Exercise Sheet 1

To be submitted by email to manuel@kauers.de until 27.05.2018

You are encouraged to use computer algebra systems for solving the exercises below. You may submit a transcript of your session as (part of) your solution.

Task 1 a) Show that there is a unique formal power series $f \in \mathbb{Q}[[x]]$ with

$$2xf(x) + e^{x}(x+1)f(x)^{2} + (2x-1)f'(x) = 0$$

and $f(x) = 1 + x + 4x^2 + \frac{65}{6}x^3 + \cdots$.

b) Show that the series f from part a) is D-finite.

Task 2 Show that if the sequence of prime numbers is D-finite, then any recurrence it satisfies has order ≥ 10 or degree ≥ 50 .

Bonus problem (not required): can you show that this sequence is not D-finite?

Task 3 Consider a recurrence of order r and degree d with a leading coefficient polynomial whose largest integer root is n_0 . The algorithm presented in the lecture for finding a basis of the solution space in $C^{\mathbb{N}}$ of such a recurrence requires $O((n_0 + r)^3)$ operations in C. That's not very good when n_0 is very large. Show that the task can also be done using only $O(drn_0 + dr^3)$ operations in C.

Task 4 Determine a basis of the solution space in C[[[x]]] of the differential equation

$$x^{2}(x^{2}-2)(2x+1)^{2}f''(x)$$

- x(16x³ + 9x² - 24x - 14)(2x + 1)f'(x)
+ (80x⁴ + 91x³ - 65x² - 106x - 30)f(x) = 0.

It suffices to find the first five nonzero terms of each basis element.