0}^{n} f(n, k) ; \quad \begin{aligned}
& f(n, k): \text { indefinite nested product-sum in } k ; \\
& n: \text { extra parameter }
\end{aligned}
$$

FIND a recurrence for $A(n)$
2. Recurrence solving

GIVEN a recurrence $\quad a_{0}(n), \ldots, a_{d}(n), h(n)$:
indefinite nested product-sum expressions.

$$
a_{0}(n) A(n)+\cdots+a_{d}(n) A(n+d)=h(n)
$$

FIND all solutions expressible by indefinite nested products/sums (Abramov/Bronstein/Petkovšek/CS, in preparation)
3. Find a "closed form"
$A(n)=$ combined solutions in terms of indefinite nested sums.

$$
\sum_{j=0}^{n-2} \sum_{r=0}^{j+1} \sum_{s=0}^{n-j+r-2} \frac{(-1)^{r+s}\binom{j+1}{r}\binom{-j+n+r-2}{s}(-j+n-2)!r!}{(n-s)(s+1)(-j+n+r)!}
$$

Simple sum

$$
\begin{aligned}
& \sum_{j=0}^{n-2} \sum_{r=0}^{j+1} \sum_{s=0}^{n-j+r-2} \frac{(-1)^{r+s}\binom{j+1}{r}\binom{-j+n+r-2}{s}(-j+n-2)!r!}{(n-s)(s+1)(-j+n+r)!} \\
& \sum_{j=0}^{n-2} \sum_{r=0}^{j+1} \sum_{s=0}^{n-j+r-2} \frac{(-1)^{r+s}\binom{j+1}{r}\binom{-j+n+r-2}{s}(-j+n-2)!r!}{(n-s)(s+1)(-j+n+r)!}
\end{aligned}
$$

$$
\left.\left.\begin{array}{c}
\sum_{j=0}^{n-2} \sum_{r=0}^{j+1} \sum_{s=0}^{n-j+r-2} \frac{(-1)^{r+s}\binom{j+1}{r}\binom{-j+n+r-2}{s}(-j+n-2)!r!}{(n-s)(s+1)(-j+n+r)!} \\
\sum_{j=0}^{n-2} \sum_{r=0}^{j+1} \sum_{s=0}^{n-j+r-2} \frac{(-1)^{r+s}\binom{j+1}{r}\binom{-j+n+r-2}{s}(-j+n-2)!r!}{(n-s)(s+1)(-j+n+r)!} \\
\binom{j+1}{r}\left(\frac{(-1)^{r}(-j+n-2)!r!}{(n+1)(-j+n+r-1)(-j+n+r)!}+\right. \\
(n-1) n(n+1)(-j+n+r)!(-j-1)_{r}(2-n)_{j}
\end{array}\right)\right] .
$$

$$
\begin{array}{r}
\sum_{j=0}^{n-2} \sum_{r=0}^{j+1} \sum_{s=0}^{n-j+r-2} \frac{(-1)^{r+s}\binom{j+1}{r}\binom{-j+n+r-2}{s}(-j+n-2)!r!}{(n-s)(s+1)(-j+n+r)!} \\
\sum_{j=0}^{n-2} \sum_{r=0}^{j+1}\binom{j+1}{r}\left(\frac{(-1)^{r}(-j+n-2)!r!}{(n+1)(-j+n+r-1)(-j+n+r)!}+\right. \\
\left.\frac{(-1)^{n+r}(j+1)!(-j+n-2)!(-j+n-1)_{r} r!}{(n-1) n(n+1)(-j+n+r)!(-j-1)_{r}(2-n)_{j}}\right)
\end{array}
$$

$$
\sum_{j=0}^{n-2} \sum_{r=0}^{j+1} \sum_{s=0}^{n-j+r-2} \frac{(-1)^{r+s}\binom{j+1}{r}\binom{-j+n+r-2}{s}(-j+n-2)!r!}{(n-s)(s+1)(-j+n+r)!}
$$

$$
\sum_{j=0}^{n-2} \begin{array}{r}
\sum_{r=0}^{j+1}\binom{j+1}{r}\left(\frac{(-1)^{r}(-j+n-2)!r!}{(n+1)(-j+n+r-1)(-j+n+r)!}+\right. \\
\left.\frac{(-1)^{n+r}(j+1)!(-j+n-2)!(-j+n-1)_{r} r!}{(n-1) n(n+1)(-j+n+r)!(-j-1)_{r}(2-n) j}\right)
\end{array}
$$

$$
\begin{gathered}
\left(\frac{n^{2}-n+1}{(n-1)^{2} n^{2}(n+1)(2-n)_{j}}+\frac{\sum_{i=1}^{j} \frac{(2-n)_{i}}{(-i+n-1)^{2}(i+1)!}}{(n+1)(2-n)_{j}}+\right. \\
\left.\frac{(-1)^{j+n}(-j-2)(-j+n-2)!}{(j-n+1)(n+1)^{2} n!}\right)(j+1)!-\frac{1}{(n+1)^{2}(-j+n-1)} \\
\hline
\end{gathered}
$$

