Exercise Sheet 1

To be submitted by email to manuel@kauers.de until 27.05.2018

You are encouraged to use computer algebra systems for solving the exercises below. You may submit a transcript of your session as (part of) your solution.

Task 1 a) Show that there is a unique formal power series $f \in \mathbb{Q}[[x]]$ with

$$
2 x f(x)+\mathrm{e}^{x}(x+1) f(x)^{2}+(2 x-1) f^{\prime}(x)=0
$$

and $f(x)=1+x+4 x^{2}+\frac{65}{6} x^{3}+\cdots$.
b) Show that the series f from part a) is D-finite.

Task 2 Show that if the sequence of prime numbers is D-finite, then any recurrence it satisfies has order ≥ 10 or degree ≥ 50.
Bonus problem (not required): can you show that this sequence is not D-finite?
Task 3 Consider a recurrence of order r and degree d with a leading coefficient polynomial whose largest integer root is n_{0}. The algorithm presented in the lecture for finding a basis of the solution space in $C^{\mathbb{N}}$ of such a recurrence requires $\mathrm{O}\left(\left(n_{0}+r\right)^{3}\right)$ operations in C. That's not very good when n_{0} is very large. Show that the task can also be done using only $\mathrm{O}\left(d r n_{0}+d r^{3}\right)$ operations in C.

Task 4 Determine a basis of the solution space in $C[[[x]]]$ of the differential equation

$$
\begin{aligned}
& x^{2}\left(x^{2}-2\right)(2 x+1)^{2} f^{\prime \prime}(x) \\
& -x\left(16 x^{3}+9 x^{2}-24 x-14\right)(2 x+1) f^{\prime}(x) \\
& +\left(80 x^{4}+91 x^{3}-65 x^{2}-106 x-30\right) f(x)=0
\end{aligned}
$$

It suffices to find the first five nonzero terms of each basis element.