$$
\begin{gathered}
\sum_{j=0}^{n-2} \sum_{r=0}^{j+1} \sum_{s=0}^{n-j+r-2} \frac{(-1)^{r+s}\binom{j+1}{r}\binom{-j+n+r-2}{s}(-j+n-2)!r!}{(n-s)(s+1)(-j+n+r)!} \\
\sum_{j=0}^{n-2}\left(\left(\frac{n^{2}-n+1}{(n-1)^{2} n^{2}(n+1)(2-n)_{j}}+\frac{\sum_{i=1}^{j} \frac{(2-n)_{i}}{(-i+n-1)^{2}(i+1)!}}{(n+1)(2-n)_{j}}+\right.\right. \\
\left.\left.\frac{(-1)^{j+n}(-j-2)(-j+n-2)!}{(j-n+1)(n+1)^{2} n!}\right)(j+1)!-\frac{1}{(n+1)^{2}(-j+n-1)}\right)
\end{gathered}
$$

$$
\begin{gathered}
\sum_{j=0}^{n-2} \sum_{r=0}^{j+1} \sum_{s=0}^{n-j+r-2} \frac{(-1)^{r+s}\binom{j+1}{r}\binom{-j+n+r-2}{s}(-j+n-2)!r!}{(n-s)(s+1)(-j+n+r)!} \\
\sum_{j=0}^{n-2}\left(\left(\frac{n^{2}-n+1}{(n-1)^{2} n^{2}(n+1)(2-n)_{j}}+\frac{\sum_{i=1}^{j} \frac{(2-n)_{i}}{(-i+n-1)^{2}(i+1)!}}{(n+1)(2-n)_{j}}+\right.\right. \\
\left.\left.\frac{(-1)^{j+n}(-j-2)(-j+n-2)!}{(j-n+1)(n+1)^{2} n!}\right)(j+1)!-\frac{1}{(n+1)^{2}(-j+n-1)}\right) \\
\frac{-n^{2}-n-1}{n^{2}(n+1)^{3}}+\frac{(-1)^{n}\left(n^{2}+n+1\right)}{n^{2}(n+1)^{3}}-\frac{2 S_{-2}(n)}{n+1}+\frac{S_{1}(n)}{(n+1)^{2}}+\frac{S_{2}(n)}{-n-1}
\end{gathered}
$$

Note: $S_{a}(n)=\sum_{i=1}^{N} \frac{\operatorname{sign}(a)^{i}}{i^{|a|}}, a \in \mathbb{Z} \backslash\{0\}$.

$\ln [1]:=\ll$ Sigma.m

Sigma - A summation package by Carsten Schneider (C) RISC-Linz
$\operatorname{In}[2]:=\ll$ HarmonicSums.m
HarmonicSums by Jakob Ablinger (c) RISC-Linz
$\ln [3]:=\ll$ EvaluateMultiSums.m
EvaluateMultiSums by Carsten Schneider (c) RISC-Linz
$\ln [1]:=\ll$ Sigma.m
Sigma - A summation package by Carsten Schneider (C) RISC-Linz
$\ln [2]:=\ll$ HarmonicSums.m
HarmonicSums by Jakob Ablinger (c) RISC-Linz
$\ln [3]:=\ll$ EvaluateMultiSums.m
EvaluateMultiSums by Carsten Schneider (c) RISC-Linz

$\ln [5]:=$ EvaluateMultiSum $[$ mySum, $\},\{n\},\{1\}]$

$\ln [1]:=\ll$ Sigma.m

Sigma - A summation package by Carsten Schneider (C) RISC-Linz
$\ln [2]:=\ll$ HarmonicSums.m

HarmonicSums by Jakob Ablinger (c) RISC-Linz

$\ln [3]:=\ll$ EvaluateMultiSums.m
EvaluateMultiSums by Carsten Schneider (c) RISC-Linz

$\ln [5]:=$ EvaluateMultiSum $[$ mySum, $\},\{\mathbf{n}\},\{1\}]$
Out $[5]=\frac{-n^{2}-n-1}{n^{2}(n+1)^{3}}+\frac{(-1)^{n}\left(n^{2}+n+1\right)}{n^{2}(n+1)^{3}}-\frac{2 S[-2, n]}{n+1}+\frac{S[1, n]}{(n+1)^{2}}+\frac{S[2, n]}{-n-1}$

Application: The simplification of Feynman integrals

Evaluation of Feynman Integrals

Behavior of particles

Evaluation of Feynman Integrals

Behavior of particles

$$
\int \Phi(N, \epsilon, x) d x
$$

Feynman integrals

Part 3：The simplification of Feynman integrals
\square Part 3：The simplification of Feynman integrals

\square

$$
\int_{0}^{1} x^{1} d x=
$$

$$
\int_{0}^{1} x^{2} d x=\text { ? }
$$

$$
\int_{0}^{1} x^{1} d x=
$$

$$
\int_{0}^{1} x^{2} d x=
$$

$$
\int_{0}^{1} x^{1} d x=
$$

$\int_{0}^{1} x^{2} d x=$

$$
\int_{0}^{1} x^{3} d x=?
$$

$\int_{0}^{1} x^{N} d x=\frac{1}{N+1} \quad \int_{0}^{1} x^{2} d x=$
für $N=1,2,3,4, \ldots$

$$
\int_{0}^{1} x^{1} d x=
$$

$$
\int_{0}^{1} x^{3} d x=
$$

Feynman integrals

$$
\int_{0}^{1} x^{N} d x
$$

Feynman integrals

$$
\int_{0}^{1} x^{N}(1+x)^{N} d x
$$

Feynman integrals

$$
\int_{0}^{1} \frac{x^{N}(1+x)^{N}}{(1-x)^{1+\varepsilon}} d x
$$

Feynman integrals

$$
\int_{0}^{1} \int_{0}^{1} \frac{x_{1}^{N}\left(1+x_{1}\right)^{N}}{\left(1-x_{1}\right)^{1+\varepsilon}} \ldots d x_{1} d x_{2}
$$

Feynman integrals

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{x_{1}^{N}\left(1+x_{1}\right)^{N}}{\left(1-x_{1}\right)^{1+\varepsilon}} \ldots d x_{1} d x_{2} d x_{3}
$$

Feynman integrals

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{x_{1}^{N}\left(1+x_{1}\right)^{N}}{\left(1-x_{1}\right)^{1+\varepsilon}} \ldots d x_{1} d x_{2} d x_{3} d x_{4}
$$

Feynman integrals

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{x_{1}^{N}\left(1+x_{1}\right)^{N}}{\left(1-x_{1}\right)^{1+\varepsilon}} \ldots d x_{1} d x_{2} d x_{3} d x_{4} d x_{5}
$$

Feynman integrals

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{x_{1}^{N}\left(1+x_{1}\right)^{N}}{\left(1-x_{1}\right)^{1+\varepsilon}} \ldots d x_{1} d x_{2} d x_{3} d x_{4} d x_{5} d x_{6}
$$

Feynman integrals

$$
\begin{aligned}
& \sum_{j=0}^{N-3} \sum_{k=0}^{j}\binom{N-1}{j+2}\binom{j+1}{k+1} \\
& \times \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{x_{1}^{N}\left(1+x_{1}\right)^{N-j+k}}{\left(1-x_{1}\right)^{1+\varepsilon}} \ldots d x_{1} d x_{2} d x_{3} d x_{4} d x_{5} d x_{6}
\end{aligned}
$$

Feynman integrals

a 3-loop massive ladder diagram [arXiv:1509.08324]

$$
\begin{aligned}
& \sum_{j=0}^{N-3} \sum_{k=0}^{j}\binom{N-1}{j+2}\binom{j+1}{k+1} \\
& \times \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \theta\left(1-x_{5}-x_{6}\right)\left(1-x_{2}\right)\left(1-x_{4}\right) x_{2}^{-\varepsilon}
\end{aligned}
$$

$$
\left(1-x_{2}\right)^{-\varepsilon} x_{4}^{\varepsilon / 2-1}\left(1-x_{4}\right)^{\varepsilon / 2-1} x_{5}^{\varepsilon-1} x_{6}^{-e p / 2}
$$

$$
\begin{aligned}
& {\left[\left[-x_{3}\left(1-x_{4}\right)-x_{4}\left(1-x_{5}-x_{6}+x_{5} x_{1}+x_{6} x_{3}\right)\right]^{k}\right.} \\
& \left.+\left[x_{3}\left(1-x_{4}\right)-\left(1-x_{4}\right)\left(1-x_{5}-x_{6}+x_{5} x_{1}+x_{6} x_{3}\right)\right]^{k}\right]
\end{aligned}
$$

$$
\times\left(1-x_{5}-x_{6}+x_{5} x_{1}+x_{6} x_{3}\right)^{j-k}\left(1-x_{2}\right)^{N-3-j}
$$

$$
\times\left[x_{1}-\left(1-x_{5}-x_{6}\right)-x_{5} x_{1}-x_{6} x_{3}\right]^{N-3-j} d x_{1} d x_{2} d x_{3} d x_{4} d x_{5} d x_{6}
$$

Evaluation of Feynman Integrals

Behavior of particles

$$
\begin{gathered}
\int_{\text {Feynman integrals }} \Phi(N, \epsilon, x) d x \\
\hline
\end{gathered}
$$

Evaluation of Feynman Integrals

Behavior of particles

$$
\begin{gathered}
\int_{\text {Feynman integrals }} \Phi(N, \epsilon, x) d x \\
\hline
\end{gathered}
$$

(J. Blümlein)
$\sum f(N, \epsilon, k)$
complicated multi-sums

Evaluation of Feynman Integrals

Behavior of particles

$$
\begin{gathered}
\int_{\text {Feynman integrals }} \Phi(N, \epsilon, x) d x \\
\hline
\end{gathered}
$$

DESY
(J. Blümlein)
$\sum f(N, \epsilon, k)$
complicated multi-sums

Example 1:

massive 3-loop ladder integrals

Feynman integrals

$$
\begin{aligned}
& \sum_{j=0}^{N-3} \sum_{k=0}^{j}\binom{N-1}{j+2}\binom{j+1}{k+1} \\
& \times \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \theta\left(1-x_{5}-x_{6}\right)\left(1-x_{2}\right)\left(1-x_{4}\right) x_{2}^{-\varepsilon} \\
& \\
& \quad\left(1-x_{2}\right)^{-\varepsilon} x_{4}^{\varepsilon / 2-1}\left(1-x_{4}\right)^{\varepsilon / 2-1} x_{5}^{\varepsilon-1} x_{6}^{-e p / 2} \\
& \\
& \quad\left[-x_{3}\left(1-x_{4}\right)-x_{4}\left(1-x_{5}-x_{6}+x_{5} x_{1}+x_{6} x_{3}\right)\right]^{k} \\
& \\
& \left.\times\left(1-x_{3}\left(1-x_{4}\right)-\left(1-x_{4}\right)\left(1-x_{5}-x_{6}+x_{5} x_{1}+x_{6} x_{3}\right)\right]^{k}\right] \\
& \\
& \times\left[x_{1}-\left(1-x_{5} x_{1}+x_{6} x_{3}\right)^{j-k}\left(1-x_{6}\right)-x_{5} x_{1}-x_{6} x_{3}\right]^{N-3-3-j} d x_{1} d x_{2} d x_{3} d x_{4} d x_{5} d x_{6}
\end{aligned}
$$

a 3-loop massive ladder di-

$$
=F_{-3}(N) \varepsilon^{-3}+F_{-2}(N) \varepsilon^{-2}+F_{-1}(N) \varepsilon^{-1}+F_{0}(N)
$$

$$
\begin{aligned}
& \sum_{j=0}^{N-3} \sum_{k=0}^{j} \sum_{l=0}^{k} \sum_{q=0}^{-j+N-3} \sum_{s=1}^{-l+N-q-3} \sum_{r=0}^{-l+N-q-s-3}(-1)^{-j+k-l+N-q-3} \times \\
& \times \frac{\binom{j+1}{k+1}\binom{k}{l}\binom{N-1}{j+2}\binom{-j+N-3}{q}\binom{-l+N-q-3}{s}\binom{-l+N-q-s-3}{r} r!(-l+N-q-r-s-3)!(s-1)!}{(-l+N-q-2)!(-j+N-1)(N-q-r-s-2)(q+s+1)} \\
& {\left[4 S_{1}(-j+N-1)-4 S_{1}(-j+N-2)-2 S_{1}(k)\right.} \\
& \quad-\left(S_{1}(-l+N-q-2)+S_{1}(-l+N-q-r-s-3)-2 S_{1}(r+s)\right) \\
& \left.\quad+2 S_{1}(s-1)-2 S_{1}(r+s)\right]+3 \text { further 6-fold sums }
\end{aligned}
$$

$$
\begin{aligned}
& F_{0}(N)= \\
& \frac{7}{12} S_{1}(N)^{4}+\frac{(17 N+5) S_{1}(N)^{3}}{3 N(N+1)}+\left(\frac{35 N^{2}-2 N-5}{2 N^{2}(N+1)^{2}}+\frac{13 S_{2}(N)}{2}+\frac{5(-1)^{N}}{2 N^{2}}\right) S_{1}(N)^{2} \\
& +\left(-\frac{4(13 N+5)}{N^{2}(N+1)^{2}}+\left(\frac{4(-1)^{N}(2 N+1)}{N(N+1)}-\frac{13}{N}\right) S_{2}(N)+\left(\frac{29}{3}-(-1)^{N}\right) S_{3}(N)\right. \\
& \left.+\left(2+2(-1)^{N}\right) S_{2,1}(N)-28 S_{-2,1}(N)+\frac{20(-1)^{N}}{N^{2}(N+1)}\right) S_{1}(N)+\left(\frac{3}{4}+(-1)^{N}\right) S_{2}(N)^{2} \\
& -2(-1)^{N} S_{-2}(N)^{2}+S_{-3}(N)\left(\frac{2(3 N-5)}{N(N+1)}+\left(26+4(-1)^{N}\right) S_{1}(N)+\frac{4(-1)^{N}}{N+1}\right) \\
& +\left(\frac{(-1)^{N}(5-3 N)}{2 N^{2}(N+1)}-\frac{5}{2 N^{2}}\right) S_{2}(N)+S_{-2}(N)\left(10 S_{1}(N)^{2}+\left(\frac{8(-1)^{N}(2 N+1)}{N(N+1)}\right.\right. \\
& \left.\left.+\frac{4(3 N-1)}{N(N+1)}\right) S_{1}(N)+\frac{8(-1)^{N}(3 N+1)}{N(N+1)^{2}}+\left(-22+6(-1)^{N}\right) S_{2}(N)-\frac{16}{N(N+1)}\right) \\
& +\left(\frac{(-1)^{N}(9 N+5)}{N(N+1)}-\frac{29}{3 N}\right) S_{3}(N)+\left(\frac{19}{2}-2(-1)^{N}\right) S_{4}(N)+\left(-6+5(-1)^{N}\right) S_{-4}(N) \\
& +\left(-\frac{2(-1)^{N}(9 N+5)}{N(N+1)}-\frac{2}{N}\right) S_{2,1}(N)+\left(20+2(-1)^{N}\right) S_{2,-2}(N)+\left(-17+13(-1)^{N}\right) S_{3,1}(N) \\
& -\frac{8(-1)^{N}(2 N+1)+4(9 N+1)}{N(N+1)} S_{-2,1}(N)-\left(24+4(-1)^{N}\right) S_{-3,1}(N)+\left(3-5(-1)^{N}\right) S_{2,1,1}(N) \\
& +32 S_{-2,1,1}(N)+\left(\frac{3}{2} S_{1}(N)^{2}-\frac{3 S_{1}(N)}{N}+\frac{3}{2}(-1)^{N} S_{-2}(N)\right) \zeta(2)
\end{aligned}
$$

$$
\begin{aligned}
& F_{0}(N)= \\
& \frac{7}{12} S_{1}\left(y^{-1}(17 N+5) S_{1}(N)^{3}\right. \\
& +\left(-S_{1}(N)=\sum_{i=1}^{N} \frac{1}{i} \frac{35 N^{2}-2 N-5}{2 N^{2}(N+1)^{2}}+\frac{13 S_{2}(N)}{2}+\frac{5(-1)^{N}}{2 N^{2}}\right) S_{1}(N)^{2} \\
& \left.+\left(2+2(-1)^{N}\right) S_{2,1}(N)-28 S_{-2,1}(N)+\frac{20(-1)^{N}}{N^{2}(N+1)}\right) S_{1}(N)+\left(\frac{3}{4}+(-1)^{N}\right) S_{2}(N)^{2} \\
& -2(-1)^{N} S_{-2}(N)^{2}+S_{-3}(N)\left(\frac{2(3 N-5)}{N(N+1)}+\left(26+4(-1)^{N}\right) S_{1}(N)+\frac{4(-1)^{N}}{N+1}\right) \\
& +\left(\frac{(-1)^{N}(5-3 N)}{2 N^{2}(N+1)}-\frac{5}{2 N^{2}}\right) S_{2}(N)+S_{-2}(N)\left(10 S_{1}(N)^{2}+\left(\frac{8(-1)^{N}(2 N+1)}{N(N+1)}\right.\right. \\
& \left.\left.+\frac{4(3 N-1)}{N(N+1)}\right) S_{1}(N)+\frac{8(-1)^{N}(3 N+1)}{N(N+1)^{2}}+\left(-22+6(-1)^{N}\right) S_{2}(N)-\frac{16}{N(N+1)}\right) \\
& +\left(\frac{(-1)^{N}(9 N+5)}{N(N+1)}-\frac{29}{3 N}\right) S_{3}(N)+\left(\frac{19}{2}-2(-1)^{N}\right) S_{4}(N)+\left(-6+5(-1)^{N}\right) S_{-4}(N) \\
& +\left(-\frac{2(-1)^{N}(9 N+5)}{N(N+1)}-\frac{2}{N}\right) S_{2,1}(N)+\left(20+2(-1)^{N}\right) S_{2,-2}(N)+\left(-17+13(-1)^{N}\right) S_{3,1}(N) \\
& -\frac{8(-1)^{N}(2 N+1)+4(9 N+1)}{N(N+1)} S_{-2,1}(N)-\left(24+4(-1)^{N}\right) S_{-3,1}(N)+\left(3-5(-1)^{N}\right) S_{2,1,1}(N) \\
& +32 S_{-2,1,1}(N)+\left(\frac{3}{2} S_{1}(N)^{2}-\frac{3 S_{1}(N)}{N}+\frac{3}{2}(-1)^{N} S_{-2}(N)\right) \zeta(2)
\end{aligned}
$$

$$
\begin{aligned}
& F_{0}(N)= \\
& \frac{7}{12} S_{1}\left(y^{-1}(17 N+5) S_{1}(N)^{3}\right. \\
& +\left(-\left(\frac{35 N^{2}-2 N-5}{2 N^{2}(N+1)^{2}}+\frac{13 S_{2}(N)}{2}+\frac{5(-1)^{N}}{2 N^{2}}\right) S_{1}(N)^{2}\right. \\
& \left.\left.+\left(2+2(-1)^{N}\right) S_{2,1}(N)-28 S_{-2,1}(N)+\frac{20(-1)^{N}}{N^{2}(N+1} S_{2}(N)=\sum_{i=1}^{N} \frac{1}{i^{2}}\right)^{N}\right) S_{2}(N)^{2} \\
& -2(-1)^{N} S_{-2}(N)^{2}+S_{-3}(N)\left(\frac{2(3 N-5)}{N(N+1)}+\left(26+4\left(\frac{29}{N(N+1)}-(-1)^{N}\right) S_{3}(N)\right.\right. \\
& +\left(\frac{(-1)^{N}(5-3 N)}{2 N^{2}(N+1)}-\frac{5}{2 N^{2}}\right) S_{2}(N)+S_{-2}(N)\left(10 S_{1}(N)^{2}+\left(\frac{8(-1)^{N}(2 N+1)}{N(N+1)}\right.\right. \\
& \left.\left.+\frac{4(3 N-1)}{N(N+1)}\right) S_{1}(N)+\frac{8(-1)^{N}(3 N+1)}{N(N+1)^{2}}+\left(-22+6(-1)^{N}\right) S_{2}(N)-\frac{16}{N(N+1)}\right) \\
& +\left(\frac{(-1)^{N}(9 N+5)}{N(N+1)}-\frac{29}{3 N}\right) S_{3}(N)+\left(\frac{19}{2}-2(-1)^{N}\right) S_{4}(N)+\left(-6+5(-1)^{N}\right) S_{-4}(N) \\
& +\left(-\frac{2(-1)^{N}(9 N+5)}{N(N+1)}-\frac{2}{N}\right) S_{2,1}(N)+\left(20+2(-1)^{N}\right) S_{2,-2}(N)+\left(-17+13(-1)^{N}\right) S_{3,1}(N) \\
& -\frac{8(-1)^{N}(2 N+1)+4(9 N+1)}{N(N+1)} S_{-2,1}(N)-\left(24+4(-1)^{N}\right) S_{-3,1}(N)+\left(3-5(-1)^{N}\right) S_{2,1,1}(N) \\
& +32 S_{-2,1,1}(N)+\left(\frac{3}{2} S_{1}(N)^{2}-\frac{3 S_{1}(N)}{N}+\frac{3}{2}(-1)^{N} S_{-2}(N)\right) \zeta(2)
\end{aligned}
$$

$$
\begin{aligned}
& F_{0}(N)= \\
& \frac{7}{12} S_{1}\left(f^{-17 N+5) S_{1}(N)^{3}} \frac{N}{N}+\left(\frac{35 N^{2}-2 N-5}{2 N^{2}(N+1)^{2}}+\frac{13 S_{2}(N)}{2}+\frac{5(-1)^{N}}{2 N^{2}}\right) S_{1}(N)^{2}\right. \\
& +\left(\frac{12}{12} S_{1}(N)=\sum_{i=1}^{N} \frac{1}{i} \frac{1)^{N}(2 N+1)}{N(N+1)}-\frac{13}{N}\right) S_{2}(N)+\left(\frac{29}{-}-(-1)^{N}\right) S_{3}(N) \\
& \begin{array}{l}
\left.+\left(2+2(-1)^{N}\right) S_{2,1}(N)-28 S_{-2,1}(N)+\frac{20(-1)^{N}}{N^{2}(N+1} S_{2}(N)=\sum_{i=1}^{N} \frac{1}{i^{2}}{ }^{N}\right) S_{2}^{N}(N)^{2} \\
-2(-1)^{N} S_{-2}(N)^{2}+S_{-3}(N)\left(\frac{2(3 N-5)}{N(N+1)}+(26+4, \quad N+1)\right.
\end{array} \\
& +\left(\frac { (- 1) ^ { N } } { 2 N ^ { 2 } } \longdiv { j } \sum ^ { j } \frac { 1 } { 2 } + (\frac { 8 (- 1) ^ { N } (2 N + 1) } { N (N + 1) } \right. \\
& +\frac{4(3 N-}{N(N-} \\
& +\left(\frac{(-1)^{\lambda}}{N(}\right) S_{-2,1,1}(N)=\sum_{i=1}^{N} \frac{(-1)^{i} \sum_{j=1}^{i} \frac{\sum_{k=1} k}{j}}{i^{2}} l^{\left.\left.-1)^{N}\right) S_{2}(N)-\frac{16}{N(N+1)}\right)}(N)+\left(-6+5(-1)^{N}\right) S_{-4}(N) \\
& +(-\underbrace{2\left(-i^{2}\right.}_{i=1}) i_{2,-2}(N)+\left(-17+13(-1)^{N}\right) S_{3,1}(N) \\
& -\frac{8(-1)^{N}(2 N+1)+4(9 N+1)}{N(N+1)} S_{-2,1}(N)-\left(24+4(-1)^{N}\right) S_{-3,1}(N)+\left(3-5(-1)^{N}\right) S_{2,1,1}(N) \\
& +32{\underset{S}{-2,1,1}}(N)+\left(\frac{3}{2} S_{1}(N)^{2}-\frac{3 S_{1}(N)}{N}+\frac{3}{2}(-1)^{N} S_{-2}(N)\right) \zeta(2)
\end{aligned}
$$

Example 2:

2-mass 3-loop Feynman integrals

Example: a 2-mass 3-loop Feynman integral [arXiv:1804.02226]

 (arose in the calculation of the gluonic operator matrix element $A_{g, Q}^{(3)}$)

Example: a 2-mass 3-loop Feynman integral [arXiv:1804.02226]

 (arose in the calculation of the gluonic operator matrix element $A_{g g, Q}^{(3)}$)
expression (95 MB) with

- 150 single sums
- 1000 double sums
- 12160 triple sums
- 1555 quadruple sums

Example: a 2-mass 3-loop Feynman integral [arXiv:1804.02226]

 (arose in the calculation of the gluonic operator matrix element $A_{g 9, Q}^{(3)}$)
expression (95 MB) with

- 150 single sums
- 1000 double sums
- 12160 triple sums
- 1555 quadruple sums

Typical triple sum:

$$
\begin{aligned}
\sum_{j=0}^{N} \sum_{i=0}^{j} & \sum_{k=0}^{i} \frac{(4+\varepsilon)(-2+N)(-1+N) N \pi(-1)^{2-k}}{2+\varepsilon} \times 2^{-2+\varepsilon} e^{-\frac{3 \varepsilon \gamma}{2}} \eta^{k} \times \\
& \frac{\Gamma\left(1-\frac{\varepsilon}{2}-i+j+k\right) \Gamma\left(-1-\frac{\varepsilon}{2}\right) \Gamma\left(2+\frac{\varepsilon}{2}\right) \Gamma(1+N) \Gamma(1+\varepsilon+i-k) \Gamma\left(-\frac{3 \varepsilon}{2}+k\right) \Gamma(1-\varepsilon+k) \Gamma(3-\varepsilon+k) \Gamma\left(-\frac{1}{2}-\frac{\varepsilon}{2}+k\right)}{\Gamma\left(-\frac{3}{2}-\frac{\varepsilon}{2}\right) \Gamma\left(\frac{5}{2}+\frac{\varepsilon}{2}\right) \Gamma(2+i) \Gamma(1+k) \Gamma(2-i+j) \Gamma(2-\varepsilon+k) \Gamma\left(\frac{5}{2}-\varepsilon+k\right) \Gamma\left(-\frac{\varepsilon}{2}+k\right) \Gamma\left(5+\frac{\varepsilon}{2}+N\right)}
\end{aligned}
$$

Example: a 2-mass 3-loop Feynman integral [arXiv:1804.02226] (arose in the calculation of the gluonic operator matrix element $A_{g g, Q}^{(3)}$)

Mellin-Barnes$\xrightarrow{\text { and }{ }_{p} F_{q} \text {-technologies }}$
expression (95 MB) with

- 150 single sums
- 1000 double sums
- 12160 triple sums
- 1555 quadruple sums

Typical triple sum:

$$
\begin{aligned}
\sum_{j=0}^{N} \sum_{i=0}^{j} & \sum_{k=0}^{i} \frac{(4+\varepsilon)(-2+N)(-1+N) N \pi(-1)^{2-k}}{2+\varepsilon} \times 2^{-2+\varepsilon} e^{-\frac{3 \varepsilon \gamma}{2}} \eta^{k} \times \\
& \frac{\Gamma\left(1-\frac{\varepsilon}{2}-i+j+k\right) \Gamma\left(-1-\frac{\varepsilon}{2}\right) \Gamma\left(2+\frac{\varepsilon}{2}\right) \Gamma(1+N) \Gamma(1+\varepsilon+i-k) \Gamma\left(-\frac{3 \varepsilon}{2}+k\right) \Gamma(1-\varepsilon+k) \Gamma(3-\varepsilon+k) \Gamma\left(-\frac{1}{2}-\frac{\varepsilon}{2}+k\right)}{\Gamma\left(-\frac{3}{2}-\frac{\varepsilon}{2}\right) \Gamma\left(\frac{5}{2}+\frac{\varepsilon}{2}\right) \Gamma(2+i) \Gamma(1+k) \Gamma(2-i+j) \Gamma(2-\varepsilon+k) \Gamma\left(\frac{5}{2}-\varepsilon+k\right) \Gamma\left(-\frac{\varepsilon}{2}+k\right) \Gamma\left(5+\frac{\varepsilon}{2}+N\right)}
\end{aligned}
$$

6 hours for this sum
~ 10 years of calculation time for full expression

Example: a 2-mass 3-loop Feynman integral [arXiv:1804.02226] (arose in the calculation of the gluonic operator matrix element $A_{g g, Q}^{(3)}$)

expression (95 MB) with

- 150 single sums
- 1000 double sums
- 12160 triple sums
- 1555 quadruple sums

\downarrow SumProduction.m (2 hours)

> expression (377 MB) consisting of 8 multi-sums

Example: a 2-mass 3-loop Feynman integral [arXiv:1804.02226] (arose in the calculation of the gluonic operator matrix element $A_{g g, Q}^{(3)}$)

expression (95 MB) with

- 150 single sums
- 1000 double sums
- 12160 triple sums
- 1555 quadruple sums

\downarrow SumProduction.m (2 hours)

```
expression ( 377 MB ) consisting of 8 multi-sums
```

EvaluateMultiSums.m

Example: a 2-mass 3-loop Feynman integral [arXiv:1804.02226]

 (arose in the calculation of the gluonic operator matrix element $A_{g g, Q}^{(3)}$)| sum | size of sum (with ε) | summand size of constant term | time of calculation | | number of indef. sums |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\sum^{N-3} \sum^{i^{-2}} \sum^{i_{3}} \sum^{\infty}$ | 17.7 MB | 266.3 MB | 177529 s | (2.1 days) | 1188 |
| $\sum^{N-4} \sum^{i_{3}-1} \sum^{\infty}$ | 232 MB | 1646.4 MB | 980756 s | (11.4 days) | 747 |
| $\sum^{N-4} \sum^{\infty}$ | 67.7 MB | 458 MB | 524485 s | (6.1 days) | 557 |
| $\sum_{i_{1}=0}^{\infty}$ | 38.2 MB | 90.5 MB | 689100 s | (8.0 days) | 44 |
| $\sum^{N-3} \sum^{i_{4}-2} \sum^{i_{3}} \sum^{i_{2}}$ | 1.3 MB | 6.5 MB | 305718 s | (3.5 days) | 1933 |
| $\sum \sum \sum$ | 11.6 MB | 32.4 MB | 710576 s | (8.2 days) | 621 |
| | 4.5 MB | 5.5 MB | 435640 s | (5.0 days) | 536 |
| | 0.7 MB | 1.3 MB | 9017s | (2.5 hours) | 68 |

Example: a 2-mass 3-loop Feynman integral [arXiv:1804.02226] (arose in the calculation of the gluonic operator matrix element $A_{g g, Q}^{(3)}$)

expression (95 MB) with

- 150 single sums
- 1000 double sums
- 12160 triple sums
- 1555 quadruple sums

\downarrow SumProduction.m (2 hours)

```
expression ( 377 MB ) consisting of 8 multi-sums
```

EvaluateMultiSums.m
(3 month)
expression (154 MB)
consisting of 4110 indefinite sums

Example: a 2-mass 3-loop Feynman integral ${ }^{[a r X i v: 1804.02226]}$

 (arose in the calculation of the gluonic operator matrix element $A_{g g, Q}^{(3)}$)Most complicated objects: generalized binomial sums, like

$$
\begin{aligned}
\sum_{h=1}^{N} 2^{-2 h}(1-\eta)^{h}\binom{2 h}{h} & \left(\sum_{i=1}^{h} \frac{2^{2 i}(1-\eta)^{-i}}{i\binom{2 i}{i}}\right)\left(\sum_{i=1}^{h} \frac{(1-\eta)^{i}\binom{2 i}{i}}{2^{2 i}}\right) \times \\
& \times\left(\sum_{i=1}^{h} \frac{2^{2 i}(1-\eta)^{-i} \sum_{j=1}^{i} \frac{\sum_{k=1}^{j} \frac{(1-\eta)^{k}}{k}}{j}}{i\binom{2 i}{i}}\right.
\end{aligned}
$$

Example: a 2-mass 3-loop Feynman integral [arXiv:1804.02226] (arose in the calculation of the gluonic operator matrix element $A_{g g, Q}^{(3)}$)

expression (95 MB) with

- 150 single sums
- 1000 double sums
- 12160 triple sums
- 1555 quadruple sums

$$
\downarrow \text { SumProduction.m (2 hours) }
$$

```
expression ( 377 MB ) consisting of 8 multi-sums
```

EvaluateMultiSums.m
(3 month)

expression (8.3 MB)
consisting of
74 indefinite sums

$\stackrel{\text { Sigma.m (32 days) }}{\longleftarrow}$
expression (154 MB) consisting of 4110 indefinite sums

Evaluation of Feynman Integrals

Behavior of particles

$$
\begin{gathered}
\int_{\text {Feynman integrals }} \Phi(N, \epsilon, x) d x \\
\hline
\end{gathered}
$$

DESY
(J. Blümlein)
$\sum f(N, \epsilon, k)$
complicated multi-sums

Evaluation of Feynman Integrals

Behavior of particles

$\int \Phi(N, \epsilon, x) d x$
Feynman integrals

(J. Blümlein)
$\sum f(N, \epsilon, k)$ complicated multi-sums

